FRANĚK A., FENDRYCHOVÁ K.: TEORIE STRUN, SUPERSTRUN A M-TEORIE

Rozměr: px
Začít zobrazení ze stránky:

Download "FRANĚK A., FENDRYCHOVÁ K.: TEORIE STRUN, SUPERSTRUN A M-TEORIE"

Transkript

1 TEORIE STRUN, SUPERSTRUN A M-TEORIE Aleš Franěk, Kristýna Fendrychová 4. A, Gymnázium Na Vítězné pláni 1160, Praha 4, , šk. rok 2005/2006 Abstrakt: Tento článek by měl přiblížit základní myšlenku dnes velmi popularizované teorie superstrun. Vedle velmi zjednodušeného popisu teorie, jejích předpokladů a nedostatků je také zaměřen i na vývoj jejího chápání v čase. Na co teorie navazuje Když sir Isaac Newton uvedl do světa svou mechaniku, zdálo se, že už má lidstvo fyziku popsanou. V 18. a 19. století však bylo nutno Newtonův matematický aparát přizpůsobit pokrokům vědy a vzniku nových oborů založených na studiu elektromagnetismu. Vznikla tak klasická teorie pole, kterou záhy po objevení elektronu doplnila kvantová mechanika. Když pak americký fyzik Albert Michelson dokázal, že světlo se pohybuje konstantní rychlostí v každém směru a vzhledem ke každému pozorovateli, přibyla brzy zásluhou Alberta Einsteina speciální teorie relativity. V kvantové mechanice se s ní začalo počítat pod pojmenováním relativistická kvantová teorie pole. Speciální teorii relativity pak Einstein doupravil do dnešní podoby obecné teorie relativity. Ale stále je tu jeden zásadní problém. Obecná teorie relativity a kvantová teorie pole je podle standardního modelu stále neslučitelná. Avšak nyní to vypadá, že cesta ke spojení těchto teorií a tedy finální cesta k teorii velkého sjednocení by se mohla vést přes malé jednorozměrné objekty, kterým říkáme struny, a jejich fundamentální protějšky membrány [4]. Proč teorie nenavazuje přímo na své předchůdce Historicky, člověk byl vždy svědkem prostého jevu, že pokud se díváme do struktury, jakou je atom, s lepším rozlišením, objevíme uvnitř malé podstruktury: uvnitř atomů je jádro z nukleonů a uvnitř nich jsou kvarky. Mohli bychom si tedy myslit, že uvnitř kvarků jsou subkvarky. Kvark by tedy byl složen z podkvarků, tyto podkvarky z podpodkvarků a tak dále a tak dále. Podle teorie strun řada takto ale nepokračuje [4, 5]. Ve standardním modelu jsou elementární částice chápány jako bezrozměrné bodové objekty pohybující se prostorem. Vytyčují tedy jakousi dráhu svého pohybu světočáru. Musíme dále počítat s tím, že kromě svého pohybu v závislosti na čase musíme uvažovat i další stupně volnosti jako náboj, hmotnost, barvu (tedy náboj spojený se silnou interakcí) anebo spin. Standardní model byl postaven na základech kvantové teorie pole. Díky tomuto modelu se nám podařilo s obrovským úspěchem popsat tři známé silové interakce v přírodě. Elektromagnetismus, silnou jadernou a slabou jadernou sílu. Ba co víc. Podařilo se dokonce sjednotit elektromagnetismus Obr. 1: Jedna z mnoha představ, jak by mohly struny a slabou sílu do jediné elektroslabé interakce. vypadat. Bohužel však čtvrtá interakce gravitace stále uniká a nic nenasvědčuje tomu, že by mohl být standardní model vhodným řešením [3, 4]. 106

2 Teorie strun není hladkým pokračováním předchozích snah a minulých vylepšení teorie hmoty. Základní ideou teorie strun je že všechny částice, všichni nositelé sil a také nositel gravitace jsou v jistém smyslu excitacemi objektu podobného struně. Jeví se nám, pokud je pozorujeme na dlouhých vzdálenostech, jako konkrétní vibrace jednoho základního objektu ve tvaru struny [5]. Teorie strun je ideou popsat elementární částice trochu jiným způsobem, než který byl užíván v minulosti. Tehdy lidé předpokládali, že elementární částice se dají chápat jako body. Tedy jako částice bez velikosti, právě jako matematické body. Tahle myšlenka se dostala do potíží, když jsme se snažili zahrnout do teorií gravitaci [5]. A tak jsme teoriemi strun zobecnili ideu bodových částic na částice, které mají rozměr, konkrétně jsou to čáry, které sice nemají žádnou tloušťku, ale jsou to jednorozměrné křivky. V nejslibnějších teoriích jsou to smyčky, abychom byli přesnější.[4,5] Struny svým pohybem pak nevytváří světočáru, ale jakousi světotrubici. Význam bodových částic ale nemizí. Díváme-li se na částice zblízka s rozlišením dosud používaným pro popis těchto objektů (tedy m), budou se nám jevit stále jako bodové. Jejich strunný charakter by se měl projevovat až při mnohem větším přiblížení [3, 4]. Fundamentální struny Význam slova fundamentální se s časem mění. Kdysi lidé věřili, že atomy jsou fundamentální a základní stavební kameny přírody. Potom si totéž myslili o protonech nebo kvarcích. A my nyní říkáme, že fundamentální je struna. Stále tedy máme jakési základní objekty, jsou jimi různé módy struny. Jedna struna v jistém smyslu odpovídá nekonečnému množství elementárních částic, jelikož může vibrovat nekonečně mnoha způsoby. Všechny vyšší harmonické u struny vypadají jako těžší excitace různých elementárních částic. Co je na teorii strun jednoduché a sjednocující je to, že všechny tyto částice jsou excitacemi téhož objektu [5]. Máme tedy jedinou strunu, ale nekonečné množství elementárních částic. Při nízkých energiích, které můžeme dnes pozorovat, lze registrovat jen pár těchto částic. Ostatní jsou velmi těžké a je obtížné je produkovat, pokud nemáme velmi výkonné urychlovače. A to je důvod, proč můžeme mít dobrou aproximaci teorie strun, založenou na nejnižších excitacích strun, které nazýváme kvarky, leptony, fotony a gluony. Proto také teorie strun při nízkých energiích přechází na obvyklou teorii [5]. Jak struny reagují Nejlépe si to lze ukázat na příkladě dvou elektronů, které se pohybují a když jsou blízko sebe, jeden z nich vystřelí foton a odrazí se tím opačným směrem (viz Obr. 2). Druhý elektron absorbuje foton, čímž je nakopnut a změní směr letu. Výsledek vypadá tak, že elektrony přilétnou tak a odlétnou onak [5]. Obr. 2: schéma interakce mezi dvěma elektrony z pohledu jak ho známe a z pohledu teorie strun [5]. 107

3 Tato interakce mezi elektrony je takzvaná elektromagnetická interakce, kterou lze vysvětlit existencí fotonů, částic světla. Řekli bychom, že je to vhodný popis, pokud popisujeme interakci elektronů na dlouhých vzdálenostech, s očima, které vidí dlouhé vzdálenosti, nebo s našimi vysokoenergetickými urychlovači, které vidí vzdálenosti kratší, ale stále nesrovnatelně větší, než je Planckova délka (10-35 m) [5]. Detailnější pohled na Planckově škále nám přináší zajímavější obrázek. Struna vibrující jako elektron přichází k místu interakce. Její pohyb v čase vytváří cosi jako trubku. V určitém čase se tato struna spojí se strunou jiného elektronu a poté se zase rozpojí. Vypadá to, že z trubky prvého elektronu vylétne jiná trubka fotonu, která je poté pohlcena druhou strunou vykonávající pohyb elektronu. Celkově si tedy dvě elektronové struny vyměnili jednu fotonovou strunu [5]. Vidíme, že celou dobu se vše odehrává jen díky struně, stále témuž druhu provázku, pouze vibrační stav lze jednou identifikovat s elektronem a při jiném experimentu třeba s kvarkem. A částice, kterou si struny vyměňují a tak spolu interagují, může být mnoho rozdílných věcí, které závisejí na excitaci: někdy je to foton, jindy graviton. Všechno je sjednoceno do výměny téhož fundamentálního objektu [5]. Vývoj teorie Teorie strun Teorie strun navazuje na práce německého fyzika Theodora Kaluzy z roku 1921 a švédského fyzika Oscara Kleina z roku Kaluza zjistil, že v pětirozměrném prostoru lze formálně sjednotit teorii gravitace a teorii elektromagnetického pole, ale nedokázal vysvětlit, kam se pátý rozměr ztratil. Klein jeho matematickou konstrukci doplnil vysvětlením v souladu s kvantovou mechanikou a tvrdil, že pátý rozměr se během vývoje velmi raného vesmíru smrštil a tudíž je nepozorovatelný [2]. První předznamenání teorie strun se objevilo v roce 1968 u italského fyzika Gabriela Veneziana, který pracoval na teorii silných interakcí. V jeho práci sice nebylo ani slovo o teorii strun, ale v roce 1970 někteří vědci upozornili na to, že jeho vztahy popisující interakce mezi částicemi mohou vést k představě struny jako základní dynamické jednotky. Konce struny by se pak chovaly jako elementární částice [2]. V roce 1971 upozornil teoretik Claud Lovelace na to, že jedna ze teorií strun přináší zajímavé výsledky, pokud je formulována v 26 rozměrném prostoru. Teorie však ignorovala fermiony (kvarky a leptony), které jsou základem hmoty a naopak zahrnovala hypotetickou částici tachyon, která se pohybuje pouze nadsvětelnou rychlostí [2]. Teorie superstrun Částice, které v přírodě známe, obecně rozdělujeme podle jejich spinu. Částice s celočíselným spinem jsou bosony (např. proton nebo neutron) a částice s poločíselným spinem fermiony (elektron nebo kvarky). Teorie strun měla jednu slabost. Dokázala popsat pouze bosony. Tedy elektrony ani kvarky nebyly původně v teorii zahrnuty. To ale vyřešila supersymetrie a vznikla tak poupravená teorie strun nazvaná teorie superstrun. Ani ta však není úplně bez chyb. Existují totiž tři rozdílné teorie superstrun. Ve dvou jsou základními objekty uzavřené struny, ve třetí je struna otevřená. Navíc kombinací teorie strun a superstrun jsme dostali dvě další teorie obecně označované jako heterotické strunové teorie [2-5]. 108

4 M-teorie Obr. 4: M-teorie spojuje jednotlivé superstrunové teorie na základě dualit. S ohledem na skutečnost, že tady máme pět naprosto různých a přesto fungujících teorií strun (tři superstrunové a dvě heterotické), bylo nutno podniknout takové kroky, aby množiny parametrů, kterými tyto teorie popisujeme, byly sjednoceny do jediné. Na to přišel až Edward Witten (viz Obr. 3) se svou M-teorií, která na základě dualit sjednocuje předešlých 5 teorií (viz Obr. 4). Tato teorie však zavádí Obr. 3: Edward Witten otec M- teorie. ke struně druhý fundamentální objekt membránu. V jedenáctirozměrném prostoru se jeví jako brčko, zatímco v průmětu do desetirozměrného je to zase jen struna [2-5]. Skryté rozměry Jedním z důležitých závěrů teorie superstrun anebo M-teorie je, že struny musí nutně žít ve větším počtu dimenzí než jen třech prostorových a čase. Nejreálnější se nyní zdá, že náš vesmír má celkem 10 rozměrů a čas, přičemž 7 rozměrů je nerozvinutých. Jsou stočeny a zakřiveny natolik, že se svou geometrií v našem světě neprojevují. K tomu, jak si takové rozměry představit, nám lehce poslouží převtělení se do jednorozměrného světa (viz Obr. 5). V jednorozměrném světě bychom žili jako bod pohybující se po přímce. Nic víc. Když by ale ten svět byl dvourozměrný a druhá dimenze by byla svinuta do sebe, mohlo by to vypadat tak, že sice budeme existovat v jednorozměrném světě, ale to proto, že nebudeme mít lupu, která by nám ukázala na tu druhou stočenou dimenzi. Myšlenka extra dimenzí je ukryta ve stupních volnosti. Například náboj elektronu se tedy může jevit jako pohyb v jedné ze svinutých dimenzí. Podobně můžeme uvažovat spin, barvu a další [3-5]. Obr. 4: Jak najít skryté rozměry [5]. Astrofyzikální a kosmologické důsledky teorií superstrun Podobně jako u dřívějších kvantových teorií pole a vícedimenzionálních unitárních teorií, i zde se nabízejí zajímavé hypotézy astrofyzikálních a kosmologických důsledků teorie superstrun. 109

5 Černé díry Zajímavé astrofyzikální aspekty teorie superstrun byly studovány v souvislosti s termodynamikou a kvantovou evaporací černých děr. Pomocí metod teorie strun se podařilo odvodit vzorec pro entropii černé díry, a to nezávisle na Hawkingově a Bekensteinově přístupu. To umožňuje z nového pohledu proniknout jak do podstaty kvantově-gravitačních procesů, tak do úlohy horizontů a černých děr v unitární teorii pole [2]. Kosmologie Zajímavé, i když zatím zcela hypotetické, mohou být i kosmologické důsledky zobecněné teorie superstrun. V oblasti kosmologie nejranějšího vesmíru se diskutují dvě hypotézy, které překračují magickou hranici velkého třesku: 1. Pre-big bangová fáze vesmíru Superstruny se nemohou zhroutit do nekonečně malého bodu, což umožňuje vyhnout se paradoxu singularity standardního Velkého třesku. Kombinace T-duality se symetrií vůči obrácení směru času vede k modelu, podle něhož Velký třesk by nemusel být počátkem vesmíru a času, ale pouze bouřlivým přechodem od smršťování v před-bangové éře k rozpínání po Big bangu. Podle tohoto scénáře by vesmír před třeskem mohl být v jistém smyslu zrcadlovým obrazem vesmíru po třesku. V nekonečné minulosti byl téměř prázdný, zaplněný jen řídce rozptýleným zářením. Postupně se smršťoval, ale nemohl zkolabovat do singularity; když zakřivení, hustota a teplota dosáhnou maximálních hodnot dovolených teorií superstrun, dochází k jakémusi odrazu (může být dáno do souvislosti i s efektem, že uvnitř horizontu černé díry si prostor a čas prohodí role) a hodnoty těchto veličin začnou opět klesat - dojde k expanzi nynějšího vesmíru. Tento okamžik obrácení se nám jeví jako Velký třesk. Prostoročasový diagram tohoto scénáře má tvar jakési dvojité skleničky na víno či přesýpacích hodin - hrdlo představuje (zdánlivý) Velký třesk [2]. 2. Model ekpyrotického vzniku vesmíru V pojetí duálních p-bran by vesmír mohl být 3-dimenzionální branou (3-branou), vyvíjející se na pozadí 11-rozměrné variety s vhodnými kompaktifikacemi. A vznik vesmíru velkým třeskem by mohl být způsoben (uvozovky upozorňují, že je to jen metafora - kauzalita tehdy nebyla!) srážkou dvou (rovnoběžných) p-bran. Vesmír (brána před srážkou) byl původně chladný a teprve při srážce membrán vznikla energie, hmota a velkorozměrová struktura vesmíru; událost této srážky se nám jeví jako Velký třesk [2]. Závěr Dnes je teorie superstrun nejen velmi populární v oblasti vědy a výzkumu, ale je i hojně popularizovaná pro nevědeckou část obyvatelstva (zejména knihou Briana Greena Elegantní vesmír (překlad Luboš Motl) [1]). Jak říká titul knihy, teorie dělá z veškerého chaosu ve vesmíru elegantní harmonii. Asi si dlouho ale nebudeme naprosto jisti, zda superstruny doopravdy existují, protože vzdálenosti, se kterými se pracuje jsou prakticky nezměřitelné. Doufejme tedy, že se za pár let nedozvíme, že je teorie neplatná a že se vědecký svět dlouhé roky ubíral špatným směrem. 110

6 Literatura [1] internetový zdroj: (stav ke dni ) [2] internetový zdroj: (stav ke dni ) [3] internetový zdroj: (stav ke dni ) [4] internetový zdroj: (stav ke dni ) [5] internetový zdroj: (stav ke dni ) 111

Kam kráčí současná fyzika

Kam kráčí současná fyzika Kam kráčí současná fyzika Situace před II. světovou válkou Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie velkého

Více

postaven náš svět CERN

postaven náš svět CERN Standardní model elementárních částic a jejich interakcí aneb Cihly a malta, ze kterých je postaven náš svět CERN Jiří Rameš, Fyzikální ústav AV ČR, v.v.i. Czech Teachers Programme, CERN, 3.-7. 3. 2008

Více

ELEKTROMAGNETICKÁ INTERAKCE

ELEKTROMAGNETICKÁ INTERAKCE ELEKTROMAGNETICKÁ INTERAKCE Základní informace Působení výběrové (na Q e 0) Dosah Symetrie IM částice nekonečný U(1) loc γ - foton Působení interakce: Elektromagnetická interakce je výběrová interakce.

Více

Za hranice současné fyziky

Za hranice současné fyziky Za hranice současné fyziky Zásadní změny na počátku 20. století Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie

Více

Einsteinových. podle množství. dá snadno určit osud vesmíru tři možné varianty

Einsteinových. podle množství. dá snadno určit osud vesmíru tři možné varianty Známe už definitivní iti model vesmíru? Michael Prouza Klasický pohled na vývoj vesmíru Fid Fridmanovo řešení š í Einsteinových rovnic podle množství hmoty (a energie) se dá snadno určit osud vesmíru tři

Více

Příloha č. 1 REJSTŘÍK FYZIKÁLNÍCH POJMŮ

Příloha č. 1 REJSTŘÍK FYZIKÁLNÍCH POJMŮ Příloha č. 1 REJSTŘÍK FYZIKÁLNÍCH POJMŮ 2 Absolutní čas: Newtonova představa univerzálního času, podle které lze zavést univerzální, jednoznačně určenou současnost událostí a univerzální význam časové

Více

Poznámky k teorii superstrun

Poznámky k teorii superstrun Natura 20. prosince 2002 Poznámky k teorii superstrun zpracoval: Jiří Svršek 1 podle článků uvedených v přehledu Abstract Teorie superstrun. Na jedné straně nejslibnější kandidát na teorii všech silových

Více

Vědecké důkazy o Bohu

Vědecké důkazy o Bohu Vědecké důkazy o Bohu Nexistujeme jen tak, ale z nějaké příčiny! Příčina naší existence je vně našeho času a prostoru! 3. Jak vysvětlit řád vysmíru? V našem světě není chaos (jinak by věda nebyla možnou)!

Více

(??) Podívám-li se na něj, tak se musím ptát, co se nachází za hranicí prvního prostoru?

(??) Podívám-li se na něj, tak se musím ptát, co se nachází za hranicí prvního prostoru? Samozřejmě vím, že jsem mnoho Vašich dotazů nezodpověděl. Chtěl bych Vás ujistit, že jistě najdeme příležitost v některé z následujících kapitol. Nyní se pusťme do 4. kapitoly o prostoru s názvem Makroprostor

Více

Předmět: Technická fyzika III.- Jaderná fyzika. Název semestrální práce: OBECNÁ A SPECIÁLNÍ TEORIE RELATIVITY. Obor:MVT Ročník:II.

Předmět: Technická fyzika III.- Jaderná fyzika. Název semestrální práce: OBECNÁ A SPECIÁLNÍ TEORIE RELATIVITY. Obor:MVT Ročník:II. Předmět: Technická fyzika III.- Jaderná fyzika Název semestrální práce: OBECNÁ A SPECIÁLNÍ TEORIE RELATIVITY Jméno:Martin Fiala Obor:MVT Ročník:II. Datum:16.5.2003 OBECNÁ TEORIE RELATIVITY Ekvivalence

Více

Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření.

Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření. FYZIKA pracovní sešit pro ekonomické lyceum. 1 Jiří Hlaváček, OA a VOŠ Příbram, 2015 FYZIKA MIKROSVĚTA Kvantové vlastnosti světla (str. 241 257) Fotoelektrický jev je uvolňování elektronů z látky vlivem

Více

37 MOLEKULY. Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra

37 MOLEKULY. Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra 445 37 MOLEKULY Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra Soustava stabilně vázaných atomů tvoří molekulu. Podle počtu atomů hovoříme o dvoj-, troj- a více atomových molekulách.

Více

Utajené vynálezy Nemrtvá kočka

Utajené vynálezy Nemrtvá kočka Nemrtvá kočka Od zveřejnění teorie relativity se uskutečnily tisíce pokusů, které ji měly dokázat nebo vyvrátit. Zatím vždy se ukázala být pevná jako skála. Přesto jsou v ní slabší místa, z nichž na některá

Více

Snění o kvantové gravitaci aneb stručné dějiny M-teorie

Snění o kvantové gravitaci aneb stručné dějiny M-teorie Snění o kvantové gravitaci aneb stručné dějiny M-teorie Dr. Luboš Motl, Harvardova univerzita Moderní teoretická fyzika stojí na dvou pilířích. Jedním z nich je Einsteinova obecná teorie relativity, která

Více

Při mapování symboliky číselné řady se tímto 13. dílem dostáváme až k symbolu 4. Tento symbol jakoby nám uzavíral jednu stranu rovnice BYTÍ.

Při mapování symboliky číselné řady se tímto 13. dílem dostáváme až k symbolu 4. Tento symbol jakoby nám uzavíral jednu stranu rovnice BYTÍ. Při mapování symboliky číselné řady se tímto 13. dílem dostáváme až k symbolu 4. Tento symbol jakoby nám uzavíral jednu stranu rovnice BYTÍ. (??) Počkejte, já Vám nerozumím. Jaké rovnice BYTÍ? Máme číselnou

Více

Vědci mají plán, jak najít nové dimenze vesmíru

Vědci mají plán, jak najít nové dimenze vesmíru Vědci mají plán, jak najít nové dimenze vesmíru 9. března 2007 Opravdu existují ve vesmíru jen tři prostorové rozměry? Fyzikální teorie říkají něco jiného. Fyzici ze Spojených států nyní předložili plán,

Více

Zeemanův jev. Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov

Zeemanův jev. Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov Zeemanův jev Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov 1 Abstrakt Při tomto experimentu jsme zopakovali pokus Pietera Zeemana (nositel Nobelovy ceny v roce 1902) se

Více

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární

Více

2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A

2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A 2. Jaderná fyzika 9 2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A V této kapitole se dozvíte: o historii vývoje modelů stavby atomového jádra od dob Rutherfordova experimentu;

Více

ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU

ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 20. říjen 202 Název zpracovaného celku: ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU Leukippos, Démokritos (5. st. př. n. l.; Řecko).

Více

Úvod do moderní fyziky

Úvod do moderní fyziky Úvod do moderní fyziky letní semestr 2015/2016 Vyučující: Ing. Jan Pšikal, Ph.D Tématický obsah přednášek speciální a obecná teorie relativity kvantování energie záření, vlnové vlastnosti částic struktura

Více

Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143. Zpracovala: RNDr. Libuše Bartková

Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143. Zpracovala: RNDr. Libuše Bartková Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143 Zpracovala: RNDr. Libuše Bartková Teorie Kosmologie - věda zabývající se vznikem a vývojem vesmírem. Vznik vesmírů je vysvětlován v bájích každé starobylé

Více

Einstein by se opravdu divil

Einstein by se opravdu divil Einstein by se opravdu divil Odpověď na kritickou recenzi "Einstein by se divil" knihy "Elegantní vesmír" od Jiřího Chýly Luboš Motl, Ph.D., Harvardova univerzita, USA Kniha Briana Greenea Elegantní vesmír

Více

Struktura atomů a molekul

Struktura atomů a molekul Struktura atomů a molekul Obrazová příloha Michal Otyepka tento text byl vysázen systémem L A TEX2 ε ii Úvod Dokument obsahuje všechny obrázky tak, jak jsou uvedeny ve druhém vydání skript Struktura atomů

Více

Úvod do moderní fyziky. lekce 7 vznik a vývoj vesmíru

Úvod do moderní fyziky. lekce 7 vznik a vývoj vesmíru Úvod do moderní fyziky lekce 7 vznik a vývoj vesmíru proč nemůže být vesmír statický? Planckova délka, Planckův čas l p =sqrt(hg/c^3)=1.6x10-35 m nejkratší dosažitelná vzdálenost, za kterou teoreticky

Více

Černé díry ve vesmíru očima Alberta Einsteina

Černé díry ve vesmíru očima Alberta Einsteina Černé díry ve vesmíru očima Alberta Einsteina Martin Blaschke otevření Světa techniky ve dnech 14. - 20. 3. 2014 Ústav fyziky, Slezská univerzita v Opavě 1 / 21 Černá díra, kde jsme to jen slyšeli? Město

Více

Ing. Stanislav Jakoubek

Ing. Stanislav Jakoubek Ing. Stanislav Jakoubek Číslo DUMu III/2-1-3-3 III/2-1-3-4 III/2-1-3-5 Název DUMu Vnější a vnitřní fotoelektrický jev a jeho teorie Technické využití fotoelektrického jevu Dualismus vln a částic Ing. Stanislav

Více

Pátrání po vyšších dimenzích

Pátrání po vyšších dimenzích Pátrání po vyšších dimenzích Martin Blaschke Školička moderní astrofyziky, 2011 Ústav fyziky, Slezská univerzita v Opavě 1 / 23 Úvod Úplný začátek Vyšší dimenze ve fyzice Bránové modely Co je to dimenze?

Více

VODA S ENERGIÍ Univerzita odhalila tajemství vody Objev hexagonální vody

VODA S ENERGIÍ Univerzita odhalila tajemství vody Objev hexagonální vody VODA S ENERGIÍ Univerzita odhalila tajemství vody Objev hexagonální vody Čtvrté skupenství vody: Hexagonální voda: Na univerzitě ve Washingtonu bylo objeveno čtvrté skupenství vody, což může vysvětlit

Více

Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ

Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Hvězdy zblízka Složení hvězdy Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Plazma zcela nebo částečně ionizovaný plyn,

Více

Jana Nováková Proč jet do CERNu? MFF UK

Jana Nováková Proč jet do CERNu? MFF UK Jana Nováková MFF UK Proč jet do CERNu? Plán přednášky 4 krát částice kolem nás intermediální bosony mediální hvězdy hon na Higgsův boson - hit současné fyziky urychlovač není projímadlo detektor není

Více

Standardní model a kvark-gluonové plazma

Standardní model a kvark-gluonové plazma Standardní model a kvark-gluonové plazma Boris Tomášik Fakulta jaderná a fyzikálně inženýrská, ČVUT International Particle Physics Masterclasses 2012 7.3.2012 Struktura hmoty molekuly atomy jádra a elektrony

Více

KVARKY S BARVOU A VŮNÍ A CO DÁL?

KVARKY S BARVOU A VŮNÍ A CO DÁL? KVARKY S BARVOU A VŮNÍ A CO DÁL? JIŘÍ CHÝLA Fyzikální ústav Akademie věd České republiky, Na Slovance 2, 182 21 Praha 8 chyla@fzu.cz Došlo 24.7.06, přijato 28.8.06. Klíčová slova: standardní model, kvarky,

Více

Kvarky s barvou a vůní a co dál?

Kvarky s barvou a vůní a co dál? Kvarky s barvou a vůní a co dál? Jiří Chýla, Fyzikální ústav AV ČR Pokrok ve vědě jde často daleko složitějšími cestami, než jak se o tom dočítáme v knihách o historii vědy. To platí zvláště o teoretické

Více

Struktura a vývoj vesmíru. Úvod: kosmologie jako věda o vesmíru jako celku

Struktura a vývoj vesmíru. Úvod: kosmologie jako věda o vesmíru jako celku Struktura a vývoj vesmíru aneb základní kosmologická fakta a modely (Jiří Podolský, MFF UK, červenec 2008) Úvod: kosmologie jako věda o vesmíru jako celku základní kosmologické otázky jaká je struktura

Více

Superstruny: teorie všeho?

Superstruny: teorie všeho? 1. Superstruny: teorie všeho? Základy moderní fyziky otřásá nová teorie, která rychle mění dlouho hýčkané, ale bohužel už zastaralé představy o našem vesmíru a nahrazuje je novou matematikou, ohromující

Více

OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Světlo jako částice Kvantová optika se zabývá kvantovými vlastnostmi optického

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce

Více

VY_32_INOVACE_FY.19 VESMÍR

VY_32_INOVACE_FY.19 VESMÍR VY_32_INOVACE_FY.19 VESMÍR Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Vesmír je souhrnné označení veškeré hmoty, energie

Více

Cvičení z fyziky 2013-2014. Lasery. Jan Horáček (jan.horacek@seznam.cz) 19. ledna 2014

Cvičení z fyziky 2013-2014. Lasery. Jan Horáček (jan.horacek@seznam.cz) 19. ledna 2014 Gymnázium, Brno, Vídeňská 47 Cvičení z fyziky 2013-2014 1. seminární práce Lasery Jan Horáček (jan.horacek@seznam.cz) 19. ledna 2014 1 Obsah 1 Úvod 3 2 Cíle laseru 3 3 Kvantové jevy v laseru 3 3.1 Model

Více

Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 19

Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 19 Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň Monitorovací indikátor: 06.43.10

Více

že ve všech proveditelných experimentech vypadají jako body. Aby struny po každé stránce vypadaly jako známé částice, byla potřebná komplikovanější

že ve všech proveditelných experimentech vypadají jako body. Aby struny po každé stránce vypadaly jako známé částice, byla potřebná komplikovanější Úvodem V roce 2005 fyzici na celém světě oslavovali stoleté výročí revolučních objevů Alberta Einsteina z roku 1905 speciální teorie relativity a kvantové povahy světla. Tyto objevy rychle vedly k dramaticky

Více

Emisní spektrální čáry atomů. Úvod do teorie a dvě praktické aplikace

Emisní spektrální čáry atomů. Úvod do teorie a dvě praktické aplikace Emisní spektrální čáry atomů. Úvod do teorie a dvě praktické aplikace Ing. Pavel Oupický Oddělení optické diagnostiky, Turnov Ústav fyziky plazmatu AV ČR, v.v.i., Praha Úvod Teorie vzniku a kvantifikace

Více

Relativistická dynamika

Relativistická dynamika Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte

Více

Pavel Cejnar. pavel.cejnar @ mff.cuni.cz. Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta University Karlovy v Praze

Pavel Cejnar. pavel.cejnar @ mff.cuni.cz. Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta University Karlovy v Praze Podivuhodná říše kvant Pavel Cejnar pavel.cejnar @ mff.cuni.cz Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta University Karlovy v Praze Hvězdárna a planetárium Brno, 22. 1. 2015 Podivuhodná

Více

ÈÁST VII - K V A N T O V Á F Y Z I K A

ÈÁST VII - K V A N T O V Á F Y Z I K A Kde se nacházíme? ÈÁST VII - K V A N T O V Á F Y Z I K A 29 Èásticové vlastnosti elektromagnetických vln 30 Vlnové vlastnosti èástic 31 Schrödingerova formulace kvantové mechaniky Kolem roku 1900-1915

Více

A Large Ion Collider Experiment

A Large Ion Collider Experiment LHC není pouze Large Hadron Collider ATLAS ALICE CMS LHCb A Large Ion Collider Experiment Alenka v krajině ě velmi horké a husté éjaderné éhmoty a na počátku našeho vesmíru Díky posledním pokrokům se v

Více

Rychlost světla. Kapitola 2

Rychlost světla. Kapitola 2 Kapitola 2 Rychlost světla Michael Faraday, syn yorkshirského kováře, se narodil v jižním Londýně roku 1791. Byl samoukem, který školu opustil ve čtrnácti, aby se stal učněm u knihaře. Zajistit si vstup

Více

Termín odeslání: 12. října 2009

Termín odeslání: 12. října 2009 Milí přátelé! Vítáme vás v XXIII. ročníku Fyzikálního korespondenčního semináře Matematicko-fyzi kální fakulty Univerzity Karlovy. Všechny informace o semináři naleznete v přiloženém letáku. Zde shrneme

Více

FYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ)

FYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ) Stěny černého tělesa mohou vysílat záření jen po energetických kvantech (M.Planck-1900). Velikost kvanta energie je E = h f f - frekvence záření, h - konstanta Fotoelektrický jev (FJ) - dopadající záření

Více

Gymnázium Dr. J. Pekaře Mladá Boleslav

Gymnázium Dr. J. Pekaře Mladá Boleslav Gymnázium Dr. J. Pekaře Mladá Boleslav Zeměpis I. ročník ČERNÉ DÍRY referát Jméno a příjmení: Oskar Šumovský Josef Šváb Třída: 5.0 Datum: 28. 9. 2015 Černé díry 1. Obecné informace a) Základní popis Černé

Více

Jméno a příjmení. Ročník. Měřeno dne. 8.4.2013 Příprava Opravy Učitel Hodnocení. Fotoelektrický jev a Planckova konstanta

Jméno a příjmení. Ročník. Měřeno dne. 8.4.2013 Příprava Opravy Učitel Hodnocení. Fotoelektrický jev a Planckova konstanta FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek Spolupracoval Měřeno dne Odevzdáno dne Ladislav Šulák 25. 3. 2013 8.4.2013 Příprava Opravy Učitel

Více

Fyzika I. Něco málo o fyzice. Petr Sadovský. ÚFYZ FEKT VUT v Brně. Fyzika I. p. 1/20

Fyzika I. Něco málo o fyzice. Petr Sadovský. ÚFYZ FEKT VUT v Brně. Fyzika I. p. 1/20 Fyzika I. p. 1/20 Fyzika I. Něco málo o fyzice Petr Sadovský petrsad@feec.vutbr.cz ÚFYZ FEKT VUT v Brně Fyzika I. p. 2/20 Fyzika Motto: Je-li to zelené, patří to do biologie. Smrdí-li to, je to chemie.

Více

Bohrova disertační práce o elektronové teorii kovů

Bohrova disertační práce o elektronové teorii kovů Niels Bohr jako vědec, filosof a občan 1 I. Úvod Bohrova disertační práce o elektronové teorii kovů do angličtiny. Výsledek byl ale ne moc zdařilý. Bohrova disertační práce byla obhájena na jaře roku 1911

Více

Nejistoty vědy - Richard Feynman Výjimka potvrzuje, že pravidlo neplatí." To je princip vědy. Jestliže existuje nějaká výjimka z pravidla, jestliže

Nejistoty vědy - Richard Feynman Výjimka potvrzuje, že pravidlo neplatí. To je princip vědy. Jestliže existuje nějaká výjimka z pravidla, jestliže Nejistoty vědy - Richard Feynman Výjimka potvrzuje, že pravidlo neplatí." To je princip vědy. Jestliže existuje nějaká výjimka z pravidla, jestliže tato výjimka může být potvrzena pozorováním, pak pravidlo

Více

Program. Einsteinova relativita. Černé díry a gravitační vlny. Původ hmoty a Higgsův boson. Čemu ani částicoví fyzici (zatím) nerozumí.

Program. Einsteinova relativita. Černé díry a gravitační vlny. Původ hmoty a Higgsův boson. Čemu ani částicoví fyzici (zatím) nerozumí. Program Einsteinova relativita Pavel Stránský Černé díry a gravitační vlny Jakub Juryšek Původ hmoty a Higgsův boson Daniel Scheirich Čemu ani částicoví fyzici (zatím) nerozumí Helena Kolešová /ScienceToGo

Více

FYZIKÁLNÍ CHEMIE I: 2. ČÁST

FYZIKÁLNÍ CHEMIE I: 2. ČÁST Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta FYZIKÁLNÍ CHEMIE I: 2. ČÁST KCH/P401 Ivo Nezbeda Ústí nad Labem 2013 1 Obor: Klíčová slova: Anotace: Toxikologie a analýza škodlivin, Chemie

Více

Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku

Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku V tomto článku uvádíme shrnutí poznatků učiva II. ročníku

Více

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA MAKRO- A MIKRO- MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA STAV... (v dřívějším okamţiku)...... info o vnějším působení STAV... (v určitém okamţiku) ZÁKLADNÍ INFO O... (v tomto okamţiku) VŠCHNY DALŠÍ

Více

Země. galaxie BANG! y/2 y/2. Regresní modely okolo velkého třesku. Jiří Mihola

Země. galaxie BANG! y/2 y/2. Regresní modely okolo velkého třesku. Jiří Mihola Regresní modely okolo velkého třesku Jiří Mihola Teorie velkého třesku je dnes považovaná za samozřejmost jak mezi astronomy, tak dokonce i v širší veřejnosti. V knize (Singha, 2007, s.359) je model vesmíru

Více

1 Tepelné kapacity krystalů

1 Tepelné kapacity krystalů Kvantová a statistická fyzika 2 Termodynamika a statistická fyzika) 1 Tepelné kapacity krystalů Statistická fyzika dokáže vysvětlit tepelné kapacity látek a jejich teplotní závislosti alespoň tehdy, pokud

Více

Infračervená spektroskopie

Infračervená spektroskopie Infračervená spektroskopie 1 Teoretické základy Podstatou infračervené spektroskopie je interakce infračerveného záření se studovanou hmotou, kdy v případě pohlcení fotonu studovanou hmotou mluvíme o absorpční

Více

INTELIGENCE PROPOJENÁ V SÍTI

INTELIGENCE PROPOJENÁ V SÍTI INTELIGENCE PROPOJENÁ V SÍTI Ukázka knihy z internetového knihkupectví www.kosmas.cz Grazyna Fosarová Franz Bludorf INTELIGENCE PROPOJENÁ V SÍTI Země se připojuje k vesmírnému internetu Skupinové vědomí,

Více

Seriál: Relativistický

Seriál: Relativistický Seriál: Relativistický Nedávno jsem si listoval v minulých ročnících FYKOSího seriálu a zaujala mě poslední úloha ze seriálu Jardy Trnky o kvantové mechanice. Úlohu tehdy nazval Za nobelovku a zadání znělo

Více

Experiment ATLAS. Shluky protiběžných částic se srážejí každých 25 ns. tj. s frekvencí. Počet kanálů detektoru je 150 mil.

Experiment ATLAS. Shluky protiběžných částic se srážejí každých 25 ns. tj. s frekvencí. Počet kanálů detektoru je 150 mil. Experiment ATLAS Shluky protiběžných částic se srážejí každých 25 ns tj. s frekvencí 40 MHz Počet srážek 40 MHz x 20 = 800 milionů / s Počet kanálů detektoru je 150 mil. Po 1. úrovni rozhodování (L1 trigger)

Více

CERN základní informace předtím, než vyrazíme. Jaroslav Reichl, SPŠST Panská

CERN základní informace předtím, než vyrazíme. Jaroslav Reichl, SPŠST Panská CERN 2016 základní informace předtím, než vyrazíme Jaroslav Reichl, SPŠST Panská HISTORIE první zmínky o atomech 5. - 2. století př. n. l. - řečtí filosofové Leukippos z Mílétu, Démokritos z Abdéry a Epikúros

Více

13. Vlnová optika I. Interference a ohyb světla

13. Vlnová optika I. Interference a ohyb světla 13. Vlnová optika I. Interference a ohyb světla Od časů Isaaca Newtona si lidstvo láme hlavu problémem, je-li světlo vlnění nebo proud částic. Tento spor rozdělil svět vědy na dva zdánlivě nesmiřitelné

Více

Základy fyziky pro lékařské a zdravotnické obory

Základy fyziky pro lékařské a zdravotnické obory TECHNIKA, spol. s r. o. Rehabilitace Fyzioterapie Balneo Servis zdravotnické techniky Dermatologie Provádíme periodické bezpečnostně Gynekologie, Urologie technické kontroly (BTK) zdravotnických Chirurgie,

Více

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník FYZIKA MIKROSVĚTA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Mikrosvět Svět o rozměrech 10-9 až 10-18 m. Mikrosvět není zmenšeným makrosvětem! Chování v mikrosvětě popisuje kvantová

Více

Na ženevském letišti jsem na své první cestě do

Na ženevském letišti jsem na své první cestě do Kapitola 3 Místo zvané CERN Na ženevském letišti jsem na své první cestě do CERNu přistál v 10 hodin 35 minut dne 2. dubna roku 2009 po asi hodinovém letu z Paříže. Málem jsem odlet nestihl, protože nastal

Více

S T E P H E N H A W K I N G

S T E P H E N H A W K I N G S T E P H E N H A W K I N G v e s m í r v k o s t c e ARGO Poznámka překladatele: Původní anglický název knihy The Universe in a Nutshell je slovní hříčkou, protože zároveň odkazuje na to, že vesmír má

Více

Standardní model. Projekt je spolufinancován z prostředků ESF a státního rozpočtu ČR

Standardní model. Projekt je spolufinancován z prostředků ESF a státního rozpočtu ČR Standardní model Standardní model je v současné době všeobecně uznávanou teorií, vysvětlující stavbu a vlastnosti hmoty. Výzkum částic probíhal celé dvacáté století, poslední předpovězené částice byly

Více

ZÁKLADNÍ POZNATKY MOLEKULOVÉ FYZIKY A TERMIKY. Mgr. Jan Ptáčník - GJVJ - 2. ročník - Molekulová fyzika a termika

ZÁKLADNÍ POZNATKY MOLEKULOVÉ FYZIKY A TERMIKY. Mgr. Jan Ptáčník - GJVJ - 2. ročník - Molekulová fyzika a termika ZÁKLADNÍ POZNATKY MOLEKULOVÉ FYZIKY A TERMIKY Mgr. Jan Ptáčník - GJVJ - 2. ročník - Molekulová fyzika a termika Částicová struktura látek Látky jakéhokoli skupenství se skládají z částic Částicemi jsou

Více

Dějiny vesmíru. v kostce. Zdeněk Mikulášek, Ústav teoretické fyziky a astrofyziky Přírodovědecké fakulty Masarykovy univerzity v Brně

Dějiny vesmíru. v kostce. Zdeněk Mikulášek, Ústav teoretické fyziky a astrofyziky Přírodovědecké fakulty Masarykovy univerzity v Brně Dějiny vesmíru v kostce Zdeněk Mikulášek, Ústav teoretické fyziky a astrofyziky Přírodovědecké fakulty Masarykovy univerzity v Brně Třesklo to při velkém třesku? Kosmologové svorně soudí, že vesmír vznikl

Více

O čem se mluví v CERNu? Martin Rybář

O čem se mluví v CERNu? Martin Rybář O čem se mluví v CERNu? 29.11. 2012 Martin Rybář CERN Evropská organizace pro jaderný výzkum (Conseil Européen pour la recherche nucléaire) Založen roku 1954 ČR součástí od roku 1993 nejrozsáhlejší výzkumné

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 4. 3. 2013 Pořadové číslo 20 1 Černé díry Předmět: Ročník: Jméno autora: Fyzika

Více

ČÁST VIII - M I K R O Č Á S T I C E

ČÁST VIII - M I K R O Č Á S T I C E ČÁST VIII - M I K R O Č Á S T I C E 32 Základní částice 33 Dynamika mikročástic 34 Atom - elektronový obal 35 Atomové jádro 36 Radioaktivita 37 Molekuly 378 Pod pojmem mikročástice budeme rozumět tzv.

Více

Miroslav Veverka: Evoluce svým vlastním tvůrcem

Miroslav Veverka: Evoluce svým vlastním tvůrcem 54 Rodokmen atomů Ve velmi raném vesmíru tvořilo hlavní složku světlo a záření vůbec. Z reliktního záření vyplývá, že na jeden proton či neutron tehdy připadalo 100 milionů až 20 miliard fotonů, elektronů

Více

Atomové jádro, elektronový obal

Atomové jádro, elektronový obal Atomové jádro, elektronový obal 1 / 9 Atomové jádro Atomové jádro je tvořeno protony a neutrony Prvek je látka skládající se z atomů se stejným počtem protonů Nuklid je systém tvořený prvky se stejným

Více

Od kvarků k prvním molekulám

Od kvarků k prvním molekulám Od kvarků k prvním molekulám Petr Kulhánek České vysoké učení technické v Praze Hvězdárna a planetárium hl. m. Prahy Aldebaran Group for Astrophysics kulhanek@aldebaran.cz www.aldebaran.cz ZÁKLADNÍ SLOŽKY

Více

λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny

λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny Elektromagnetické vlny Optika, část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko si jím ohmatává

Více

5 Měření absorpce ionizujícího záření v závislosti na tlaku vzduchu

5 Měření absorpce ionizujícího záření v závislosti na tlaku vzduchu 5 Měření absorpce ionizujícího záření v závislosti na tlaku vzduchu Cíle úlohy: Cílem této úlohy je seznámení se s lineárním absorpčním koeficientem a jeho závislostí na tlaku vzduchu a použitých stínících

Více

VYPOUŠTĚNÍ KVANTOVÉHO DŽINA

VYPOUŠTĚNÍ KVANTOVÉHO DŽINA VYPOUŠTĚNÍ KVANTOVÉHO DŽINA ÚSPĚŠNÉ OMYLY V HISTORII KVANTOVÉ FYZIKY Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK Praha Prosinec 2009 1) STARÁ KVANTOVÁ TEORIE Světlo jsou částice! (1900-1905) 19.

Více

HISTORIE ATOMU. M g r. ROBERT P ECKO TENTO DOKUMENT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

HISTORIE ATOMU. M g r. ROBERT P ECKO TENTO DOKUMENT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY HISTORIE ATOMU M g r. ROBERT P ECKO TENTO DOKUMENT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Historie atomu (modely) Mgr. Robert Pecko Období bez modelu pojetí hmoty

Více

Měření povrchového napětí kapaliny metodou maximální kapky

Měření povrchového napětí kapaliny metodou maximální kapky Měření povrchového napětí kapaliny metodou maximální kapky Online: http://www.sclpx.eu/lab2r.php?exp=3 Tento experiment byl publikován autorem práce v [33] a jedná se o zcela původní metodu pro experimentální

Více

--- Ukázka z titulu --- Myšlení uzdravuje. Jarmila Mandžuková

--- Ukázka z titulu --- Myšlení uzdravuje. Jarmila Mandžuková ÚVOD Při otevření této knihy se možná ptáte, k čemu je potřeba další kniha o zdraví, když už jich byly napsány stovky? Asi máte pravdu, ale můj velký zájem o možnosti sebeléčení s cílem pomoci sama sobě

Více

Jiří Grygar: Velký třesk za všechno může... 1/ 22

Jiří Grygar: Velký třesk za všechno může... 1/ 22 Jiří 1/ 22 C2CR 2005: Od urychlovačů ke kosmickým paprskům 9. 9. 2005 Urychlovače č na nebi a pod zemí, aneb může Jiří Grygar Fyzikální ústav AV ČR, Praha Grafika: Michael Prou Jiří 2/ 22 Cesta do mikrosvěta

Více

10 objevů...

10 objevů... 10 objevů... Petr Kulhánek České vysoké učení technické v Praze Hvězdárna a planetárium hl. m. Prahy Univerzita Palackého Aldebaran Group for Astrophysics kulhanek@aldebaran.cz www.aldebaran.cz 10 objevů...

Více

Einstein by se divil

Einstein by se divil Einstein by se divil Zamyšlení nad knihou Briana Greenea Elegantní vesmír Jiří Chýla Centrum částicové fyziky,fyzikální ústav AV ČR Obsah 1 Prolog 2 2 Jak to bylo doopravdy 3 2.1 Speciální teorie relativity...............................

Více

4.3. Kvantové vlastnosti elektromagnetického záření

4.3. Kvantové vlastnosti elektromagnetického záření 4.3. Kvantové vlastnosti elektromagnetického záření 4.3.1. Fotony, fotoelektrický a Comptonův jev 1. Klasifikovat obor kvantová optika.. Popsat foton a jeho vlastnosti jako kvantum energie elektromagnetického

Více

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II FOTOELEKTRICKÝ JEV VNĚJŠÍ FOTOELEKTRICKÝ JEV na intenzitě záření závisí jen množství uvolněných elektronů, ale nikoliv energie jednotlivých elektronů energie elektronů

Více

SPECIÁLNÍ TEORIE RELATIVITY

SPECIÁLNÍ TEORIE RELATIVITY SPECIÁLNÍ TEORIE RELATIVITY 1. Základní informae autor Albert Einstein jey pozoroané e DVOU ztažnýh soustaáh, které se zhledem k sobě pohybují ryhlostí blízkou ryhlosti sětla e akuu Co uidí nější a nitřní

Více

VZNIK FYZIKY, CHEMIE A BIOLOGIE, ANEB MŮŽE

VZNIK FYZIKY, CHEMIE A BIOLOGIE, ANEB MŮŽE VZNIK FYZIKY, CHEMIE A BIOLOGIE, ANEB VELKÝ TŘESK ZA VŠECHNO V MŮŽE Fyzikáln Jiří GRYGAR lní ústav AkademieA věd ČR, Praha 27.2.2012 VELKÝ TŘESK 1 Na počátku bylo slovo: VELKÝ TŘESKT opravdu za všechno

Více

Tření je přítel i nepřítel

Tření je přítel i nepřítel Tření je přítel i nepřítel VIDEO K TÉMATU: http://www.ceskatelevize.cz/porady/10319921345-rande-s-fyzikou/video/ Tření je v určitých případech i prospěšné. Jde o to, že řada lidí si myslí, že tření má

Více

Osnova. Stimulovaná emise Synchrotroní vyzařování Realizace vyzařování na volných elektronech FLASH XFEL

Osnova. Stimulovaná emise Synchrotroní vyzařování Realizace vyzařování na volných elektronech FLASH XFEL Osnova 1 2 Stimulovaná emise Synchrotroní vyzařování Realizace vyzařování na volných elektronech 3 FLASH XFEL 4 Diagnostika Rozpoznávání obrazu Medicína Vysoko parametrové plazma 5 Laserový svazek fokusovaný

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice KAPITOLA 2: PRVEK Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

Vlnění, optika a atomová fyzika (2. ročník)

Vlnění, optika a atomová fyzika (2. ročník) Vlnění, optika a atomová fyzika (2. ročník) Vlnění 1. Kmity soustav hmotných bodů (6 hod.) 1.1 Netlumené malé kmity kolem stabilní rovnovážné polohy: linearita pohybových rovnic, princip superpozice, obecné

Více

1 Měření na Wilsonově expanzní komoře

1 Měření na Wilsonově expanzní komoře 1 Měření na Wilsonově expanzní komoře Cíle úlohy: Cílem této úlohy je seznámení se základními částicemi, které způsobují ionizaci pomocí Wilsonovi mlžné komory. V této úloze studenti spustí Wilsonovu mlžnou

Více

Scénář text Scénář záběry Místo, kontakt, poznámka. Animace 1: pavouk, mravenec a včela.

Scénář text Scénář záběry Místo, kontakt, poznámka. Animace 1: pavouk, mravenec a včela. Scénář text Scénář záběry Místo, kontakt, poznámka Na otázku, proč bychom měli studovat fyziku, již odpověděl Bacon, který byl velmi zajímavou postavou 17. století. Byl první, který se pokusil o logickou

Více

Rozluštění skrytých symetrií přírody

Rozluštění skrytých symetrií přírody Rozluštění skrytých symetrií přírody Jaroslav Jindra 1, Fakulta pedagogická Západočeské univerzity v Plzni Studium symetrií a spontánních symetrií přineslo v roce 2008 Nobelovu cenu celkem třem vědcům.

Více