Pátrání po vyšších dimenzích

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Pátrání po vyšších dimenzích"

Transkript

1 Pátrání po vyšších dimenzích Martin Blaschke Školička moderní astrofyziky, 2011 Ústav fyziky, Slezská univerzita v Opavě 1 / 23

2 Úvod Úplný začátek Vyšší dimenze ve fyzice Bránové modely Co je to dimenze? Zdánlivě složitá otázka N 2 / 23

3 Úvod Úplný začátek Vyšší dimenze ve fyzice Bránové modely Co je to dimenze? Zdánlivě složitá otázka Odpověď: číslo n N/R N 2 / 23

4 Úvod Úplný začátek Vyšší dimenze ve fyzice Bránové modely Co je to dimenze? Zdánlivě složitá otázka Odpověď: číslo n N/R Příklad: cestování N 2 / 23

5 Úvod Úplný začátek Vyšší dimenze ve fyzice Bránové modely Co je to dimenze? Zdánlivě složitá otázka Odpověď: číslo n N/R Příklad: cestování N 2 / 23

6 Úvod Úplný začátek Vyšší dimenze ve fyzice Bránové modely Co je to dimenze? Zdánlivě složitá otázka Odpověď: číslo n N/R Příklad: cestování N 2 / 23

7 Úvod Úplný začátek Vyšší dimenze ve fyzice Bránové modely Co je to dimenze? Zdánlivě složitá otázka Odpověď: číslo n N/R Příklad: cestování N 2 / 23

8 René Descartes ( ) Kartézské souřadnice 3 / 23

9 René Descartes ( ) Kartézské souřadnice Cogito ergo sum 3 / 23

10 Kartézská soustava souřadnic x 2 + y 2 = R 2 x 2 + y 2 + z 2 = R 2 4 / 23

11 Kartézská soustava souřadnic x 2 + y 2 = R 2 x 2 + y 2 + z 2 = R 2 x x x 2 n = R 2 4 / 23

12 Marcel Duchamp ( ) Curriculum vitae francouzký výtvarník ovlivněný kubizmem a surrealizmem, sochař, spisovatel a šachysta Akt sestupující se schodů, č. 2 (1912) 5 / 23

13 Edwin Abbott Abbott ( ) Flatland (1884) 6 / 23

14 Salvador Dalí ( ) Crucifixion (Corpus Hypercubus) (1954) síť krychle: 7 / 23

15 Salvador Dalí ( ) Crucifixion (Corpus Hypercubus) (1954) síť krychle: tesseract: 7 / 23

16 Platón (427 př. n. l. 347 př. n. l) tetraedr hexaedr dodekaedr ikosaedr Eulerova charakteristika χ = V E + F oktaedr Pro libovolný konvexní mnohostěn χ = 2 8 / 23

17 Jiné dimenze dvě dimenze Nekonečno: pravidelný n uhelník čtyři dimenze Šest: 5-nadstěn, teserakt, 16-nadstěn, 24-nadstěn, 120- nadstěn, 600-nadstěn vyšší dimenze Tři: zobecnění 4-stěnu, zobecnění krychle a její duální těleso osmistěn 9 / 23

18 Síť, symetrie a duální mnohostěn 10 / 23

19 Vědecká metoda Ibn al-haytham: 11 / 23

20 Vědecká metoda Ibn al-haytham: Galileo Galilei: 11 / 23

21 Vědecká metoda Ibn al-haytham: Galileo Galilei: Johannes Kepler: 11 / 23

22 Vědecká metoda 1 Pozorování a popis skutečnosti Ibn al-haytham: Galileo Galilei: Johannes Kepler: 11 / 23

23 Vědecká metoda 1 Pozorování a popis skutečnosti Ibn al-haytham: 2 Formulace problému Galileo Galilei: Johannes Kepler: 11 / 23

24 Vědecká metoda 1 Pozorování a popis skutečnosti Ibn al-haytham: 2 Formulace problému 3 Hypotéza Galileo Galilei: Johannes Kepler: 11 / 23

25 Vědecká metoda 1 Pozorování a popis skutečnosti Ibn al-haytham: 2 Formulace problému 3 Hypotéza 4 Předpovědi Galileo Galilei: Johannes Kepler: 11 / 23

26 Vědecká metoda 1 Pozorování a popis skutečnosti Ibn al-haytham: 2 Formulace problému 3 Hypotéza 4 Předpovědi Galileo Galilei: 5 Ověřování experimentem Johannes Kepler: 11 / 23

27 Vědecká metoda 1 Pozorování a popis skutečnosti Ibn al-haytham: 2 Formulace problému 3 Hypotéza 4 Předpovědi Galileo Galilei: 5 Ověřování experimentem 1 Occamova břitva Johannes Kepler: 11 / 23

28 Vědecká metoda 1 Pozorování a popis skutečnosti Ibn al-haytham: 2 Formulace problému 3 Hypotéza 4 Předpovědi Galileo Galilei: 5 Ověřování experimentem 1 Occamova břitva Johannes Kepler: 2 Popperova břitva 11 / 23

29 Vědecká metoda 1 Pozorování a popis skutečnosti Ibn al-haytham: 2 Formulace problému 3 Hypotéza 4 Předpovědi Galileo Galilei: 5 Ověřování experimentem Johannes Kepler: 1 Occamova břitva 2 Popperova břitva 3 Humeova břitva 11 / 23

30 Johannes Kepler ( ) Mysterium Cosmographicum Tajemství světa: první obrana Koperníkova modelu za pomocí Platónských těles 12 / 23

31 Isaac Newton ( ) G = m 3 kg 1 s 2 je volný parametr teorie 13 / 23

32 Zobecnění gravitačního zákona F (n) = G (n)m 1m 2 ˆr r n 1 14 / 23

33 Zobecnění gravitačního zákona m 1 m 2 F = K 1 ˆr r 2 F (n) = G (n)m 1m 2 ˆr r n 1 14 / 23

34 Zobecnění gravitačního zákona m 1 m 2 m 1 m 2 F = K 1 ˆr +K r 2 2 ˆr r 3 F (n) = G (n)m 1m 2 ˆr r n 1 14 / 23

35 Zobecnění gravitačního zákona F (n) = G (n)m 1m 2 ˆr r n 1 m 1 m 2 m 1 m 2 F = K 1 ˆr +K r 2 2 ˆr +K r 3 3 r m 1 m2ˆr + +K nˆr m 1 m 2 Γ(r)dr 14 / 23

36 Gunnar Nordström ( ) V roce 1914 ukázal finský fyzik Nordström, že elektromagnetismus a gravitace mohou být sjednoceny v jedinou, pěti-dimenzionální teorii. 15 / 23

37 Gunnar Nordström ( ) Avšak tato teorie pohlížela na gravitaci jinak než Einsteinova pozdější obecná relativita a zůstala proto nepovšimnuta. V roce 1914 ukázal finský fyzik Nordström, že elektromagnetismus a gravitace mohou být sjednoceny v jedinou, pěti-dimenzionální teorii. 15 / 23

38 Theodor Kaluza ( ) Polský matematik Theodor Kaluza navrhnul v roce 1919 způsob, jak za pomocí dodatečné dimenze sjednotit obecnou relativitu a elektromagnetizmus. 16 / 23

39 Theodor Kaluza ( ) Polský matematik Theodor Kaluza navrhnul v roce 1919 způsob, jak za pomocí dodatečné dimenze sjednotit obecnou relativitu a elektromagnetizmus. Váš nápad se mi velmi líbí. 16 / 23

40 Realita nebo pouhá představa? Tito tři pánové považovali dodatečnou dimenzi za pouhou matematickou hříčku, pomůcku, nikoliv něco reálného. Ostatně tuto pátou dimenzi nelze přece vidět! 17 / 23

41 Realita nebo pouhá představa? Tito tři pánové považovali dodatečnou dimenzi za pouhou matematickou hříčku, pomůcku, nikoliv něco reálného. Ostatně tuto pátou dimenzi nelze přece vidět! Ještě v roce 1905 někteří fyzikové nevěřili v existenci atomu, neboť se na něj nemohli podívat. 17 / 23

42 Oskar Klein ( ) Švédský fyzik Oskar Klein přišel v roce 1926 s nápadem, že pátá dimenze je skutečná a má tvar malé kružnice o poloměru cm. 18 / 23

43 Oskar Klein ( ) Švédský fyzik Oskar Klein přišel v roce 1926 s nápadem, že pátá dimenze je skutečná a má tvar malé kružnice o poloměru cm. Kleinův článek je nádherný a ohromující zároveň. 18 / 23

44 Beta funkce (Euler) Michael Green (1946?) 1 B(x, y) = t x 1 (1 t) y 1 dt 0 19 / 23

45 Edward Witten (1951?) 20 / 23

46 Struny Módy Calabi-Yau 21 / 23

47 Bránové světy 22 / 23

48 Děkuji za pozornost 23 / 23

VY_32_INOVACE_FY.19 VESMÍR

VY_32_INOVACE_FY.19 VESMÍR VY_32_INOVACE_FY.19 VESMÍR Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Vesmír je souhrnné označení veškeré hmoty, energie

Více

Text pro učitele Geometrické modelování Pořadí zařazení námětu: 3. Jak lze v geometrii uplatnit modelínu a špejle

Text pro učitele Geometrické modelování Pořadí zařazení námětu: 3. Jak lze v geometrii uplatnit modelínu a špejle Text pro učitele Téma: Geometrické modelování Pořadí zařazení námětu: 3. Název: Jak lze v geometrii uplatnit modelínu a špejle Autor: Marie Kupčáková V úvodu do stereometrie může být velkým pomocníkem

Více

Redukcionismus a atomismus

Redukcionismus a atomismus Redukcionismus a atomismus ČVUT FEL Filosofie 2 Filip Pivarči pivarfil@fel.cvut.cz Co nás čeká? Co je to redukcionismus Směry redukcionismu Redukcionismus v různých odvětvých vědy Co je to atomismus Směry

Více

Historie matematiky a informatiky

Historie matematiky a informatiky Evropský sociální fond Investujeme do vaší budoucnosti Historie matematiky a informatiky 2014 Doc. RNDr. Alena Šolcová, Ph.D. Katedra aplikované matematiky FIT ČVUT v Praze 1 Co je matematika? Matematika

Více

Za hranice současné fyziky

Za hranice současné fyziky Za hranice současné fyziky Zásadní změny na počátku 20. století Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie

Více

Á Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í

Více

Fyzika opakovací seminář 2010-2011 tematické celky:

Fyzika opakovací seminář 2010-2011 tematické celky: Fyzika opakovací seminář 2010-2011 tematické celky: 1. Kinematika 2. Dynamika 3. Práce, výkon, energie 4. Gravitační pole 5. Mechanika tuhého tělesa 6. Mechanika kapalin a plynů 7. Vnitřní energie, práce,

Více

ř š ú š Č š ž ř š Š Š Í ú š ď ř š ú Š ů ú ř ř ř ř ů ř Ž š ů ú ů ř Š Š Š ř ů řň ň řň řň ů ř ř š Í ř ř ř ř ř ř ř ř Ž Ž ř ú ů ú ú š Ú ú ú Í Ž Ž ů Ž Ž Č ň Ú řš ř řš ú Ž ú ť ň Í ř ř ů ť š š ř Í řš ú Ý Í ť ú

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Gymnázium, Český Krumlov

Gymnázium, Český Krumlov Gymnázium, Český Krumlov Vyučovací předmět Fyzika Třída: 6.A - Prima (ročník 1.O) Úvod do předmětu FYZIKA Jan Kučera, 2011 1 Organizační záležitosti výuky Pomůcky související s výukou: Pracovní sešit (formát

Více

Molekula = soubor atomů. charakteristika molekuly: sumární vzorec H 2 O, C 2 H 6,... strukturní vzorec

Molekula = soubor atomů. charakteristika molekuly: sumární vzorec H 2 O, C 2 H 6,... strukturní vzorec Molekula = soubor atomů charakteristika molekuly: sumární vzorec H 2 O, C 2 H 6,... strukturní vzorec Euklidovská charakteristika (symetrie) vazby mezi atomy H O H topologie molekuly 2-četná osa H 2 O

Více

RENESANCE A OSVÍCENSTVÍ

RENESANCE A OSVÍCENSTVÍ RENESANCE A OSVÍCENSTVÍ pracovní list Mgr. Michaela Holubová Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Michaela Holubová. RENESANCE A VĚK ROZUMU Renesance kulturní znovuzrození

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská

Více

Interpretace pozorování planet na obloze a hvězdné obloze

Interpretace pozorování planet na obloze a hvězdné obloze Interpretace pozorování planet na obloze a hvězdné obloze - role vztažné soustavy - modely Sluneční soustavy stejná pozorování je možné vysvětlit různými modely! heliocentrický x geocentrický model Tanec

Více

MATEMATIKA A 3 Metodický list č. 1

MATEMATIKA A 3 Metodický list č. 1 Metodický list č. 1 Název tématického celku: Úvod do problematiky diskrétní matematiky Cíl: Cílem tohoto tématického celku je vymezení oblasti diskrétní matematiky a příprava na další výklad kurzu. Jedná

Více

naše vlajka: Řešení prvního úkolu kategorie 3 druhý stupeň: Trochu teorie a historie: Kamarádi ZŠ Chrast S chutí do toho a půl je hotovo,

naše vlajka: Řešení prvního úkolu kategorie 3 druhý stupeň: Trochu teorie a historie: Kamarádi ZŠ Chrast S chutí do toho a půl je hotovo, Řešení prvního úkolu kategorie 3 druhý stupeň: Kamarádi ZŠ Chrast S chutí do toho a půl je hotovo, rádi spolu tvoříme, na úkol se těšíme naše vlajka: Trochu teorie a historie: Dalekohled Dalekohled umožňuje

Více

Značení krystalografických rovin a směrů

Značení krystalografických rovin a směrů Značení krystalografických rovin a směrů (studijní text k předmětu SLO/ZNM1) Připravila: Hana Šebestová 1 Potřeba označování krystalografických rovin a směrů vyplývá z anizotropie (směrové závislosti)

Více

Kód: Vzdělávací materiál projektu Zlepšení podmínek výuky v ZŠ Sloup

Kód: Vzdělávací materiál projektu Zlepšení podmínek výuky v ZŠ Sloup Kód: Vzdělávací materiál projektu Zlepšení podmínek výuky v ZŠ Sloup Název vzdělávacího materiálu Souhrnné opakování podstatných jmen Anotace Pracovní listy k procvičování podstatných jmen prostřednictvím

Více

1 Newtonův gravitační zákon

1 Newtonův gravitační zákon Studentovo minimum GNB Gravitační pole 1 Newtonův gravitační zákon gravis latinsky těžký každý HB (planeta, těleso, částice) je zdrojem tzv. gravitačního pole OTR (obecná teorie relativity Albert Einstein,

Více

Fyzika prostřednictvím projektově orientovaného studia pro 1. ročník gymnázia

Fyzika prostřednictvím projektově orientovaného studia pro 1. ročník gymnázia Plán volitelného předmětu Fyzika prostřednictvím projektově orientovaného studia pro 1. ročník gymnázia 1. Charakteristika vyučovacího předmětu Volitelný předmět fyzika, který je realizován prostřednictvím

Více

Fyzika. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení vyučovacího předmětu. Výchovné a vzdělávací strategie

Fyzika. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení vyučovacího předmětu. Výchovné a vzdělávací strategie Fyzika Charakteristika vyučovacího předmětu Vyučovací předmět Fyzika patří mezi přírodní vědy. Žáky vede k pochopení, že fyzika je součástí každodenního života a je nezbytná pro rozvoj moderních technologií,

Více

Nabídka vybraných pořadů

Nabídka vybraných pořadů Hvězdárna Valašské Meziříčí, p. o. Vsetínská 78 757 01 Valašské Meziříčí Nabídka vybraných pořadů Pro střední školy a učiliště Seznamte se s naší nabídkou poutavých naučných programů zaměřených nejen na

Více

VY_32_INOVACE_06_UŽITÍ ČOČEK_28

VY_32_INOVACE_06_UŽITÍ ČOČEK_28 VY_32_INOVACE_06_UŽITÍ ČOČEK_28 Autor: Mgr. Pavel Šavara Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace Název projektu: Zkvalitnění ICT ve slušovské škole Anotace Materiál (DUM digitální

Více

Jak efektivně přednášet v době e-learningu

Jak efektivně přednášet v době e-learningu ČVUT v Praze Fakulta elektrotechnická Jak efektivně přednášet v době e-learningu David Vaněček Masarykův ústav vyšších studií Katedra inženýrské pedagogiky Evropský sociální fond Praha & EU: Investujeme

Více

1.6.9 Keplerovy zákony

1.6.9 Keplerovy zákony 1.6.9 Keplerovy zákony Předpoklady: 1608 Pedagogická poznámka: K výkladu této hodiny používám freewareový program Celestia (3D simulátor vesmíru), který umožňuje putovat vesmírem a sledovat ho z různých

Více

Vesmír. jako označen. ení pro. stí. Podle některých n. dílech. a fantasy literatury je některn

Vesmír. jako označen. ení pro. stí. Podle některých n. dílech. a fantasy literatury je některn Vesmír Vesmír r je označen ení pro veškerý prostor a hmotu a energii v něm. n V užším m smyslu se vesmír r také někdy užíváu jako označen ení pro kosmický prostor,, tedy část vesmíru mimo Zemi. Různými

Více

Zkušební otázky pro bakalářské SZZ Fyzika, Fyzika pro vzdělávání, Biofyzika

Zkušební otázky pro bakalářské SZZ Fyzika, Fyzika pro vzdělávání, Biofyzika Zkušební otázky pro bakalářské SZZ Fyzika, Fyzika pro vzdělávání, Biofyzika Obecná fyzika - Fyzika, Fyzika pro vzdělávání, Biofyzika (povinně pro všechny obory) 1. Trajektorie hmotného bodu, poloha, dráha,

Více

Astronomie jako motivační prvek ve výuce fyziky

Astronomie jako motivační prvek ve výuce fyziky Astronomie jako motivační prvek ve výuce fyziky Ivana Marková Hvězdárna a planetárium J. Palisy VŠB-Technická univerzita Ostrava ivana.markova@vsb.cz 2. Česko-slovenská konference o vzdělávání v astronomii

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

Matematická témata matematický seminář A

Matematická témata matematický seminář A Vzdělávací oblast: ČLOVĚK A PŘÍRODA Vyučovací předmět: Matematický seminář A rozšiřující učivo Matematický seminář B procvičování základního učiva Ročník: 6. až 9. Cílová skupina: skupina žáků složená

Více

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013 1. a) Kinematika hmotného bodu klasifikace pohybů poloha, okamžitá a průměrná rychlost, zrychlení hmotného bodu grafické znázornění dráhy, rychlosti a zrychlení na čase kinematika volného pádu a rovnoměrného

Více

FYZIKA Fyzikální anagramy

FYZIKA Fyzikální anagramy www.projektsako.cz FYZIKA Fyzikální anagramy Mgr. Libor Lepík Projekt: Student a konkurenceschopnost Reg. číslo: CZ.1.07/1.1.07/03.0075 DOMEK ROSTI zavedl pojem atom hodně cestoval a byl všestranně vzdělaný

Více

hry, pohádky, školička (písmena, čísla, tvary, barvy), omalovánky

hry, pohádky, školička (písmena, čísla, tvary, barvy), omalovánky Příloha č. 1 Seznam výukového softwaru Terasoft 1 2 3 4 5 6 7 8 9 10 11 12 1. Čajs 1. Čajs 1. 1.- 5. Čajs 1.- 5. Čajs 1.- 5. Hv Čajs 1.- 5. 4.-6. Čajs Př Čajs Př Čajs Př 8.- 9. Ch Dětský koutek 1 Dětský

Více

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD F-1 Fyzika hravě ( k sadě 20 materiálů) Poř. 1. F-1_01 KLID a POHYB 2. F-1_02 ROVNOVÁŽNÁ POLOHA Prezentace obsahuje látku 1 vyučovací hodiny. materiál slouží k opakování látky na téma relativnost klidu

Více

. Filozofické problémy přírodních věd Teorie a zákon. Lukáš Richterek. lukas.richterek@upol.cz. Podklad k předmětu KEF/FPPV

. Filozofické problémy přírodních věd Teorie a zákon. Lukáš Richterek. lukas.richterek@upol.cz. Podklad k předmětu KEF/FPPV Filozofické problémy přírodních věd Teorie a zákon Lukáš Richterek Katedra experimentální fyziky PF UP, 17 listopadu 1192/12, 771 46 Olomouc lukasrichterek@upolcz Podklad k předmětu KEF/FPPV 2 / 10 Logické

Více

k a p i t O l a 1 Záhada existence

k a p i t O l a 1 Záhada existence Kapitola 1 Záhada existence Všichni existujeme jen krátkou chvíli a během ní prozkoumáme jen malou část celého vesmíru. Ale lidé jsou zvídavý druh. Žasneme a hledáme odpovědi. Žijíce v tomto obrovském

Více

Fyzika pokus 11. 11.1 Zjištění těžiště tuhého tělesa 11.2 funkce těžiště na stabilitu tuhého tělesa

Fyzika pokus 11. 11.1 Zjištění těžiště tuhého tělesa 11.2 funkce těžiště na stabilitu tuhého tělesa Fyzika pokus 11 11.1 Zjištění těžiště tuhého tělesa 11.2 funkce těžiště na stabilitu tuhého tělesa Projekt TROJLÍSTEK podpora výuky přírodopisu, biologie, fyziky a chemie žáků ve věku 11 až 15 let reg.

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává

Více

VLIV DEMOGRAFICKÝCH A SOCIOEKONOMICKÝCH CHARAKTERISTIK NA VÝDAJE VE ZDRAVOTNICTVÍ

VLIV DEMOGRAFICKÝCH A SOCIOEKONOMICKÝCH CHARAKTERISTIK NA VÝDAJE VE ZDRAVOTNICTVÍ Univerzita Karlova v Praze Přírodovědecká fakulta Katedra demografie a geodemografie VLIV DEMOGRAFICKÝCH A SOCIOEKONOMICKÝCH CHARAKTERISTIK NA VÝDAJE VE ZDRAVOTNICTVÍ KRISTÝNA RYBOVÁ Úvod Úvod Vývoj výdajů

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Inovace(výuky(pomocí(technologií. Mgr.%Tereza%Bořecká% Základní%škola%Brno,%Čejkovická%10,%p.%o.

Inovace(výuky(pomocí(technologií. Mgr.%Tereza%Bořecká% Základní%škola%Brno,%Čejkovická%10,%p.%o. Inovace(výuky(pomocí(technologií Mgr.%Tereza%Bořecká% Základní%škola%Brno,%Čejkovická%10,%p.%o. Vize(inovace Řešení(problémů Kritické(myšlení Komunikace Student( 21.(století Kreativita Spolupráce Výzvy(inovace

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

JOHANN RADON a počítačová tomografie

JOHANN RADON a počítačová tomografie JOHANN RADON a počítačová tomografie Alena Šolcová 26. listopadu 2013 Dětství Narodil se 16. prosince 1887 v Děčíně. Rodiče: Anton a Anna, otec bankovní úředník. Vyrůstal s dcerami otce z prvního manželství.

Více

hry, pohádky, školička (písmena, čísla, tvary, barvy), omalovánky 1. Čj M Čajs

hry, pohádky, školička (písmena, čísla, tvary, barvy), omalovánky 1. Čj M Čajs Příloha č. 1 Seznam výukového softwaru Terasoft 1 2 3 4 5 6 7 8 9 10 11 12 13 1. Dětský koutek 1 hry, pohádky, školička (písmena, čísla, tvary, barvy), omalovánky 1. Dětský koutek 2 Svět myšáka Bonifáce

Více

Základní jednotky v astronomii

Základní jednotky v astronomii v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 21. 1. 2013 Pořadové číslo 11 1 Merkur, Venuše Předmět: Ročník: Jméno autora:

Více

MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY

MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY Schválilo Ministerstvo školství mládeže a tělovýchovy dne 15. července 2003, čj. 22 733/02-23 s platností od 1. září 2002 počínaje prvním ročníkem Učební osnova

Více

ČÁST I - Ú V O D. 1. Předmět fyziky 2. Rozdělení fyziky 3. Fyzikální pojmy a veličiny 4. Mezinárodní soustava jednotek - SI

ČÁST I - Ú V O D. 1. Předmět fyziky 2. Rozdělení fyziky 3. Fyzikální pojmy a veličiny 4. Mezinárodní soustava jednotek - SI ČÁST I - Ú V O D 1. Předmět fyziky 2. Rozdělení fyziky 3. Fyzikální pojmy a veličiny 4. Mezinárodní soustava jednotek - SI 2 1 PŘEDMĚT FYZIKY Každá věda - a fyzika bezpochyby vědou je - musí mít definován

Více

6.07. Fyzika - FYZ. Obor: 36-47-M/01 Stavebnictví Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání: 4 Platnost učební osnovy: od 1.9.

6.07. Fyzika - FYZ. Obor: 36-47-M/01 Stavebnictví Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání: 4 Platnost učební osnovy: od 1.9. 6.07. Fyzika - FYZ Obor: 36-47-M/01 Stavebnictví Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání: 4 Platnost učební osnovy: od 1.9.2008 1) Pojetí vyučovacího předmětu Vyučovací předmět fyzika

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

hry, pohádky, školička (písmena, čísla, tvary, barvy), omalovánky

hry, pohádky, školička (písmena, čísla, tvary, barvy), omalovánky Příloha č. 1 Seznam výukového softwaru Terasoft 1 2 3 4 5 6 7 8 9 10 11 12 1. Čajs 1. Čajs 1. 1.- 5. Čajs 1.- 5. Čajs 1.- 5. Hv Čajs 1.- 5. 4.-6. Čajs Př Čajs Př Čajs Př 8.- 9. Ch Dětský koutek 1 Dětský

Více

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : Fyzika Ročník: I.ročník - kvinta Fyzikální veličiny a jejich měření Fyzikální veličiny a jejich měření Soustava fyzikálních veličin a jednotek

Více

Ing. Stanislav Jakoubek

Ing. Stanislav Jakoubek Ing. Stanislav Jakoubek Číslo DUMu III/-1-3-17 III/-1-3-18 III/-1-3-19 III/-1-3-0 Název DUMu Klasický a relativistický princip relativity Relativnost současnosti Základy relativistické kinematiky Základy

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce)

Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce) Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 15. září

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 6. 2. 2013 Pořadové číslo 12 1 Země, Mars Předmět: Ročník: Jméno autora: Fyzika

Více

Vybrané partie z obrácených úloh. obrácených úloh (MG452P73)

Vybrané partie z obrácených úloh. obrácených úloh (MG452P73) Vybrané partie z obrácených úloh obrácených úloh (MG452P73) Obsah přednášky Klasifikace obrácených úloh a základní pojmy Lineární inverzní problém, prostor parametrů a dat Gaussovy transformace, normální

Více

MATURITNÍ OKRUHY Z FYZIKY

MATURITNÍ OKRUHY Z FYZIKY MATURITNÍ OKRUHY Z FYZIKY 1.a) Kinematika hmotného bodu Hmotný bod, poloha hmotného bodu, vztažná soustava. Trajektorie a dráha, hm. bodu, průměrná a okamžitá rychlost, okamžité zrychlení. Klasifikace

Více

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy)

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy) Euklidovský prostor Euklidovy Základy (pohled do historie) dnešní definice kartézský souřadnicový systém vlastnosti rovin v E n speciální vlastnosti v E 3 (vektorový součin) a) eprostor, 16, b) P. Olšák,

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Staroměstské náměstí

Staroměstské náměstí Staroměstské náměstí Obsah: 1) Staroměstská radnice 2) Orloj 3) Dům U Kamenného zvonu 4) Dům U Bílého jednorožce 5) Názory na postavení Země ve vesmíru 6) Týnský palác 7) Otázky 8) Obrázky Staroměstská

Více

Filozofie křesťanského středověku. Dr. Hana Melounová

Filozofie křesťanského středověku. Dr. Hana Melounová Filozofie křesťanského středověku Dr. Hana Melounová Středověk / 5. 15. st. n. l. / Křesťanství se utvářelo pod vlivem zjednodušené antické filozofie a židovského mesionaismu. Základní myšlenky už konec

Více

Úlohy pro rozvoj přírodovědné gramotnosti

Úlohy pro rozvoj přírodovědné gramotnosti Úlohy pro rozvoj přírodovědné gramotnosti Jitka Houfková, Dana Mandíková KDF MFF UK O čem to bude: Mezinárodní výzkum PISA S čím majíčeští žáci problémy Metodické publikace s novými úlohami Ukázky úloh

Více

VY_32_INOVACE_FY.20 VESMÍR II.

VY_32_INOVACE_FY.20 VESMÍR II. VY_32_INOVACE_FY.20 VESMÍR II. Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Galaxie Mléčná dráha je galaxie, v níž se nachází

Více

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 1. Kinematika pohybu hmotného bodu pojem hmotný bod, vztažná soustava, určení polohy, polohový vektor trajektorie, dráha, rychlost (okamžitá,

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh Výstupy žáka ZŠ Chrudim, U Stadionu Je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout přibližný výsledek Určí druhou mocninu a odmocninu pomocí tabulek a kalkulačky Umí řešit úlohy z praxe

Více

Trochu astronomie. v hodinách fyziky. Jan Dirlbeck Gymnázium Cheb

Trochu astronomie. v hodinách fyziky. Jan Dirlbeck Gymnázium Cheb Trochu astronomie v hodinách fyziky Jan Dirlbeck Gymnázium Cheb Podívejte se dnes večer na oblohu, uvidíte Mars v přiblížení k Zemi. Bude stejně velký jako Měsíc v úplňku. Konec světa. Planety se srovnají

Více

Sférická trigonometrie v matematické geografii a astronomii

Sférická trigonometrie v matematické geografii a astronomii Sférická trigonometrie v matematické geografii a astronomii Mgr. Hana Lakomá, Ph.D., Mgr. Veronika Douchová 00 Tento učební materiál vznikl v rámci grantu FRVŠ F1 066. 1 Základní pojmy sférické trigonometrie

Více

Vývoj gnoseologických a ontologických teorií v dějinách filozofie. Hmota, prostor, čas.

Vývoj gnoseologických a ontologických teorií v dějinách filozofie. Hmota, prostor, čas. Otázka: Filozofické teorie Předmět: Základy společenských věd Přidal(a): chestnut Vývoj gnoseologických a ontologických teorií v dějinách filozofie. Hmota, prostor, čas. Gnoseologie - termíny - jedna ze

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Vzdělávací oblast: Člověk a příroda Vyučovací předmět: Fyzika

Vzdělávací oblast: Člověk a příroda Vyučovací předmět: Fyzika Vzdělávací oblast: Člověk a příroda Vyučovací předmět: Fyzika 1/ Charakteristika vyučovacího předmětu a) obsahové vymezení Předmět fyzika je koncipován na základě OVO Fyzika v RVP ZV v plném rozsahu Vzdělávání

Více

Kategorie EF pondělí 26. 1. 2015

Kategorie EF pondělí 26. 1. 2015 Kategorie EF pondělí 26. 1. 2015 téma přednášky časová dotace přednášející Zatmění Slunce a Měsíce 1 vyučovací hodina (45 minut) Lumír Honzík Podobnost trojúhelníků 2 v. h. Ivana Štejrová Keplerovy zákony

Více

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů Optické soustav a optická zobrazení Přímé vidění - paprsek od zobrazovaného předmětu dopadne přímo do oka Optická soustava - soustava optických prostředí a jejich rozhraní, která mění chod paprsků Optické

Více

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC 8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic Ze zkušenosti s Fraunhoferovými difrakčními

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

Vesmír. Studijní text k výukové pomůcce. Helena Šimoníková D07462 9.6.2009

Vesmír. Studijní text k výukové pomůcce. Helena Šimoníková D07462 9.6.2009 2009 Vesmír Studijní text k výukové pomůcce Helena Šimoníková D07462 9.6.2009 Obsah Vznik a stáří vesmíru... 3 Rozměry vesmíru... 3 Počet galaxií, hvězd a planet v pozorovatelném vesmíru... 3 Objekty ve

Více

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT,

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, 1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, JEDNOTEK A JEJICH PŘEVODŮ FYZIKÁLNÍ VELIČINY Fyzikálními veličinami charakterizujeme a popisujeme vlastnosti fyzikálních objektů parametry stavů, ve

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Věda. Nové pohybové zákony těles na orbitě Objev byl původně publikován na webu od roku 2002 do února 2009 pod titulkem

Věda. Nové pohybové zákony těles na orbitě Objev byl původně publikován na webu od roku 2002 do února 2009 pod titulkem Nové pohybové zákony těles na orbitě Objev byl původně publikován na webu od roku 2002 do února 2009 pod titulkem Šest kvantových zákonů těles na orbitě K objeveným vzorcům zákonů nebylo věcných připomínek

Více

Exoplanety ve škole. Ota Kéhar. astronomia.zcu.cz. kof.zcu.cz

Exoplanety ve škole. Ota Kéhar. astronomia.zcu.cz. kof.zcu.cz astronomia.zcu.cz kof.zcu.cz Exoplanety ve škole Ota Kéhar kehar@kof.zcu.cz Katedra obecné fyziky Fakulta pedagogická Západočeská univerzita v Plzni Co vás čeká? úvaha o výuce astronomie na školách exoplanety

Více

Dokumenty. Profesoři jmenovaní s účinností od 20. května 2008

Dokumenty. Profesoři jmenovaní s účinností od 20. května 2008 Dokumenty Profesoři jmenovaní s účinností od 20. května 2008 1. doc. Ing. Pavol B a u e r, Dr., pro obor silnoproudá elektrotechnika a elektroenergetika, na návrh Vědecké rady Vysokého učení technického

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 20. 3. 2013 Pořadové číslo 15 1 Energie v přírodě Předmět: Ročník: Jméno autora:

Více

Obsah. Proč právě Flash? 17 Systémové požadavky 17. Jak používat tuto knihu 18 Doprovodný CD-ROM 19

Obsah. Proč právě Flash? 17 Systémové požadavky 17. Jak používat tuto knihu 18 Doprovodný CD-ROM 19 Úvod.............................15 Proč právě Flash? 17 Systémové požadavky 17 Jak používat tuto knihu 18 Doprovodný CD-ROM 19 Část první Začínáme s tvorbou her ve Flashi..............21 1 První kroky........................23

Více

Modely vyhledávání informací 4 podle technologie. 1) Booleovský model. George Boole 1815 1864. Aplikace booleovské logiky

Modely vyhledávání informací 4 podle technologie. 1) Booleovský model. George Boole 1815 1864. Aplikace booleovské logiky Modely vyhledávání informací 4 podle technologie 1) Booleovský model 1) booleovský 2) vektorový 3) strukturní 4) pravděpodobnostní a další 1 dokumenty a dotazy jsou reprezentovány množinou indexových termů

Více

2. O Z N Á M E N Í PLANETÁRNÍ SOUSTAVY VE VESMÍRU

2. O Z N Á M E N Í PLANETÁRNÍ SOUSTAVY VE VESMÍRU 2. O Z N Á M E N Í Hvězdárna Valašské Meziříčí, p. o. pořádá ve spolupráci s Astronomickým ústavem AV ČR, v. v. i., Českou astronomickou společností, Českým organizačním výborem IYA 2009 a Sekcí proměnných

Více

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů... [1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

ZLOMKY. Standardy: M-9-1-01 CELÁ A RACIONÁLNÍ ČÍSLA. Záporná celá čísla Racionální čísla Absolutní hodnota Početní operace s racionálními čísly

ZLOMKY. Standardy: M-9-1-01 CELÁ A RACIONÁLNÍ ČÍSLA. Záporná celá čísla Racionální čísla Absolutní hodnota Početní operace s racionálními čísly a algoritmů matematického aparátu Vyjádří a zapíše část celku. Znázorňuje zlomky na číselné ose, převádí zlomky na des. čísla a naopak. Zapisuje nepravé zlomky ve tvaru smíšeného čísla. ZLOMKY Pojem zlomku,

Více

PŘEDMĚT: MATEMATIKA Školní výstupy Učivo Průřezová témata Poznámky, přesahy

PŘEDMĚT: MATEMATIKA Školní výstupy Učivo Průřezová témata Poznámky, přesahy PŘEDMĚT: MATEMATIKA ROČNÍK: PRVNÍ/KVINTA Školní výstupy Učivo Průřezová témata Poznámky, přesahy Žák určuje číselný obor daného čísla (N, Z, Q, R) a rozlišuje základní vlastnosti číselných oborů pracuje

Více

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace Význam triangulace trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy příklad triangulace Definice Triangulace nad množinou bodů v rovině představuje takové planární

Více

ročník 1. 2. 3. 4. ročník 4. hodinová dotace 2 2 3 2 hodinová dotace 2

ročník 1. 2. 3. 4. ročník 4. hodinová dotace 2 2 3 2 hodinová dotace 2 FYZIKA Časové, obsahové a organizační vymezení Povinné Volitelné ročník 1. 2. 3. 4. ročník 4. hodinová dotace 2 2 3 2 hodinová dotace 2 Realizuje se obsah vzdělávacího oboru Fyzika RVP GV. Realizují se

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 5. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace Využívá při pamětném i písemném počítání komutativnost a asociativnost sčítání a násobení

Více

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 78-42-M/01 Technické lyceum STROJNICTVÍ

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 78-42-M/01 Technické lyceum STROJNICTVÍ Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 78-42-M/01 Technické lyceum STROJNICTVÍ 1. Mechanické vlastnosti materiálů 2. Technologické vlastnosti materiálů 3. Zjišťování

Více

Michal Musílek, 2009. michal.musilek@uhk.cz http://www.musilek.eu/michal/

Michal Musílek, 2009. michal.musilek@uhk.cz http://www.musilek.eu/michal/ Michal Musílek, 2009 michal.musilek@uhk.cz http://www.musilek.eu/michal/ Grafické násobení pomocí průsečíků přímek Algoritmus gelosia a Napierovy kostky Objev logaritmů, přirozený a dekadicky log Logaritmické

Více