SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH
|
|
- Romana Šmídová
- před 2 lety
- Počet zobrazení:
Transkript
1 SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA
2 ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce napište částice, ze kterých se skládá atom. b) Do druhého sloupce zapište, kde se daná částice nachází (jádro x obal). c) Do třetího sloupce zapište, jaký náboj má daná částice. Název částice Umístění Náboj elektron elektronový obal záporný proton jádro kladný neutron jádro neutrální ATOM, ELEKTRONOVÝ OBAL/ŘEŠENÍ
3 2) Draslík je na 19. místě v periodické soustavě prvků. a) Napište chemickou značku draslíku. b) Kolik protonů obsahuje jádro atomu draslíku? c) Kolik elektronů obsahuje obal atomu draslíku? d) Jaký je elektrický náboj obalu atomu draslíku? e) Elektrický náboj obalu atomu draslíku je menší, větší nebo stejně velký jako elektrický náboj jádra draslíku? a) K b) 19 c) 19 d) Záporný e) Stejně velký ATOM, ELEKTRONOVÝ OBAL/ŘEŠENÍ
4 3) S využitím Matematických, fyzikálních a chemických tabulek uspořádejte chemické prvky F, Li, Cu, Ca, P, H, Na, Si, Cl podle vzrůstajícího počtu protonů v jádrech atomů a doplňte tabulku Protonové číslo Značka prvku Název prvku Počet elektronů v obalu Počet neutronů v jádře Protonové číslo Značka prvku Název prvku Počet elektronů v obalu Počet neutronů v jádře 1 H vodík Li lithium F flour Na sodík Si křemík P fosfor Cl chlor Ca vápník Cu měď ATOM, ELEKTRONOVÝ OBAL/ŘEŠENÍ
5 4) Vysvětlete význam značek Určete počet nukleonů, protonů a neutronů v jádrech těchto prvků. 2 nukleony, 1 proton, 1 neutron 4 nukleony, 2 protony, 2 neutrony 16 nukleonů, 8 protonů, 8 neutronů 24 nukleonů, 12 protonů, 12 neutronů ATOM, ELEKTRONOVÝ OBAL/ŘEŠENÍ
6 5) S využitím Matematických, fyzikálních a chemických tabulek nebo periodické soustavy prvků doplňte tabulku: Název prvku Protonové číslo Nukleonové číslo Počet protonů v jádře Počet neutronů v jádře bor fluor Počet elektronů v obalu Název prvku Protonové číslo Nukleonové číslo Počet protonů v jádře Počet neutronů v jádře Počet elektronů v obalu bor fluor vápník zinek ATOM, ELEKTRONOVÝ OBAL/ŘEŠENÍ
7 6) S využitím Matematických, fyzikálních a chemických tabulek nebo periodické soustavy prvků doplňte tabulku: Název prvku Protonové číslo Nukleonové číslo Počet kladných nábojů v jádře Počet neutronů v jádře chlor hliník Počet záporných nábojů v obalu Název prvku Protonové číslo Nukleonové číslo Počet kladných nábojů v jádře Počet neutronů v jádře Počet záporných nábojů v obalu chlor hliník sodík železo ATOM, ELEKTRONOVÝ OBAL/ŘEŠENÍ
8 7) Jak se navenek projevují částice boru B na obrázku a, b, c? a) záporně (nadbytek elektronů nad protony) b) kladně (nadbytek protonů nad elektrony) c) neutrálně (stejný počet protonů a elektronů) ATOM, ELEKTRONOVÝ OBAL/ŘEŠENÍ
9 8) Určete elektrický náboj jádra atomu dusíku, víte-li, že elementární náboj je e =. n = 7 (počet protonů) Q =? (C) Pro celkový náboj jádra platí Elektrický náboj jádra atomu dusíku je. ATOM, ELEKTRONOVÝ OBAL/ŘEŠENÍ
10 9) Při přechodu elektronu atomu vodíku z jedné energetické hladiny na druhou byl vyzářen foton o frekvenci Hz. Určete v joulech i elektrovoltech, jak se při tom změnila energie atomu vodíku. Změnu energie fotonu při přechodu z jedné energetické hladiny na druhou vyjádříme jakou součin Planckovy konstanty a frekvence fotonu 1 ev = J Změna energie byla neboli ATOM, ELEKTRONOVÝ OBAL/ŘEŠENÍ
11 10) Určete energii, kterou musí získat elektron v atomu vodíku, aby přešel ze základního stavu na stacionární dráhu s hlavním kvantovým číslem 3. n = 1 s = 3 E 1 = - 13,6 ev E =? (ev) Pro přijatou energii platí ( ) ( ) ( ) Elektron musí získat energii 12,1 ev. ATOM, ELEKTRONOVÝ OBAL/ŘEŠENÍ
12 11) Atom vodíku, který je v základním stavu, získal energii 10,2 ev. Na kterou energetickou hladinu přešel jeho elektron? E 1 = - 13,6 ev E = 10,2 ev n =? Nejprve určíme energii E n Pro energii na jednotlivých stacionárních drahách platí Elektron vodíku přešel na 2. energetickou hladinu. ATOM, ELEKTRONOVÝ OBAL/ŘEŠENÍ
13 12) Rozepište elektronovou konfiguraci daných prvků pomocí rámečků: 12 Mg, 33 As, 30 Zn, 56 Ba, 29 Cu, 19 K, 35 Br, 1 H. 12Mg [ 10 Ne] 3s 2 33As [ 18 Ar] 3d 10 4s 2 4p 3 30Zn [ 18 Ar] 3d 10 4s 2 56Ba [ 54 Xe] 6s 2 29Cu [ 18 Ar] 3d 10 4s 1 19K [ 10 Ne] 3s 1 35Br [ 18 Ar] 3d 10 4s 2 4p 5 1H 1s 1 ATOM, ELEKTRONOVÝ OBAL/ŘEŠENÍ
14 13) Vypočítejte energii atomu vodíku ve stacionárních stavech s hlavním kvantovým číslem n = 2, n = 3, n = 6. Výsledky vyjádřete nejen v elektrovoltech, ale i v joulech. n = 2 n = 3 n = 6 E 1 = - 13,6 ev e = Energetické hladiny atomu vodíku vyjádříme vztahem ATOM, ELEKTRONOVÝ OBAL/ŘEŠENÍ
15 14) Určete energie a vlnové délky fotonů vyzářených atomem vodíku při přechodu ze stavů s n = 4, 5, 6 do stavu n = 3. n = 4, 5, 6 n = 3 c = e = Energii fotonu vyjádříme ( ) ( ) ( ) ( ) ( ) ( ) ( ) Vlnovou délku fotonu vypočítáme podle vztahu ATOM, ELEKTRONOVÝ OBAL/ŘEŠENÍ
16 Foton při přechodu ze stavu 4 do stavu 3 vyzářil energii 0,661 ev, jeho vlnová délka byla 1881 nm. Foton při přechodu ze stavu 5 do stavu 3 vyzářil energii 0,967 ev, jeho vlnová délka byla 1289 nm. Foton při přechodu ze stavu 6 do stavu 3 vyzářil energii 1,133 ev, jeho vlnová délka byla 1097 nm. Poznámka: Při dosazování do vzorce pro výpočet vlnové délky je nutné hodnotu energie v elektrovoltech převést na jouly, proto. ATOM, ELEKTRONOVÝ OBAL/ŘEŠENÍ
17 Vypočítejte vlnovou délku záření při přechodu z 2. energetické hladiny na 1. Leží toto záření ve viditelné oblasti spektra? c = λ =? (m) Jestliže záření přešlo z 2. energetické hladiny na 1., vyzářilo energii (příklad 2) Pro výpočty je nutné převést ev na J, tzn. Abychom zjistili, zda záření leží ve viditelné části spektra, musíme určit jeho vlnovou délku: = 121,9 nm Záření o této vlnové délce se nachází v ultrafialové části spektra. ATOM, ELEKTRONOVÝ OBAL/ŘEŠENÍ
18 ATOMOVÉ JÁDRO 1) Určete počet elektronů, protonů a neutronů atomu izotopu chloru. Tento izotop chloru má nukleonové číslo 35, protonové číslo 17 tzn., že má 17 protonů, 17 elektronů a 18 neutronů. JADERNÁ FYZIKA/ŘEŠENÍ
19 2) Určete hmotnost a velikost náboje jádra A = 238 Z = 92 ( ) ( ) Pro hmotnost jádra platí: Náboj určíme ze vztahu: Jádro má hmotnost a náboj. JADERNÁ FYZIKA/ŘEŠENÍ
20 3) Určete průměr jádra uranu. A = 238 d =? (m) Pro poloměr atomového jádra platí vztah m Protože průměr je dvojnásobek poloměru, dostáváme pro něho hodnotu. Průměr atomu uranu je m. JADERNÁ FYZIKA/ŘEŠENÍ
21 4) Jak velká energie (v joulech) se uvolní při vzniku jádra z nukleonů, je-li vazebná energie připadající na jeden nukleon 7 MeV? A = 4 7 MeV = ev = J ( ) Pro vazebnou energii připadající na 1 nukleon platí vztah Při vzniku jádra se uvolní energie. JADERNÁ FYZIKA/ŘEŠENÍ
22 JADERNÉ REAKCE 5) Doplňte do jaderné reakce částici x. Ze zákona zachování náboje a počtu nukleonů plyne, že hledanou částicí je neutron. JADERNÁ FYZIKA/ŘEŠENÍ
23 6) Doplňte chemické značky, protonová a nukleonová čísla u následujících radioaktivních přeměn. Platí zákon zachování náboje a počtu nukleonů, tzn. JADERNÁ FYZIKA/ŘEŠENÍ
24 7) Nuklid je radioaktivní. Jaký prvek vzniká jeho alfa přeměnou? Musí platit zákon zachování náboje a nukleonů: Z periodické soustavy prvků zjistíme, že hledaným prvkem je thorium. JADERNÁ FYZIKA/ŘEŠENÍ
25 8) Poločas přeměny izotopu radia je 30 sekund. V čase t = 0 s bylo ve vzorku atomů tohoto nuklidu. Kolik jich tam bude po 4 minutách? T = 30 s t = 4 min = 8T N o = N =? Úlohu je možné řešit jednoduše úvahou: Poločas rozpadu je doba, za kterou se rozpadne polovina jader, tzn. za 30 s budeme mít jader, za 60 s polovinu z =, atd. Obecně tedy platí Po 4 minutách bude ve vzorku 128 atomů. JADERNÁ FYZIKA/ŘEŠENÍ
26 Vypočítejte vazebnou energii připadající na jeden nukleon pro helium a železo. Výsledek uveďte v MeV. A He = 4, Z He = 2 N He = 2 A Fe = 56, Z Fe = 26 N Fe = 30 ( ) Vazebnou energii určíme ze vztahu ( ) ( ) Vazebnou energii připadající na 1 nukleon vyjádříme ze vztahu helium: ( ) ( ) železo: ( ) ( ) Na jeden nukleon helia připadá vazebná energie 7,86 MeV, na jeden nukleon železa 7,94 MeV. JADERNÁ FYZIKA/ŘEŠENÍ
27 FOTON 1) Doplňte následující tabulku: 1 ev ZÁKLADY KVANTOVÉ FYZIKY/ŘEŠENÍ
28 2) Doplňte následující tabulku: vlnová délka 100 m m m m druh záření mikrovlny viditelné světlo rentgenové záření vlnová délka druh záření 100 m rozhlasové vlny 0,1 m mikrovlny m infračervené záření m viditelné světlo m ultrafialové záření m rentgenové záření m záření gama ZÁKLADY KVANTOVÉ FYZIKY/ŘEŠENÍ
29 3) Jaká je energie (v elektronvoltech) kvanta rádiové vlny o vlnové délce 500 m a záření gama o vlnové délce 1 pm? Planckova konstanta je, rychlost světla ve vakuu je λ 1 = 500 m λ 2 = 1 pm = m h = c = E =? (ev) Pro energii fotonu platí Energie kvanta rádiové vlny je, záření gama 1,24 MeV. Fotony o dané energii přísluší elektromagnetickému vlnění o vlnové délce 100 nm. ZÁKLADY KVANTOVÉ FYZIKY/ŘEŠENÍ
30 4) Jakému druhu monofrekvenčního elektromagnetického záření přísluší fotony o energii J? Planckova konstanta je, rychlost světla ve vakuu je E = J h = c = λ =? (m) Pro energii fotonu platí Fotony o dané energii přísluší elektromagnetickému vlnění o vlnové délce 100 nm. ZÁKLADY KVANTOVÉ FYZIKY/ŘEŠENÍ
31 FOTOELEKTRICKÝ JEV 5) Pro daný materiál je mezní frekvence Hz. Jaká je výstupní práce? Planckova konstanta je f = Hz W =? (ev) Pro výstupní práci elektronů platí, že je stejně velká jako energie, tzn. Výstupní práce elektronu je 3,12 ev. ZÁKLADY KVANTOVÉ FYZIKY/ŘEŠENÍ
32 6) Mezní vlnová délka záření u fotoelektrického jevu pro cesium je 642 nm. Jaká je výstupní práce elektronů pro cesium? Planckova konstanta je 6, J s. = 642 nm = 6, m h = 6, J s c = m s -1 W =? (ev) Pro výstupní práci elektronů platí, že je stejně velká jako energie, tzn. Výstupní práce elektronů má hodnotu 1,94 ev. ZÁKLADY KVANTOVÉ FYZIKY/ŘEŠENÍ
33 7) Na cesiovou katodu dopadá záření o vlnové délce 500 nm. Mezní vlnová délka záření u fotoelektrického jevu pro cesium je 642 nm. S jakou energií vyletují elektrony z povrchu cesiové katody? Planckova konstanta je 6, J s. 1 = 500 nm = m 2 = 642 nm = 6, m h = 6, J s c = m s -1 E k =? (ev) Energie elektronů, které vylétají z povrchu katody, je dána jako rozdíl energie a výstupní práce: ( ) ( ) Elektrony vylétající z katody mají energii 0,55 ev. ZÁKLADY KVANTOVÉ FYZIKY/ŘEŠENÍ
34 8) Elektrony vyletují z povrchu cesiovy katody s energii 0,55 ev. Jak velkou rychlostí z povrchu katody vyletují? Hmotnost elektronu je 9, kg. m = 9, kg E k = 0,55 ev = 8, J v =? (m.s -1 ) Elektrony vyletují z katody rychlostí. ZÁKLADY KVANTOVÉ FYZIKY/ŘEŠENÍ
35 VLNOVÉ VLASTNOSTI ČÁSTIC 9) Délka de Broglieovy vlny urychleného elektronu je 3, m. Jaká je jeho rychlost? Hmotnost elektronu je 9, kg. = 3, m m = 9, kg h = 6, J s v =? (m s -1 ) Pro vlnovou délku de Brogliovy vlny platí Rychlost elektronu je ZÁKLADY KVANTOVÉ FYZIKY/ŘEŠENÍ
36 10) Jaké je urychlovací napětí elektronu v elektrickém poli? Jeho rychlost je, hmotnost kg, elektrický náboj C. v = m = kg e = C U =? (V) Projde-li elektron mezi dvěma body elektrického pole, mezi kterými je napětí U, získá kinetickou energii ( ) Urychlovací napětí má hodnotu 1 025,31 V. ZÁKLADY KVANTOVÉ FYZIKY/ŘEŠENÍ
37 11) Určete vlnovou délku de Brogliovy vlny molekuly kyslíku pohybující se rychlostí o velikosti Relativní atomová hmotnost kyslíku je 16, atomová hmotnostní konstanta kg a Planckova konstanta v = A r = 16 M r = 32 m u = kg h = ( ) Pro vlnovou délku platí: Vlnová délka de Brogliovy vlny molekuly kyslíku je ZÁKLADY KVANTOVÉ FYZIKY/ŘEŠENÍ
R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika
Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární
ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU
Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 20. říjen 202 Název zpracovaného celku: ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU Leukippos, Démokritos (5. st. př. n. l.; Řecko).
Relativistická dynamika
Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte
Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou JÁDRO ATOMU A RADIOAKTIVITA VY_32_INOVACE_03_3_03_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Atomové jádro je vnitřní
8.1 Elektronový obal atomu
8.1 Elektronový obal atomu 8.1 Celkový náboj elektronů v elektricky neutrálním atomu je 2,08 10 18 C. Který je to prvek? 8.2 Dánský fyzik N. Bohr vypracoval teorii atomu, podle níž se elektron v atomu
DUSÍK NITROGENIUM 14,0067 3,1. Doplňte:
Doplňte: Protonové číslo: Relativní atomová hmotnost: Elektronegativita: Značka prvku: Latinský název prvku: Český název prvku: Nukleonové číslo: Prvek je chemická látka tvořena z atomů o stejném... čísle.
FYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ)
Stěny černého tělesa mohou vysílat záření jen po energetických kvantech (M.Planck-1900). Velikost kvanta energie je E = h f f - frekvence záření, h - konstanta Fotoelektrický jev (FJ) - dopadající záření
Digitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.7/1.5./34.82 Zkvalitnění výuky prostřednitvím ICT III/2 Inovae a zkvalitnění výuky prostřednitvím ICT
Prvek, nuklid, izotop, izobar
Prvek, nuklid, izotop, izobar A = Nukleonové (hmotnostní) číslo A = počet protonů + počet neutronů A = Z + N Z = Protonové číslo, náboj jádra Frederick Soddy (1877-1956) NP za chemii 1921 Prvek = soubor
FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník
FYZIKA MIKROSVĚTA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Mikrosvět Svět o rozměrech 10-9 až 10-18 m. Mikrosvět není zmenšeným makrosvětem! Chování v mikrosvětě popisuje kvantová
Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření.
FYZIKA pracovní sešit pro ekonomické lyceum. 1 Jiří Hlaváček, OA a VOŠ Příbram, 2015 FYZIKA MIKROSVĚTA Kvantové vlastnosti světla (str. 241 257) Fotoelektrický jev je uvolňování elektronů z látky vlivem
Ing. Stanislav Jakoubek
Ing. Stanislav Jakoubek Číslo DUMu III/2-1-3-3 III/2-1-3-4 III/2-1-3-5 Název DUMu Vnější a vnitřní fotoelektrický jev a jeho teorie Technické využití fotoelektrického jevu Dualismus vln a částic Ing. Stanislav
Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika
Jaderná fyzika Vlastnosti atomových jader Radioaktivita Jaderné reakce Jaderná energetika Vlastnosti atomových jader tomové jádro rozměry jsou řádově 1-15 m - složeno z protonů a neutronů Platí: X - soustředí
ÈÁST VII - K V A N T O V Á F Y Z I K A
Kde se nacházíme? ÈÁST VII - K V A N T O V Á F Y Z I K A 29 Èásticové vlastnosti elektromagnetických vln 30 Vlnové vlastnosti èástic 31 Schrödingerova formulace kvantové mechaniky Kolem roku 1900-1915
Fyzika (učitelství) Zkouška - teoretická fyzika. Čas k řešení je 120 minut (6 minut na úlohu): snažte se nejprve rychle vyřešit ty nejsnazší úlohy,
Státní bakalářská zkouška. 9. 05 Fyzika (učitelství) Zkouška - teoretická fyzika (test s řešením) Jméno: Pokyny k řešení testu: Ke každé úloze je správně pouze jedna odpověď. Čas k řešení je 0 minut (6
Test pro 8. třídy A. 3) Vypočítej kolik potřebuješ gramů soli na přípravu 600 g 5 % roztoku.
Test pro 8. třídy A 1) Rozhodni, zda je správné tvrzení: Vzduch je homogenní směs. a) ano b) ne 2) Přiřaď k sobě: a) voda-olej A) suspenze b) křída ve vodě B) emulze c) vzduch C) aerosol 3) Vypočítej kolik
Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A
Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,
Atomové jádro Elektronový obal elektron (e) záporně proton (p) kladně neutron (n) elektroneutrální
STAVBA ATOMU Výukový materiál pro základní školy (prezentace). Zpracováno v rámci projektu Snížení rizik ohrožení zdraví člověka a životního prostředí podporou výuky chemie na ZŠ. Číslo projektu: CZ.1.07/1.1.16/02.0018
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
CHEMICKY ČISTÉ LÁTKY A SMĚSI Látka = forma hmoty, která se skládá z velkého množství základních částic: atomů, iontů a... 1. Přiřaďte látky: glukóza, sůl, vodík a helium k níže zobrazeným typům částic.
RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření
KAP. 3 RADIOAKTIVITA A JADERNÉ REAKCE sklo barvené uranem RADIOAKTIVITA =SCHOPNOST NĚKTERÝCH ATOMOVÝCH JADER VYSÍLAT ZÁŘENÍ přírodní nuklidy STABILNÍ NKLIDY RADIONKLIDY = projevují se PŘIROZENO RADIOAKTIVITO
BAKALÁŘSKÁ PRÁCE. Univerzita Palackého v Olomouci. Sbírka příkladů z atomové a jaderné fyziky. Přírodovědecká fakulta. Katedra experimentální fyziky
Univerzita Palackého v Olomouci Přírodovědecká fakulta Katedra experimentální fyziky BAKALÁŘSKÁ PRÁCE Sbírka příkladů z atomové a jaderné fyziky Autor: Petr Smilek Studijní program: B1701 Fyzika Studijní
4.3. Kvantové vlastnosti elektromagnetického záření
4.3. Kvantové vlastnosti elektromagnetického záření 4.3.1. Fotony, fotoelektrický a Comptonův jev 1. Klasifikovat obor kvantová optika.. Popsat foton a jeho vlastnosti jako kvantum energie elektromagnetického
FYZIKA na LF MU cvičná. 1. Který z následujících souborů jednotek neobsahuje jen základní nebo odvozené jednotky soustavy SI?
FYZIKA na LF MU cvičná 1. Který z následujících souborů jednotek neobsahuje jen základní nebo odvozené jednotky soustavy SI? A. kandela, sekunda, kilogram, joule B. metr, joule, kalorie, newton C. sekunda,
212 a. 5. Vyzáří-li radioaktivní nuklid aktinia částici α, přemění se na atom: a) radia b) thoria c) francia d) protaktinia e) zůstane aktinium
Pracovní list - Jaderné reakce 1. Vydává-li radionuklid záření alfa: a) protonové číslo se zmenšuje o 4 a nukleonové číslo se nemění b) nukleonové číslo se změní o 4 a protonové se nemění c) protonové
CHEMICKY ČISTÁ LÁTKA A SMĚS
CHEMICKY ČISTÁ LÁTKA A SMĚS Látka = forma hmoty, která se skládá z velkého množství základních stavebních částic: atomů, iontů a... Látky se liší podle druhu částic, ze kterých se skládají. Druh částic
CZ.1.07/1.1.30/01.0038
Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 29 Téma: RADIOAKTIVITA A JADERNÝ PALIVOVÝ CYKLUS Lektor: Ing. Petr Konáš Třída/y: 3ST,
Základní stavební částice
Základní stavební částice ATOMY Au O H Elektroneutrální 2 H 2 atomy vodíku 8 Fe Ř atom železa IONTY Na + Cl - H 3 O + P idávat nebo odebírat se mohou jenom elektrony Kationty Kladn nabité Odevzdání elektron
36 RADIOAKTIVITA. Rozpadový zákon Teorie radioaktivního rozpadu Umělá radioaktivita
433 36 RADIOAKTIVITA Rozpadový zákon Teorie radioaktivního rozpadu Umělá radioaktivita Radioaktivita je jev, při kterém se jádra jednoho prvku samovolně mění na jádra jiného prvku emisí částic alfa, neutronů,
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007
TEST Z FYZIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-F-2006-01 1. Převeďte 37 mm 3 na m 3. a) 37 10-9 m 3 b) 37 10-6 m 3 c) 37 10 9 m 3 d) 37 10 3 m 3 e) 37 10-3 m 3 2. Voda v řece proudí rychlostí 4 m/s. Kolmo
2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A
2. Jaderná fyzika 9 2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A V této kapitole se dozvíte: o historii vývoje modelů stavby atomového jádra od dob Rutherfordova experimentu;
www.zlinskedumy.cz Inovace výuky prostřednictvím šablon pro SŠ
Název projektu Číslo projektu Název školy Autor Název šablony Název DUMu Stupeň a typ vzdělávání Vzdělávací oblast Vzdělávací obor Tematický okruh Inovace výuky prostřednictvím šablon pro SŠ CZ.1.07/1.5.00/34.0748
MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA
MAKRO- A MIKRO- MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA STAV... (v dřívějším okamţiku)...... info o vnějším působení STAV... (v určitém okamţiku) ZÁKLADNÍ INFO O... (v tomto okamţiku) VŠCHNY DALŠÍ
λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny
Elektromagnetické vlny Optika, část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko si jím ohmatává
Jiøí Vlèek ZÁKLADY STØEDOŠKOLSKÉ CHEMIE obecná chemie anorganická chemie organická chemie Obsah 1. Obecná chemie... 1 2. Anorganická chemie... 29 3. Organická chemie... 48 4. Laboratorní cvièení... 69
STUDIUM FOTOEFEKTU A STANOVENÍ PLANCKOVY KONSTANTY. 1) Na základě měření vnějšího fotoefektu stanovte velikost Planckovy konstanty h.
Úkol měření: 1) Na základě měření vnějšího fotoefektu stanovte velikost Planckovy konstanty h. 2) Určete mezní kmitočet a výstupní práci materiálu fotokatody použité fotonky. Porovnejte tuto hodnotu s
VY_32_INOVACE_06_III./7._STAVBA ATOMOVÉHO JÁDRA
VY_32_INOVACE_06_III./7._STAVBA ATOMOVÉHO JÁDRA Fyzika atomového jádra Stavba atomového jádra Protonové číslo Periodická soustava prvků Nukleonové číslo Neutron Jaderné síly Úkoly zápis Stavba atomového
Vzdělávací oblast: Člověk a příroda. Vyučovací předmět: Chemie. Třída: tercie. Očekávané výstupy. Poznámky. Přesahy. Žák: Průřezová témata
Vzdělávací oblast: Člověk a příroda Vyučovací předmět: Chemie Třída: tercie Očekávané výstupy Uvede příklady chemického děje a čím se zabývá chemie Rozliší tělesa a látky Rozpozná na příkladech fyzikální
4. Žádná odpověď není správná -0
1. Auto rychlé zdravotnické pomoci jelo první polovinu dráhy rychlostí v1 = 90 km.h -1, druhou polovinu dráhy rychlostí v2 = 72 km.h -1. Určete průměrnou rychlost. 1. 81,5 km.h -1-0 2. 80 km.h -1 +0 3.
Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ
Hvězdy zblízka Složení hvězdy Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Plazma zcela nebo částečně ionizovaný plyn,
1. Millerovy indexy, reciproká mřížka
Obsah 1. Millerovy indexy, reciproká mřížka 2. Krystalografické soustavy, Bravaisovy mřížky 3. Poruchy v pevných látkách 4. Difrakční metody určování struktury pevných látek 5. Mechanické vlastnosti pevných
CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT. Hmota a její formy VY_32_INOVACE_18_01. Mgr. Věra Grimmerová
Průvodka Číslo projektu Název projektu Číslo a název šablony klíčové aktivity CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce
DIGITÁLNÍ UČEBNÍ MATERIÁL. Ing. Alena Musilová ŠVP cukrář-cukrovinkář; ZPV chemie, 1. ročník ŠVP kuchař-číšník;zpv chemie, 1.
DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ.1.07/1.5.00/34.0763 Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220 Název materiálu INOVACE_32_ZPV-CH 1/04/02/1 Autor Obor; předmět, ročník Tematická
6. Elektromagnetické záření
6. Elektromagnetické záření - zápis výkladu - 34. až 35. hodina - A) Elektromagnetické vlny a záření (učebnice strana 86-95) Kde všude se s nimi setkáváme? Zapneme-li rozhlasový nebo televizní přijímač
Atom a molekula - maturitní otázka z chemie
Atom a molekula - maturitní otázka z chemie by jx.mail@centrum.cz - Pond?lí, Únor 09, 2015 http://biologie-chemie.cz/atom-a-molekula-maturitni-otazka-z-chemie/ Otázka: Atom a molekula P?edm?t: Chemie P?idal(a):
ZÁŘIVÝ TOK - Φ e : Podíl zářivé energie E e a doby t, za kterou projde záření s touto energií danou plochou:
ZÁŘIVÝ TOK - Φ e : Podíl zářivé energie E e a doby t, za kterou projde záření s touto energií danou plochou: ZÁŘIVOST - I e : Podíl té části zářivého toku Φ e, který vychází ze zdroje do malého prostorového
Atomová a jaderná fyzika
Mgr. Jan Ptáčník Atomová a jaderná fyzika Fyzika - kvarta Gymnázium J. V. Jirsíka Atom - historie Starověk - Démokritos 19. století - první důkazy Konec 19. stol. - objev elektronu Vznik modelů atomu Thomsonův
4. STANOVENÍ PLANCKOVY KONSTANTY
4. STANOVENÍ PLANCKOVY KONSTANTY Měřicí potřeby: 1) kompaktní zařízení firmy Leybold ) kondenzátor 3) spínač 4) elektrometrický zesilovač se zdrojem 5) voltmetr do V Obecná část: Při ozáření kovového tělesa
Jméno a příjmení. Ročník. Měřeno dne. 8.4.2013 Příprava Opravy Učitel Hodnocení. Fotoelektrický jev a Planckova konstanta
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek Spolupracoval Měřeno dne Odevzdáno dne Ladislav Šulák 25. 3. 2013 8.4.2013 Příprava Opravy Učitel
ZDROJE A PŘEMĚNY ENERGIE
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ZDROJE A PŘEMĚNY ENERGIE ING.
Zeemanův jev. Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov
Zeemanův jev Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov 1 Abstrakt Při tomto experimentu jsme zopakovali pokus Pietera Zeemana (nositel Nobelovy ceny v roce 1902) se
Název materiálu: Vedení elektrického proudu v kapalinách
Název materiálu: Vedení elektrického proudu v kapalinách Jméno autora: Mgr. Magda Zemánková Materiál byl vytvořen v období: 2. pololetí šk. roku 2010/2011 Materiál je určen pro ročník: 9. Vzdělávací oblast:
Ch - Periodický zákon, periodická tabulka prvků
Ch - Periodický zákon, periodická tabulka prvků Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento
Vít Svoboda Ústav fyzikální chemie J. Heyrovského AV ČR, v. v. i., Dolejškova 2155/3, 182 23 Praha 8
č. 1 Čs. čas. fyz. 64 (2014) 35 Periodický zákon aneb proč máme rádi periodickou tabulku Vít Svoboda Ústav fyzikální chemie J. Heyrovského AV ČR, v. v. i., Dolejškova 2155/3, 182 23 Praha 8 Portrét D.
Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz
Radioterapie X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie je klinický obor využívající účinků ionizujícího záření v léčbě jak zhoubných, tak nezhoubných nádorů
ANODA KATODA elektrolyt:
Ukázky z pracovních listů 1) Naznač pomocí šipek, které částice putují k anodě a které ke katodě. Co je elektrolytem? ANODA KATODA elektrolyt: Zn 2+ Cl - Zn 2+ Zn 2+ Cl - Cl - Cl - Cl - Cl - Zn 2+ Cl -
Detekční trubice typu A ke geigeru ALPHA ix Kat. číslo 109.0601
Detekční trubice typu A ke geigeru ALPHA ix Kat. číslo 109.0601 Obsah: 1. Měření velikosti dávky detekční trubicí typu A... 2 2. Statistická chyba měření... 2 3. Mez průkaznosti (NWG)...3 4. Měření kontaminace...
Jaderná energie Jaderné elektrárny. Vojtěch Motyčka Centrum výzkumu Řež s.r.o.
Jaderná energie Jaderné elektrárny Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Obsah prezentace Energie jaderná Vývoj energetiky Dělení jaderných reaktorů I. Energie jaderná Uvolňuje se při jaderných reakcích
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Elektrický
OSMILETÉ GYMNÁZIUM BUĎÁNKA, o.p.s. TEMATICKÉ PLÁNY TEMATICKÝ PLÁN (ŠR 2010/11)
TEMATICKÝ PLÁN (ŠR 20/11) (UČEBNÍ MATERIÁLY Prima Macháček M., Rojko M. a kol. kolem nás 1, Scientia Motivace ke studiu fyziky Motivace ke studiu fyziky 4 Vlastnosti látek Rozlišení kapalin a plynů, odlišnosti
ELEKTRONOVÝ OBAL ATOMU. kladně nabitá hmota. elektron
MODELY ATOMU ELEKTRONOVÝ OBAL ATOMU Na základě experimentálních výsledků byly vytvořeny různé teorie o struktuře atomu, tzv. modely atomu. Thomsonův model: Roku 1897 se jako první pokusil o popis stavby
Stavba atomu historie pohledu na stavbu atomu struktura atomu, izotopy struktura elektronového obalu atom vodíkového typu
Stavba atomu historie pohledu na stavbu atomu struktura atomu, izotopy struktura elektronového obalu atom vodíkového typu obrázky molekul a Lewisovy vzorce molekul v této přednášce čerpány z: http://.chemtube3d.com/
Ideální krystalová mřížka periodický potenciál v krystalu. pásová struktura polovodiče
Cvičení 3 Ideální krystalová mřížka periodický potenciál v krystalu Aplikace kvantové mechaniky pásová struktura polovodiče Nosiče náboje v polovodiči hustota stavů obsazovací funkce, Fermiho hladina koncentrace
Základy elektrotechniky - úvod
Elektrotechnika se zabývá výrobou, rozvodem a spotřebou elektrické energie včetně zařízení k těmto účelům používaným, dále sdělovacími a informačními technologiemi. Elektrotechnika je úzce spjata s matematikou
9. Fyzika mikrosvěta
Elektromagnetické spektrum 9.1.1 Druhy elektromagnetického záření 9. Fyzika mikrosvěta Vlnění různých vlnových délek mají velmi odlišné fyzikální vlastnosti. Různé druhy elektromagnetického záření se liší
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Periodická soustava prvků Chemické prvky V současné době známe 104 chemických prvků. Většina z nich se vyskytuje v přírodě. Jen malá část byla
10. Energie a její transformace
10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na
Chemie = přírodní věda zkoumající složení a strukturu látek a jejich přeměny v látky jiné
Otázka: Obecná chemie Předmět: Chemie Přidal(a): ZuzilQa Základní pojmy v chemii, periodická soustava prvků Chemie = přírodní věda zkoumající složení a strukturu látek a jejich přeměny v látky jiné -setkáváme
ZÁKLADNÍ POJMY KVANTOVÉ FYZIKY, FOTOELEKTRICKÝ JEV. E = h f, f je frekvence záření, h je Planckova
ZÁKLADNÍ POJMY KVANTOVÉ FYZIKY, FOTOELEKTRICKÝ JEV. KVANTOVÁ FYZIKA: Koncem 19. století byly zkoumány optické jevy, které nelze vysvětlit jen vlnovými vlastnostmi světla > vznikly nové fyzikální teorie,
Učební osnovy Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemický kroužek ročník 6.-9.
Učební osnovy Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemický kroužek ročník 6.-9. Školní rok 0/03, 03/04 Kapitola Téma (Učivo) Znalosti a dovednosti (výstup) Počet hodin pro kapitolu Úvod
ELEKTROTECHNICKÉ MATERIÁLY
ELEKTROTECHNICKÉ MATERIÁLY PŘEDNÁŠÍ: Prof. Ing. Jaromír r Drápala, CSc. VEDOUCÍ CVIČEN ENÍ : Ing. Kateřina Skotnicová, Ph.D. (A622) Čt 7.15-8.45; 9.00-10.30 Ing. Ivo Szurman, Ph.D. (J304) Čt 12.30-14.00;
ZÁKLADY SPEKTROSKOPIE
VĚDOU A TECHNIKOU KE SPOLEČNÉMU ROZVOJI DODATEK PŘESHRANIČNÍ LETNÍ ŠKOLA VĚDY A TECHNIKY ZÁKLADY SPEKTROSKOPIE EURÓPSKA ÚNIA EURÓPSKY FOND REGIONÁLNEHO ROZVOJA SPOLOČNE BEZ HRANÍC FOND MIKROPROJEKTŮ 1.
dvojí povaha světla Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Název školy Předmět/modul (ŠVP) Vytvořeno listopad 2012
Název školy Dvojí povaha světla Název a registrační číslo projektu Označení RVP (název RVP) Vzdělávací oblast (RVP) Vzdělávací obor (název ŠVP) Předmět/modul (ŠVP) Tematický okruh (ŠVP) Název DUM (téma)
Pracovní list: Opakování učiva 8. ročníku
Pracovní list: Opakování učiva 8. ročníku Komentář ke hře: 1. Třída se rozdělí do čtyř skupin. Vždy spolu soupeří dvě skupiny a vítězné skupiny se pak utkají ve finále. 2. Každé z čísel skrývá otázku.
Anotace Metodický list
ZÁKLADNÍ ŠKOLA a MATEŘSKÁ ŠKOLA STRUPČICE, okres Chomutov Autor výukového Materiálu Datum (období) vytvoření materiálu Ročník, pro který je materiál určen Vzdělávací obor tématický okruh Název materiálu,
Metalografie ocelí a litin
Metalografie ocelí a litin Metalografie se zabývá pozorováním a zkoumáním vnitřní stavby neboli struktury kovů a slitin. Dále také stanoví, jak tato struktura souvisí s chemickým složením, teplotou a tepelným
1 Měření na Wilsonově expanzní komoře
1 Měření na Wilsonově expanzní komoře Cíle úlohy: Cílem této úlohy je seznámení se základními částicemi, které způsobují ionizaci pomocí Wilsonovi mlžné komory. V této úloze studenti spustí Wilsonovu mlžnou
II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO
II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO 2.1 Vnitřní energie tělesa a) celková energie (termodynamické) soustavy E tvořena kinetickou energií E k jejího makroskopického pohybu jako celku potenciální energií
Podmínky pro hodnocení žáka v předmětu fyzika
Podmínky pro hodnocení žáka v předmětu fyzika Obecná pravidla: Při klasifikaci písemných prací bude brán jako zaklad tento klasifikační systém: pro stupeň výborný 100% až 90% chvalitebný do 70% dobrý do
Chemie - látky Variace č.: 1
Variace č.: . Složení látek a chemická vazba V tématickém celku si objasníme, proč mohou probíhat chemické děje. Začneme složením látek. Víme, že látky se skládají z atomů, které se slučují v molekuly.
Elektrodynamika, elektrický proud v polovodičích, elektromagnetické záření, energie a její přeměny, astronomie
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Elektrodynamika, elektrický proud v polovodičích, elektromagnetické záření, energie a její přeměny, astronomie Kvarta 2 hodiny týdně Pomůcky, které
Základy fyzikálněchemických
Základy fyzikálněchemických metod Fyzikálně-chemické metody optické metody elektrochemické metody separační metody kalorimetrické metody radiochemické metody ostatní metody Optické metody Oko je citlivé
Za hranice současné fyziky
Za hranice současné fyziky Zásadní změny na počátku 20. století Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Fotoefekt Fotoelektrický jev je jev, který v roce 1887 poprvé popsal Heinrich Hertz. Po nějakou dobu se efekt nazýval Hertzův efekt, ale
UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Ústav aplikované fyziky a matematiky ZÁKLADY FYZIKY II
UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ Ústav aplikované fyziky a matematiky ZÁKLADY FYZIKY II Sbírka příkladů pro ekonomické obory kombinovaného studia Dopravní fakulty Jana Pernera (PZF2K)
SBÍRKA ÚLOH Z FYSIKY. Gymnázium F. X. Šaldy. pro přípravu k maturitní zkoušce, k přijímacím zkouškám do vysokých škol a k práci ve fysikálním semináři
Gymnázium F. X. Šaldy PŘEDMĚTOVÁ KOMISE FYSIKY SBÍRKA ÚLOH Z FYSIKY pro přípravu k maturitní zkoušce, k přijímacím zkouškám do vysokých škol a k práci ve fysikálním semináři Sazba: Honsoft, 2006 2007.
TÉMATA K MATURITNÍ ZKOUŠCE Z FYZIKY:
TÉMATA K MATURITNÍ ZKOUŠCE Z FYZIKY: školní rok : 2007 / 2008 třída : 4.A zkoušející : Mgr. Zbyněk Bábíček 1. Kinematika hmotného bodu 2. Dynamika hmotného bodu 3. Mechanická práce a energie 4. Gravitační
5.8 Jak se změní velikost elektrické síly mezi dvěma bodovými náboji v případě, že jejich vzdálenost a) zdvojnásobíme, b) ztrojnásobíme?
5.1 Elektrické pole V úlohách této kapitoly dosazujte e = 1,602 10 19 C, k = 9 10 9 N m 2 C 2, ε 0 = 8,85 10 12 C 2 N 1 m 2. 5.6 Kolik elementárních nábojů odpovídá náboji 1 µc? 5.7 Novodurová tyč získala
ATOM. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 7. 2012. Ročník: osmý
ATOM Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 25. 7. 2012 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Částicové složení látek a chemické prvky 1 Anotace: Žáci se seznámí se
L A S E R. Krize klasické fyziky na přelomu 19. a 20. století, vznik kvantových představ o interakci optického záření s látkami.
L A S E R Krize klasické fyziky na přelomu 19. a 20. století, vznik kvantových představ o interakci optického záření s látkami Stimulovaná emise Princip laseru Specifické vlastnosti laseru jako zdroje
2.1 2.2. Testový sešit neotvírejte, počkejte na pokyn!
FYZIKA DIDAKTICKÝ TEST FYM0D11C0T03 Maximální bodové hodnocení: 45 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 20 úloh. Časový limit pro řešení didaktického
37 MOLEKULY. Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra
445 37 MOLEKULY Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra Soustava stabilně vázaných atomů tvoří molekulu. Podle počtu atomů hovoříme o dvoj-, troj- a více atomových molekulách.
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Výjimky z pravidelné elektronové konfigurace atomů, aneb snaha o dosažení stability. Stabilita vzácných plynů Vzácné plyny mají velmi stabilní
PRO VAŠE POUČENÍ. Kdo se bojí radiace? ÚVOD CO JE RADIACE? Stanislav Kočvara *, VF, a.s. Černá Hora
Kdo se bojí radiace? Stanislav Kočvara *, VF, a.s. Černá Hora PRO VAŠE POUČENÍ ÚVOD Od počátků lidského rodu platí, že máme strach především z neznámého. Lidé měli v minulosti strach z ohně, blesku, zatmění
VY_32_INOVACE_FY.17 JADERNÁ ENERGIE
VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje
jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony
atom jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony molekula Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti seskupení alespoň dvou atomů
Analytické metody využívané ke stanovení chemického složení kovů. Ing.Viktorie Weiss, Ph.D.
Analytické metody využívané ke stanovení chemického složení kovů. Ing.Viktorie Weiss, Ph.D. Rentgenová fluorescenční spektrometrie ergiově disperzní (ED-XRF) elé spektrum je analyzováno najednou polovodičovým
ELEKTROMAGNETICKÉ ZÁŘENÍ
VY_32_INOVACE_FY.16 ELEKTROMAGNETICKÉ ZÁŘENÍ Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Elektromagnetické záření Jakýkoli
Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 19
Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň Monitorovací indikátor: 06.43.10
Veličiny- základní N A. Látkové množství je dáno podílem N částic v systému a Avogadrovy konstanty NA
YCHS, XCHS I. Úvod: plán přednášek a cvičení, podmínky udělení zápočtu a zkoušky. Základní pojmy: jednotky a veličiny, základy chemie. Stavba atomu a chemická vazba. Skupenství látek, chemické reakce,