Maturitní téma: Informace a jejich význam (informatika, uchovávání informací, číselné soustavy, šifrování)

Rozměr: px
Začít zobrazení ze stránky:

Download "Maturitní téma: Informace a jejich význam (informatika, uchovávání informací, číselné soustavy, šifrování)"

Transkript

1 Maturitní téma: Informace a jejich význam (informatika, uchovávání informací, číselné soustavy, šifrování) Informatika Informace znamená zprávu, sdělení, údaj. Informatika je vědní obor, který se zabývá strukturou, zpracováním, šířením a využitím informací. Obory informatiky jsou : počítačová simulace získávání dostatečně přesných informací o chování zkoumaných (simulovaných) předmětů v určitých podmínkách. Bez této možnosti by bylo nutné zkoumat chování přímo na předmětu, což je někdy nemožné nebo dosti náročné (časově, finančně ) umělá inteligence modeluje intelektuální činnosti člověka - rozeznávání tvarů a předmětů, zvuků, chutí a pachů a vytváření analogií mezi logickými úsudky; teorie her, matematické hypotézy a důkazy počítačová grafika v oboru informatiky je to hlavně teorie k vytváření matematických křivek tvary písmen a jiných zobrazovaných objektů softwarové inženýrství dnes nejrozšířenější odvětví informatiky - hlavně tvoření programů a všeho co k tomu patří (ovládací prostředí atd.) další obory např. teorie kódů, logiky, automatů, počítačové sítě, knihovní technika, databáze... Uchování informací Nejzákladnější jednotkou je BIT. Může nabývat hodnot 0 nebo 1. 8 bitů (b) tvoří 1 bajt (byte, B). Existují i další jednotky, nejsou však tolik jednoznačné a používané jako bit a byte: word je řada bitů, které je schopen procesor zpracovávat najednou. Závisí na hodnotě data bus procesoru, nejčastěji 32b s příchodem nových procesorů ale i 64b bajtů je 1 kilobyte (kb) informací. Předpony kilo- (K), mega- (M), giga- (G), eventuálně také tera- (T) a peta- (P) nemají stejnou hodnotu jako v ostatních vědních oborech, kde jsou to násobky tisíce, 1024 znamená 2 10 vycházející z binárního kódu, v praxi tento rozdíl nemá valný význam. Informace jsou zaznamenávány ve formě znaků, které vytváří DATA. Informace se uchovávají v kódech: kódování - převod znaků nebo různých úkonů na různé symboly (každému úkonu, znaku se přiřadí jeden symbol: úkon, znak symbol) a zároveň je to i předpis, jak k sobě přiložit jednotlivé prvky dané skupiny (zpětné dekódování: symbol úkon). Jednou z částí je i šifrování (viz morseovka každému písmenu je přiřazen symbol, hashovací funkce). Nejrozšířenější kódování znaků je pomocí ASCII (American Standard Code for Information Interchange) systému, který přiřazuje každému číslu od 0 do 255 jeden speciální znak. Takto se přechovává v počítači text. Data mohou být uložena v různých číselných soustavách. Základní soustavou pro zpracování dat je soustava binární (čísla jsou vyjádřitelná dvěma prvky: 0, 1). Dále se v menší míře používá i soustava osmičková a šestnáctková (dáno hardwarem existují 16-ti i vícebitové procesory). Každá soustava je typická pro určitý druh dat.

2 zobrazování čísel a znaků Každá soustava se zobrazuje jinak a má jinou sadu znaků. Stejné zápisy v různých soustavách mohou znamenat jiná čísla. Šifrování Použití kryptografie (šifrování) může vyřešit většinu problémů ve všech oblastech počítačové bezpečnosti. Stále však existují případy, ve kterých samotné šifrování žádnou bezpečnost nezajistí. Také je dobré si uvědomit, že existují různé druhy šifer, přičemž každá je vhodná pro jiné použití. Kryptografie je věda zabývající se šifrováním, tedy utajováním informací. Naproti tomu kryptoanalýza se zabývá luštěním šifer. Zastřešujícím pojmem pro oba dva obory je kryptologie. Potřeba utajovat určité informace je pravděpodobně stará jak lidstvo samo. Nicméně o kryptologii můžeme hovořit až v případě, kdy všichni zúčastnění používají stejný vyjadřovací prostředek (např. písmo). Proto řadíme rozvoj těchto znalostí do starověku. Na úvod je třeba vysvětlit několik základních pojmů, které budu dále používat: Šifrovací algoritmus je funkce sestavená na matematickém základě a provádí samotné šifrování a dešifrování dat. Šifrovací klíč říká šifrovacímu algoritmu jak má data (de)šifrovat, podobá se počítačovým heslům, avšak neporovnává se zadaná hodnota s očekávanou, nýbrž se přímo používá a vždy tedy dostaneme nějaký výsledek, jehož správnost závisí právě na zadaném klíči. Délka klíče ovlivňuje, kromě jiného, časovou náročnost při útoku hrubou silou - což je kryptoanalytická metoda, kdy postupně zkoušíme všechny možné hodnoty, kterých klíč může nabývat. Síla šifry. Čím silnější šifru použijeme, tím větší je třeba vynaložit úsilí na její prolomení. Je vědeckou prací kryptologů analyzovat různé algoritmy a posuzovat jejich sílu. Na druhou stranu i použití té nejsilnější šifry se jemně míjí účinkem, pokud klíč k jejímu dešifrování máme napsán na papírku přilepeným na monitor. Proto nelze šifrování samo o sobě považovat za dostatečné, ale vždy na něj hledět jako na součást celku. Kryptografické metody lze dělit podle několika hledisek, zmíním jen ty nejdůležitější. Jako první bych uvedl rozdělení na jednosměrné a obousměrné. U obousměrné šifry jsme schopni při znalosti správného klíče dešifrovat výsledek a získat tak opět originál. Zatímco u jednosměrné tento zpětný proces provést nelze (a obvykle se ani nepoužívá žádný klíč). Ačkoli se na první pohled jednosměrné šifry mohou zdát nevyužitelné, své uplatnění mají. Nejčastěji slouží k ukládání hesel, čímž se zabrání jejich odhalení i po zpřístupnění jejich uložené verze, ale zároveň zůstává možnost ověření hesla zadaného uživatelem - zadanou hodnotu stačí zakódovat a porovnat s uloženou variantou. Obdobou jednosměrných algoritmů jsou výtahy zpráv a digitální podpisy. Obousměrné šifry používáme všude tam, kde chceme mít možnost zpřístupnit původní text - ale jen vybrané skupině lidí, znajících příslušný klíč. Jiným možným způsobem rozdělení algoritmů je na šifrování s privátním klíčem (zvaném též symetrické či se symetrickým klíčem), na šifrování s veřejným klíčem (zvaném též asymetrické či s asymetrickým klíčem) a na šifrování hybridní.

3 Šifrování s privátním klíčem se vyznačuje existencí jediného klíče, který používáme jak pro zašifrování zprávy, tak i pro její dešifrování. Tyto algoritmy bývají relativně rychlé, ale jejich použití je omezeno na případy, kdy účastníci znají daný klíč předem. Naproti tomu asymetrické šifrování používá klíče dva - privátní a veřejný. Cokoli zašifrováno jedním klíčem, lze dešifrovat pouze druhým klíčem a naopak. Velkou výhodou tohoto přístupu je, že jeden z klíčů (třeba ten který jsme označili jako veřejný) můžeme dát k dipozici komukoliv (tedy zveřejnit ho). Kdokoli nám pak chce napsat tajnou zprávu, použije k jejímu zašifrování tento veřejný klíč. Ani on sám, ani žádný jiný vlastník našeho veřejného klíče ji nebude schopen dešifrovat. Toho bude schopen pouze držitel druhého páru - privátního klíče, jímž bychom v ideálním případě měli být pouze my. Chceme-li poté adresátovi poslat odpověď, nemůžeme ji zašifrovat svým privátním klíčem, neboť by ji byl schopen dešifrovat kdokoli, ale musíme použít příslušný veřejný klíč. Šifrování pomocí privátního klíče se používá v případě, kdy zpráva není tajná, ale jde nám o její autentičnost - bude nepopiratelné, že pochází od nás. K tomuto účelu se ale více hodí digitální podpisy. Hybridní šifrování je kombinací obou výše zmíněných a nachází největší uplatnění v dočasné komunikaci aplikací typu klient/server. Pomalé asymetrické algoritmy se použijí k výměně náhodně vygenerovaného klíče sezení, který slouží ke kódování další komunikace pomocí symetrických šifer. Kromě právě uvedeného způsobu kódování komunikace po výměně klíče sezení, se šifrování s privátním klíčem používá jako ochrana lokálně uložených dat před nepovolaným návštěvníkem. Pokud máme uložena nechráněná data, může je získat kdokoli s fyzickým přístupem k našemu počítači. Fyzická ochrana má svá omezení a lze ji s vynaložením příslušného úsilí překonat. Jsou-li data chráněna ještě kryptologií, bezpečnost tím významně zvýšíme. Stejný bezpečnostní problém představují zálohy, které se většinou nacházejí na malém přenosném médiu ideálním pro krádež. S použitím šifrování je ovšem spojeno riziko ztráty dat, zapomeneme-li potřebný klíč. Naproti tomu šifrování s veřejným klíčem má o něco širší použití. Ačkoli bychom ho mohli využít i pro kódování lokálních dat, je to nepraktické kvůli potřebě dvou různých klíčů a náročnosti algoritmů. Oddělenost klíčů je přínosem pro komunikaci subjektů, jež se předem na tajném klíči neměli možnost dohodnout. Výtahy zpráv (Message digest) Součástí kryptologie jsou i tzv. výtahy zpráv (message digest) označované i jako kryptografické hash kódy. Nejvýstižnějším názvem je však kryptografický kontrolní součet. Jak jsem se již zmínil, jedná se o jednosměrné algoritmy - z výsledku nejsme schopni obnovit originál. Další jejich významnou vlastností je délka výsledného kódu - je stále stejná a poměrně krátká (např. 128 bitů). Z logiky věci vyplývá, že pro minimálně jeden výtah bude existovat více původních dokumentů. Je zde patrna analogie k obyčejným kontrolním součtům (jako např. CRC). Ty však bývají výrazně kratší (často 16 bitů) a je snadné sestavit zdrojový dokument, který vyhovuje danému kontrolnímu součtu, což u kryptografických kontrolních součtů možné není. Vlastnosti dobré hashovací funkce jsou: ze vstupu proměnné délky vytváří malou hodnotu ze stejného vstupu vytváří vždy stejný výstup

4 každé výsledné hodnotě by mělo odpovídat více vstupních kombinací algoritmus by neměl být snadno odvoditelný či invertovatelný malá změna na vstupu má za následek velké změny ve výstupu Výtahy zpráv se zabývám ze dvou důvodů. Zaprvé jsou důležitou součástí digitálních podpisů. Zadruhé zajišťují kontrolu integrity, která je v otázce bezpečnosti velmi významná. Vytvoříme-li nějaký dokument (obecně jakýkoli soubor) a poté si uložíme i jeho výtah, můžeme později zkontrolovat zda aktuální verze našeho souboru nebyla změněna. Při použití dobré hashovací funkce by případný narušitel neměl být schopen zajistit, aby výtah upravené verze byl stejný jako neupravené. Pokud ale zná použitou funkci, je schopen vygenerovat výtah nový, proto je nutné, aby původní výtah originálního dokumentu nebyl uložen spolu s dokumentem. Digitální podpisy sice řeší tento problém o něco lépe, ale zato složitěji, proto se lze často setkat se samotnými výtahy. Jako příklad bych uvedl internetový server. Jeho správce musí počítat s možným průnikem a je pro něj tedy důležité mít nástroj pro snadnou kontrolu, zda nedošlo ke změně významných souborů. Pokud si výtahy důležitých souborů pořídí před připojením serveru do sítě a uloží na vyjímatelné medium (včetně programu pro jejich kontrolu), získá nejen možnost kontroly, ale i výhodu, že případný pachatel pravděpodobně nepozná jakou kontrolu provádíte a jak před ní utajit své nekalé aktivity. Digitální podpisy Ačkoli i s digitálními podpisy jsou jisté starosti, řeší mnoho výše uvedených problémů a přinášejí několik dalších zlepšení. Digitální podpis je nejčastěji výtah zprávy zašifrovaný privátním klíčem autora daného dokumentu a je distribuován spolu s ním. Máme-li příslušný veřejný klíč, jsme schopni dešifrovat zakódovaný výtah zprávy a porovnat ho s výtahem, který vytvoříme z obdrženého dokumentu. Digitální podpis nám zajišťuje tři důležité funkce: integritu autentifikaci (víme kdo zprávu podepsal) nepopiratelnost (autor nemůže v budoucnu zapřít, že zprávu podepsal) Mohli bychom samozřejmě použít privátní klíč k zakódování celé zprávy, ale byla by to náročná operace, která u rozsáhlých souborů může trvat velmi dlouho. Krom toho, abychom zajistili výše uvedené vlastnosti, museli bychom stejně spočítat výtah zprávy a ten zašifrovat spolu s dokumentem. Proto je v každém případě výhodnější zašifrovat pouze příslušný výtah. Zpráva (soubor) bude čitelná (použitelný) i v případě, že nemáme příslušné nástroje pro ověření její pravosti - znamená to sice podstoupit jisté riziko, ale můžeme se sami rozhodnout. Za předpokladu, že máme potřebné programové vybavení, je poslední nutnou součástí veřejný klíč. Na první pohled nepředstavuje jejich získání velký problém, neboť jsou ze své podstaty veřejné.

5 Příklady šifrovacích algoritmů Mezi algoritmy používající pouze privátní klíč (symetrické šifrování) patří např. DES a jeho vylepšené verze dvojitý či trojitý DES, IDEA, Skipjack, CAST5 a další. Algoritmy používají veřejný klíč (asymetrické šifrování) jsou náročné nejen na čas, ale i na vymyšlení, a neexistuje jich proto velké množství. Nejrozšířenější je bezpochyby RSA. Dalším známým je ElGamal. Pro vytváření kryptografických kontrolních součtů se používají např: MD2, MD5 (Message Digest, otisk délky 128 bitů), SHA-1 (Secure Hash Algorithm, otisk délky 160 bitů), HAVAL, SNEFRU, RIPEMD160 a jiné. Na konec pojednání o šifrovacích algoritmech bych upozornil, že již poměrně dávno byla dokázána existence nepřekonatelné symetrické šifry, která se dokonce sestává pouze z jediné matematické operace a to XOR (exclusive or). Nevýhodou tohoto algoritmu je skutečnost, že pro zajištění zmíněné nepřekonatelnosti je třeba použít náhodný klíč o stejné délce jako původní zpráva a tento klíč nesmí být použit více než jednou. Distribuce veřejných klíčů, Certifikační autority Vlastnictví cizích veřejných klíčů je rozhodující v mnoha situacích, z nichž bych vzpomenul kontrolu digitálních podpisů, šifrování zpráv, šifrování komunikace. Jak jsem se již několikrát zmínil, algoritmy pro šifrování s veřejným klíčem jsou časově náročné a používají se tedy většinou jen pro výměnu náhodného klíče sezení, který se použije v nějaké silné symetrické šifře. Problém s veřejnými klíči však stále zůstává. Dokonce vzniká další nezanedbatelný problém (který však jen zmíním), a tím je onen náhodný klíč - jde o to, aby byl doopravdy náhodný. Vzorová komunikace mezi dvěma subjekty A a B by mohla vypadat asi takto (subjekt může být jak fyzická osoba, tak počítač - server poskytující služby): A>B Ahoj, tady máš můj veřejný klíč B>A Nazdar, tady je můj A>B {zpráva šifrovaná veřejným klíčem B} B>A {zpráva šifrovaná veřejným klíčem A} Nejprve dojde k výměně klíčů a poté se vše šifruje klíčem adresáta. Je to významné zvýšení bezpečnosti oproti nešifrované komunikaci. Pokud se někde na cestě mezi A a B nachází cizí agent X, který pouze komunikaci pozoruje, vidí samá nesmyslná (šifrovaná) data a nebude schopen je dešifrovat ani v případě, že zachytil úvodní výměnu klíčů, neboť k dešifrování je potřeba privátního klíče. Náhodného pozorovatele by to jistě odradilo, ale odhodlaného agenta? Tento mechanismus má dvě hlavní slabiny. Agent X se může stát prostředníkem v komunikaci popř. se rovnou vydávat za jeden ze subjektů. Kromě přečtení důvěrných informací je schopen zprávu zašifrovat uloženým veřejným klíčem a poslat původnímu adresátovi. Proto si komunikující subjekty nebudou vědomi odposlouchávání, což je tedy horší výsledek než kdyby komunikovali otevřeně. Případně bude-li X tvrdit, že je např. B, neexistuje v tomto modelu způsob, jak to ověřit. Prozkoumáme-li oba dva problémy, zjistíme, že vše závisí na obdržení správného veřejného klíče subjektu, se kterým chceme doopravdy komunikovat. Nejjistější je jeho fyzické získání přímo od dané osoby (v případě serveru pak od jeho poskytovatele). To však postrádá ono kouzlo komunikačních technologií a hlavně to v mnoha případech není realizovatelné.

6 Pro zajištění autentičnosti byli přece vymyšleny digitální podpisy. Nemůžeme ovšem chtít, aby si vlastník sám podepsal veřejný klíč, neboť ho nemáme jak zkontrolovat. Proto ho musí podepsat někdo, jehož veřejný klíč už máme. Chceme-li ale navázat bezpečné spojení s někým neznámým, je velmi nepravděpodobné, že máme společného přítele. Za tímto účelem vznikly Certifikační autority (CA). Bude-li CA dostatečně známý subjekt, splní onu úlohu společného přítele. Možná to vypadá geniálně, ale některé problémy stále přetrvávají. Nejprve potřebujeme vůbec získat veřejný klíč dané autority. A jsme téměř tam, kde jsme byli. Zde již schopnosti veškeré počítačové techniky končí a je třeba využít jiných metod. Z jakéhokoli získaného klíče, jsme schopni spočítat jeho otisk (fingerprint), což není nic jiného než kryptografický kontrolní součet, tedy jedinečná to hodnota. A tento otisk musíme porovnat s originálem (celý klíč je příliš dlouhý na nějaké porovnávání). U známé certifikační autority se očekává, že otisky jejího klíče byly uveřejněny v nějaké knize či jinak nedigitálně uveřejněny. Další možností je podle telefonního seznamu najít číslo na vlastníka a otisk ověřit telefonicky. Pokud telefonicky (nebo podobně) ověříme veřejný klíč subjektu, se kterým chceme přímo komunikovat, další problémy nenastávají. Myslíme-li si, že CA je zodpovědná (důvěřujeme ji), pak tedy věříme, že máme veřejný klíč požadovaného subjektu. Pokud ale CA podepíše, cokoliv mu kdo podstrčí (či za úplatu) - a máme-li toto podezření, nemůžeme předloženému klíči věřit. Ještě bych doplnil, že podepsanému veřejnému klíči spolu s dalšími identifikačními údaji se říká certifikát a vydává se obvykle na dobu určitou. Certifikáty tedy hrají v bezpečné komunikaci důležitou roli, nelze však zapomínat, že jsou založeny na důvěře, kterou máme k dané autoritě, jež je vystavila. S přihlédnutím ke zmíněným vylepšením lze původní příklad vzorové komunikace vylepšit. Možností je několik, uvedu část úvodní autentifikace, která se požívá při navazování komunikace se serverem. A>B Ahoj, rád bych si popovídal s B B>A Já jsem B, tady je můj certifikát A>B Certifikát je v pořádku, ale dokaž že je tvůj B>A Hele A, já jsem doopravdy B. (Podpis). A>B Tak jo, tady máš náš tajný klíč sezení. (Zašifrováno Veřejným Klíčem B). B>A Zašifrováno Klíčem Sezení(zpráva+její výtah) Veškerá další komunikace může probíhat soukromě, šifrovaná symetrickým algoritmem za použití vyměněného klíče. Kóduje se nejen zpráva samotná, ale i její kontrolní součet, aby nemohlo dojít k podvržení náhodných dat (přestože klíč sezení nikdo nezná, stále nám může podvrhnout náhodná data, která po dekódování naším klíčem dají jiná náhodná data, u kterých však nebude souhlasit kontrolní součet a zjistíme tedy, že jsme obdrželi porušenou zprávu)

7 Příklady certifikačních autorit Certifikační autoritou se může stát kdokoli, jde jen o to mít důvěru ostatních. Spousta větších společností, které mají co do činění s počítači, vystupuje taktéž jako CA. Nejvíce příkladů najdeme pochopitelně v USA. Nejznámější je patrně VeriSign, Inc.. Z dalších jen namátkově uvedu GTE CyberTrust, Thawte a AT&T. Budeme-li chtít využít služeb českých autorit, nemáme mnoho na výběr. V současnosti existuje pouze jediná CA, která má státní licenci pro udělování kvalifikovaných certifikátů (kvalifikovaný certifikát je elektronická obdoba občanského průkazu, sloužící ke komunikaci se státní správou, bankami apod.). Je jí 1.CA ( jež je provozována firmou PVT.

DSY-6. Přenosový kanál kódy pro zabezpečení dat Základy šifrování, autentizace Digitální podpis Základy měření kvality přenosu signálu

DSY-6. Přenosový kanál kódy pro zabezpečení dat Základy šifrování, autentizace Digitální podpis Základy měření kvality přenosu signálu DSY-6 Přenosový kanál kódy pro zabezpečení dat Základy šifrování, autentizace Digitální podpis Základy měření kvality přenosu signálu Kódové zabezpečení přenosu dat Popis přiřazení kódových slov jednotlivým

Více

Kryptografie, elektronický podpis. Ing. Miloslav Hub, Ph.D. 27. listopadu 2007

Kryptografie, elektronický podpis. Ing. Miloslav Hub, Ph.D. 27. listopadu 2007 Kryptografie, elektronický podpis Ing. Miloslav Hub, Ph.D. 27. listopadu 2007 Kryptologie Kryptologie věda o šifrování, dělí se: Kryptografie nauka o metodách utajování smyslu zpráv převodem do podoby,

Více

Identifikátor materiálu: ICT-2-04

Identifikátor materiálu: ICT-2-04 Identifikátor materiálu: ICT-2-04 Předmět Téma sady Informační a komunikační technologie Téma materiálu Zabezpečení informací Autor Ing. Bohuslav Nepovím Anotace Student si procvičí / osvojí kryptografii.

Více

Základy šifrování a kódování

Základy šifrování a kódování Materiál byl vytvořen v rámci projektu Nové výzvy, nové příležitosti, nová škola Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Základy šifrování a kódování

Více

Autentizace uživatelů

Autentizace uživatelů Autentizace uživatelů základní prvek ochrany sítí a systémů kromě povolování přístupu lze uživatele členit do skupin, nastavovat různá oprávnění apod. nejčastěji dvojicí jméno a heslo další varianty: jednorázová

Více

Základy kryptografie. Beret CryptoParty 11.02.2013. 11.02.2013 Základy kryptografie 1/17

Základy kryptografie. Beret CryptoParty 11.02.2013. 11.02.2013 Základy kryptografie 1/17 Základy kryptografie Beret CryptoParty 11.02.2013 11.02.2013 Základy kryptografie 1/17 Obsah prezentace 1. Co je to kryptografie 2. Symetrická kryptografie 3. Asymetrická kryptografie Asymetrické šifrování

Více

Kryptografie - Síla šifer

Kryptografie - Síla šifer Kryptografie - Síla šifer Rozdělení šifrovacích systémů Krátká charakteristika Historie a současnost kryptografie Metody, odolnost Praktické příklady Slabá místa systémů Lidský faktor Rozdělení šifer Obousměrné

Více

Elektronický podpis. Základní princip. Digitální podpis. Podpis vs. šifrování. Hashování. Jednosměrné funkce. Odesílatel. Příjemce

Elektronický podpis. Základní princip. Digitální podpis. Podpis vs. šifrování. Hashování. Jednosměrné funkce. Odesílatel. Příjemce Základní princip Elektronický podpis Odesílatel podepíše otevřený text vznikne digitálně podepsaný text Příjemce ověří zda podpis patří odesílateli uvěří v pravost podpisu ověří zda podpis a text k sobě

Více

MFF UK Praha, 22. duben 2008

MFF UK Praha, 22. duben 2008 MFF UK Praha, 22. duben 2008 Elektronický podpis / CA / PKI část 1. http://crypto-world.info/mff/mff_01.pdf P.Vondruška Slide2 Přednáška pro ty, kteří chtějí vědět PROČ kliknout ANO/NE a co zatím všechno

Více

OpenSSL a certifikáty

OpenSSL a certifikáty OpenSSL a certifikáty Petr Krčmář 1. června 2013 Uvedené dílo podléhá licenci Creative Commons Uved te autora 3.0 Česko. Petr Krčmář (Root.cz) OpenSSL a certifikáty 1. června 2013 1 / 20 OpenSSL: o čem

Více

Informatika / bezpečnost

Informatika / bezpečnost Informatika / bezpečnost Bezpečnost, šifry, elektronický podpis ZS 2015 KIT.PEF.CZU Bezpečnost IS pojmy aktiva IS hardware software data citlivá data hlavně ta chceme chránit autorizace subjekt má právo

Více

Asymetrická kryptografie a elektronický podpis. Ing. Mgr. Martin Henzl Mgr. Radim Janča ijanca@fit.vutbr.cz

Asymetrická kryptografie a elektronický podpis. Ing. Mgr. Martin Henzl Mgr. Radim Janča ijanca@fit.vutbr.cz Asymetrická kryptografie a elektronický podpis Ing. Mgr. Martin Henzl Mgr. Radim Janča ijanca@fit.vutbr.cz Obsah cvičení Asymetrická, symetrická a hybridní kryptografie Matematické problémy, na kterých

Více

KRYPTOGRAFIE VER EJNE HO KLI Č E

KRYPTOGRAFIE VER EJNE HO KLI Č E KRYPTOGRAFIE VER EJNE HO KLI Č E ÚVOD Patricie Vyzinová Jako téma jsem si vybrala asymetrickou kryptografii (kryptografie s veřejným klíčem), což je skupina kryptografických metod, ve kterých se pro šifrování

Více

Základní definice Aplikace hašování Kontrukce Známé hašovací funkce. Hašovací funkce. Jonáš Chudý. Úvod do kryptologie

Základní definice Aplikace hašování Kontrukce Známé hašovací funkce. Hašovací funkce. Jonáš Chudý. Úvod do kryptologie Úvod do kryptologie Základní definice Kryptografická hašovací funkce Kryptografickou hašovací funkcí nazveme zobrazení h, které vstupu X libovolné délky přiřadí obraz h(x) pevné délky m a navíc splňuje

Více

Asymetrická kryptografie

Asymetrická kryptografie PEF MZLU v Brně 12. listopadu 2007 Problém výměny klíčů Problém výměny klíčů mezi odesílatelem a příjemcem zprávy trápil kryptografy po několik století. Problém spočívá ve výměně tajné informace tak, aby

Více

Digitální podepisování pomocí asymetrické kryptografie

Digitální podepisování pomocí asymetrické kryptografie Digitální podepisování pomocí asymetrické kryptografie 11. dubna 2011 Trocha historie Asymetrické metody Historie Historie Vlastnosti Asymetrické šifrování 1976 Whitfield Diffie a Martin Hellman první

Více

asymetrická kryptografie

asymetrická kryptografie asymetrická kryptografie princip šifrování Zavazadlový algoritmus RSA EL GAMAL další asymetrické blokové algoritmy Skipjack a Kea, DSA, ECDSA D H, ECDH asymetrická kryptografie jeden klíč pro šifrování

Více

Tel.: (+420) 312 608 207 E-mail: szabo@fbmi.cvut.cz

Tel.: (+420) 312 608 207 E-mail: szabo@fbmi.cvut.cz Internet a zdravotnická informatika ZS 2007/2008 Zoltán Szabó Tel.: (+420) 312 608 207 E-mail: szabo@fbmi.cvut.cz č.dv.: : 504, 5.p Dnešní přednáškař Bezpečnost dat Virus, červ a trojský kůň Základní bezpečnostní

Více

Kódy a kódování dat. Binární (dvojkové) kódy. Kód Aikenův

Kódy a kódování dat. Binární (dvojkové) kódy. Kód Aikenův Kódy a kódování dat Kódování je proces, při kterém se každému znaku nebo postupnosti znaků daného souboru znaků jednoznačně přiřadí znak nebo postupnost znaků z jiného souboru znaků. Kódování je tedy transformace

Více

EU-OPVK:VY_32_INOVACE_FIL13 Vojtěch Filip, 2014

EU-OPVK:VY_32_INOVACE_FIL13 Vojtěch Filip, 2014 Číslo projektu CZ.1.07/1.5.00/34.0036 Tématický celek Inovace výuky ICT na BPA Název projektu Inovace a individualizace výuky Název materiálu Kryptografie Číslo materiálu VY_32_INOVACE_FIL13 Ročník První

Více

Hesla a bezpečnost na internetu MjUNI 2019 Dětská univerzita,

Hesla a bezpečnost na internetu MjUNI 2019 Dětská univerzita, Hesla a bezpečnost na internetu MjUNI 2019 Dětská univerzita, 13. 4. 2019 Vladimír Sedláček, vlada.sedlacek@mail.muni.cz Marek Sýs, syso@mail.muni.cz Osnova Hesla: Jaké jsou typické problémy? Jak si zvolit

Více

Asymetrické šifry. Pavla Henzlová 28.3.2011. FJFI ČVUT v Praze. Pavla Henzlová (FJFI ČVUT v Praze) Asymetrické šifry 28.3.

Asymetrické šifry. Pavla Henzlová 28.3.2011. FJFI ČVUT v Praze. Pavla Henzlová (FJFI ČVUT v Praze) Asymetrické šifry 28.3. Asymetrické šifry Pavla Henzlová FJFI ČVUT v Praze 28.3.2011 Pavla Henzlová (FJFI ČVUT v Praze) Asymetrické šifry 28.3.2011 1 / 16 Obsah 1 Asymetrická kryptografie 2 Diskrétní logaritmus 3 Baby step -

Více

PSK2-16. Šifrování a elektronický podpis I

PSK2-16. Šifrování a elektronický podpis I PSK2-16 Název školy: Autor: Anotace: Vzdělávací oblast: Předmět: Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Jak funguje asymetrická šifra a elektronický podpis Informační

Více

Protokol pro zabezpečení elektronických transakcí - SET

Protokol pro zabezpečení elektronických transakcí - SET Protokol pro zabezpečení elektronických transakcí - SET Ing. Petr Číka Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav telekomunikací, Purkyňova 118, 612 00 Brno,

Více

PA159 - Bezpečnostní aspekty

PA159 - Bezpečnostní aspekty PA159 - Bezpečnostní aspekty 19. 10. 2007 Formulace oblasti Kryptografie (v moderním slova smyslu) se snaží minimalizovat škodu, kterou může způsobit nečestný účastník Oblast bezpečnosti počítačových sítí

Více

dokumentaci Miloslav Špunda

dokumentaci Miloslav Špunda Možnosti elektronického podpisu ve zdravotnické dokumentaci Možnosti elektronického podpisu ve zdravotnické dokumentaci Miloslav Špunda Anotace Příspěvek se zabývá problematikou užití elektronického podpisu

Více

Šifrová ochrana informací věk počítačů PS5-2

Šifrová ochrana informací věk počítačů PS5-2 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací věk počítačů PS5-2 1 Osnova šifrová ochrana využívající výpočetní techniku např. Feistelova šifra; symetrické a asymetrické šifry;

Více

Certifikáty a jejich použití

Certifikáty a jejich použití Certifikáty a jejich použití Verze 1.0 Vydání certifikátu pro AIS Aby mohl AIS volat egon služby ISZR, musí mít povolen přístup k vnějšímu rozhraní ISZR. Přístup povoluje SZR na žádost OVM, který je správcem

Více

Šifrová ochrana informací věk počítačů PS5-2

Šifrová ochrana informací věk počítačů PS5-2 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 1 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací věk počítačů PS5-2 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 2 Osnova

Více

Diffieho-Hellmanův protokol ustanovení klíče

Diffieho-Hellmanův protokol ustanovení klíče Diffieho-Hellmanův protokol ustanovení klíče Andrew Kozlík KA MFF UK Diffieho-Hellmanův protokol ustanovení klíče (1976) Před zahájením protokolu se ustanoví veřejně známé parametry: Konečná grupa (G,

Více

kryptosystémy obecně další zajímavé substituční šifry klíčové hospodářství kryptografická pravidla Hillova šifra Vernamova šifra Knižní šifra

kryptosystémy obecně další zajímavé substituční šifry klíčové hospodářství kryptografická pravidla Hillova šifra Vernamova šifra Knižní šifra kryptosystémy obecně klíčové hospodářství klíč K, prostor klíčů T K kryptografická pravidla další zajímavé substituční šifry Hillova šifra Vernamova šifra Knižní šifra klíč K různě dlouhá posloupnost znaků

Více

ŠIFROVÁNÍ, EL. PODPIS. Kryptografie Elektronický podpis Datové schránky

ŠIFROVÁNÍ, EL. PODPIS. Kryptografie Elektronický podpis Datové schránky ŠIFROVÁNÍ, EL. PODPIS Kryptografie Elektronický podpis Datové schránky Kryptografie Kryptografie neboli šifrování je nauka o metodách utajování smyslu zpráv převodem do podoby, která je čitelná jen se

Více

Bezpečnostní mechanismy

Bezpečnostní mechanismy Hardwarové prostředky kontroly přístupu osob Bezpečnostní mechanismy Identifikační karty informace umožňující identifikaci uživatele PIN Personal Identification Number úroveň oprávnění informace o povolených

Více

Katedra informačních technologií PEF ČZU, Praha 6, Kamýcká ul., brechlerova@pef.czu.cz

Katedra informačních technologií PEF ČZU, Praha 6, Kamýcká ul., brechlerova@pef.czu.cz DIGITÁLNÍ PODPIS Dagmar Brechlerová Katedra informačních technologií PEF ČZU, Praha 6, Kamýcká ul., brechlerova@pef.czu.cz Abstrakt V referátu jsou vysvětleny základní pojmy týkající se digitálního podpisu.

Více

Asymetrická kryptografie a elektronický podpis. Ing. Dominik Breitenbacher Mgr. Radim Janča

Asymetrická kryptografie a elektronický podpis. Ing. Dominik Breitenbacher Mgr. Radim Janča Asymetrická kryptografie a elektronický podpis Ing. Dominik Breitenbacher ibreiten@fit.vutbr.cz Mgr. Radim Janča ijanca@fit.vutbr.cz Obsah cvičení Asymetrická, symetrická a hybridní kryptografie Kryptoanalýza

Více

Rozdělení šifer Certifikáty a jejich použití Podání žádosti o certifikát. Martin Fiala digri@dik.cvut.cz

Rozdělení šifer Certifikáty a jejich použití Podání žádosti o certifikát. Martin Fiala digri@dik.cvut.cz Certifikační autorita Rozdělení šifer Certifikáty a jejich použití Podání žádosti o certifikát Certifikační autority u nás Martin Fiala digri@dik.cvut.cz Význam šifer umožnit zakódování a pozdější dekódování

Více

Elektronický podpis význam pro komunikaci. elektronickými prostředky

Elektronický podpis význam pro komunikaci. elektronickými prostředky MASARYKOVA UNIVERZITA V BRNĚ PRÁVNICKÁ FAKULTA Elektronický podpis význam pro komunikaci elektronickými prostředky (seminární práce) Lýdia Regéciová, UČO: 108551 Brno 2005 Úvod Snad každý z nás se v životě

Více

Šifrová ochrana informací historie KS4

Šifrová ochrana informací historie KS4 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 1 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací historie KS4 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 2 Osnova

Více

Od Enigmy k PKI. principy moderní kryptografie T-SEC4 / L3. Tomáš Herout Cisco. Praha, hotel Clarion 10. 11. dubna 2013.

Od Enigmy k PKI. principy moderní kryptografie T-SEC4 / L3. Tomáš Herout Cisco. Praha, hotel Clarion 10. 11. dubna 2013. Praha, hotel Clarion 10. 11. dubna 2013 Od Enigmy k PKI principy moderní kryptografie T-SEC4 / L3 Tomáš Herout Cisco 2013 2011 Cisco and/or its affiliates. All rights reserved. Cisco Connect 1 Největší

Více

Moderní metody substitučního šifrování

Moderní metody substitučního šifrování PEF MZLU v Brně 11. listopadu 2010 Úvod V současné době se pro bezpečnou komunikaci používají elektronická média. Zprávy se před šifrováním převádí do tvaru zpracovatelného technickým vybavením, do binární

Více

Projekt: 1.5, Registrační číslo: CZ.1.07/1.5.00/ Digitální podpisy

Projekt: 1.5, Registrační číslo: CZ.1.07/1.5.00/ Digitální podpisy VY_32_INOVACE_BEZP_08 Projekt: 1.5, Registrační číslo: CZ.1.07/1.5.00/34.0304 Digitální podpisy Základní myšlenkou elektronického podpisu je obdoba klasického podpisu, jež má zaručit jednoznačnou identifikaci

Více

TEZE K DIPLOMOVÉ PRÁCI

TEZE K DIPLOMOVÉ PRÁCI ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA TEZE K DIPLOMOVÉ PRÁCI ELEKTRONICKÝ PODPIS V PRÁVNÍ ÚPRAVĚ A PRAXI Jméno autora: Bc. Tomáš Hunal Vedoucí diplomové práce: Mgr. Ivana Hájková

Více

Y36PSI Bezpečnost v počítačových sítích. Jan Kubr - 10_11_bezpecnost Jan Kubr 1/41

Y36PSI Bezpečnost v počítačových sítích. Jan Kubr - 10_11_bezpecnost Jan Kubr 1/41 Y36PSI Bezpečnost v počítačových sítích Jan Kubr - 10_11_bezpecnost Jan Kubr 1/41 Osnova základní pojmy typy šifer autentizace integrita distribuce klíčů firewally typy útoků zabezpečení aplikací Jan Kubr

Více

základní informace o kurzu základní pojmy literatura ukončení, požadavky, podmiňující předměty,

základní informace o kurzu základní pojmy literatura ukončení, požadavky, podmiňující předměty, základní informace o kurzu ukončení, požadavky, podmiňující předměty, základní pojmy kód x šifra kryptologie x steganografie kryptografie x kryptoanalyza literatura klasická x moderní kryptologie základní,

Více

Kryptografie založená na problému diskrétního logaritmu

Kryptografie založená na problému diskrétního logaritmu Kryptografie založená na problému diskrétního logaritmu Andrew Kozlík KA MFF UK Diffieho-Hellmanův protokol ustanovení klíče (1976) Před zahájením protokolu se ustanoví veřejně známé parametry: Konečná

Více

Šifrování Kafková Petra Kryptografie Věda o tvorbě šifer (z řečtiny: kryptós = skrytý, gráphein = psát) Kryptoanalýza Věda o prolamování/luštění šifer Kryptologie Věda o šifrování obecné označení pro kryptografii

Více

Správa přístupu PS3-2

Správa přístupu PS3-2 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Správa přístupu PS3-2 1 Osnova II základní metody pro zajištění oprávněného přístupu; autentizace; autorizace; správa uživatelských účtů; srovnání současných

Více

Co je Czech Point? Podací Ověřovací Informační Národní Terminál, zredukovat přílišnou byrokracii ve vztahu

Co je Czech Point? Podací Ověřovací Informační Národní Terminál, zredukovat přílišnou byrokracii ve vztahu Czech Point Co je Czech Point? Podací Ověřovací Informační Národní Terminál, tedy Czech POINT je projektem, který by měl zredukovat přílišnou byrokracii ve vztahu občan veřejná správa. Czech POINT bude

Více

INFORMATIKA (ŠIFROVÁNÍ A PODPIS) 2010/11

INFORMATIKA (ŠIFROVÁNÍ A PODPIS) 2010/11 INFORMATIKA (ŠIFROVÁNÍ A PODPIS) 2010/11 1.1 Šifrovaná a nešifrovaná komunikace Při přenosu dat (v technice i v živých organismech) se užívá: Kódování realizace nebo usnadnění přenosu informace. Morse

Více

Digitální podepisování pomocí asymetrické kryptografie

Digitální podepisování pomocí asymetrické kryptografie Digitální podepisování pomocí asymetrické kryptografie Jan Máca, FJFI ČVUT v Praze 26. března 2012 Jan Máca () Digitální podepisování 26. března 2012 1 / 22 Obsah 1 Digitální podpis 2 Metoda RSA 3 Metoda

Více

EURO ekonomický týdeník, číslo 17/2001

EURO ekonomický týdeník, číslo 17/2001 EURO ekonomický týdeník, číslo 17/2001 Elektronický podpis Nahradí nová technologie klasický vlastnoruční podpis na papíře nebo se jedná jen o prostředek k dalšímu rozvoji sítě Internet a mohutnému postupu

Více

PV157 Autentizace a řízení přístupu

PV157 Autentizace a řízení přístupu PV157 Autentizace a řízení přístupu Zdeněk Říha Vašek Matyáš Konzultační hodiny FI MU: B415 St 17:00 18:00 část semestru mimo CZ Microsoft Research Cambridge Email: zriha / matyas @fi.muni.cz Průběh kurzu

Více

Téma 2 Principy kryptografie

Téma 2 Principy kryptografie XXV/1/Téma 2 1 Téma 2 Principy kryptografie Substitučně-permutační sítě a AES V on-line světě každý den odešleme i přijmeme celou řadu šifrovaných zpráv. Obvykle se tak děje bez toho, abychom si to jakkoli

Více

Projekt 2 - Nejčastější chyby. Ing. Dominik Breitenbacher

Projekt 2 - Nejčastější chyby. Ing. Dominik Breitenbacher Projekt 2 - Nejčastější chyby Ing. Dominik Breitenbacher ibreiten@fit.vutbr.cz Projekt 2 - Nejčastější chyby Překlepy a interpunkce Estetika Kvalita obrázků Zdrojové kódy v textu Text nebyl rozdělen na

Více

Bezpečnost dat. Možnosti ochrany - realizována na několika úrovních

Bezpečnost dat. Možnosti ochrany - realizována na několika úrovních Bezpečnost dat Možnosti ochrany - realizována na několika úrovních 1. ochrana přístupu k počítači 2. ochrana přístupu k datům 3. ochrana počítačové sítě 4. ochrana pravosti a celistvosti dat (tzv. autenticity

Více

Šifrová ochrana informací historie PS4

Šifrová ochrana informací historie PS4 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací historie PS4 1 Osnova úvod, definice pojmů; substituční šifry; transpoziční šifry; první prakticky používané šifrové systémy;

Více

9. DSA, PKI a infrastruktura. doc. Ing. Róbert Lórencz, CSc.

9. DSA, PKI a infrastruktura. doc. Ing. Róbert Lórencz, CSc. Bezpečnost 9. DSA, PKI a infrastruktura doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních programů Informatika

Více

8. RSA, kryptografie s veřejným klíčem. doc. Ing. Róbert Lórencz, CSc.

8. RSA, kryptografie s veřejným klíčem. doc. Ing. Róbert Lórencz, CSc. Bezpečnost 8. RSA, kryptografie s veřejným klíčem doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních programů

Více

I.CA SecureStore Uživatelská příručka

I.CA SecureStore Uživatelská příručka I.CA SecureStore Uživatelská příručka Verze 4.1 a vyšší První certifikační autorita, a.s. Verze 4.17 1 Obsah 1. Úvod... 3 2. Přístupové údaje ke kartě... 3 2.1. Inicializace karty... 3 3. Základní obrazovka...

Více

Základní pojmy. Program: Algoritmus zapsaný v programovacím jazyce, který řeší nějaký konkrétní úkol. Jedná se o posloupnost instrukcí.

Základní pojmy. Program: Algoritmus zapsaný v programovacím jazyce, který řeší nějaký konkrétní úkol. Jedná se o posloupnost instrukcí. Základní pojmy IT, číselné soustavy, logické funkce Základní pojmy Počítač: Stroj na zpracování informací Informace: 1. data, která se strojově zpracovávají 2. vše co nám nebo něčemu podává (popř. předává)

Více

I.CA SecureStore Uživatelská příručka

I.CA SecureStore Uživatelská příručka I.CA SecureStore Uživatelská příručka Verze 4.1 a vyšší První certifikační autorita, a.s. Verze 4.17 1 Obsah 1. Úvod... 3 2. Přístupové údaje ke kartě... 3 2.1. Inicializace karty... 3 3. Základní obrazovka...

Více

Předmět úpravy. 2 Způsob dokládání splnění povinností stanovených v 6 zákona o elektronickém podpisu

Předmět úpravy. 2 Způsob dokládání splnění povinností stanovených v 6 zákona o elektronickém podpisu V Y H L Á Š K A Úřadu pro ochranu osobních údajů ze dne 3. října 2001 o upřesnění podmínek stanovených v 6 a 17 zákona o elektronickém podpisu a o upřesnění požadavků na nástroje elektronického podpisu

Více

Šifrování Autentizace Bezpečnostní slabiny. Bezpečnost. Lenka Kosková Třísková, NTI TUL. 22. března 2013

Šifrování Autentizace Bezpečnostní slabiny. Bezpečnost. Lenka Kosková Třísková, NTI TUL. 22. března 2013 Šifrování Autentizace ní slabiny 22. března 2013 Šifrování Autentizace ní slabiny Technologie Symetrické vs. asymetrické šifry (dnes kombinace) HTTPS Funguje nad HTTP Šifrování s pomocí SSL nebo TLS Šifrování

Více

Hashovací funkce. Andrew Kozlík KA MFF UK

Hashovací funkce. Andrew Kozlík KA MFF UK Hashovací funkce Andrew Kozlík KA MFF UK Hashovací funkce Hashovací funkce je zobrazení h : {0, 1} {0, 1} n. Typicky n {128, 160, 192, 224, 256, 384, 512}. Obraz h(x) nazýváme otisk, hash nebo digest prvku

Více

Garantovaná a bezpečná archivace dokumentů. Miroslav Šedivý, Telefónica CZ

Garantovaná a bezpečná archivace dokumentů. Miroslav Šedivý, Telefónica CZ Garantovaná a bezpečná archivace dokumentů Miroslav Šedivý, Telefónica CZ 2 Dokumenty vs. legislativa Co nového v oblasti legislativy? Nic Pokud nepočítáme některé výklady a vyjádření, mající především

Více

Směry rozvoje v oblasti ochrany informací PS 7

Směry rozvoje v oblasti ochrany informací PS 7 1 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Směry rozvoje v oblasti ochrany informací PS 7 2 Osnova vývoj symetrických a asymetrických metod; bezpečnostní protokoly; PKI; šifrováochranavinternetu;

Více

Elektronické dokumenty ve vztahu k povinné elektronizaci zadávacích řízení

Elektronické dokumenty ve vztahu k povinné elektronizaci zadávacích řízení Tematické setkání 12. 4. 2018, Praha Povinnost elektronické komunikace v zadávacích řízeních od 18. 10. 2018 a dopad GDPR na zadávání veřejných zakázek Elektronické dokumenty ve vztahu k povinné elektronizaci

Více

Monday, June 13, Garantovaná a bezpečná archivace dokumentů

Monday, June 13, Garantovaná a bezpečná archivace dokumentů Garantovaná a bezpečná archivace dokumentů 2 Dokumenty vs. legislativa 2 Dokumenty vs. legislativa Co nového v oblasti legislativy? Nic 2 Dokumenty vs. legislativa Co nového v oblasti legislativy? Nic

Více

Integrovaný informační systém Státní pokladny (IISSP) Dokumentace API - integrační dokumentace

Integrovaný informační systém Státní pokladny (IISSP) Dokumentace API - integrační dokumentace Česká republika Vlastník: Logica Czech Republic s.r.o. Page 1 of 10 Česká republika Obsah 1. Úvod...3 2. Východiska a postupy...4 2.1 Způsob dešifrování a ověření sady přístupových údajů...4 2.2 Způsob

Více

SSL Secure Sockets Layer

SSL Secure Sockets Layer SSL Secure Sockets Layer internetové aplikační protokoly jsou nezabezpečené SSL vkládá do architektury šifrující vrstvu aplikační (HTTP, IMAP,...) SSL transportní (TCP, UDP) síťová (IP) SSL poskytuje zabezpečenou

Více

Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence

Více

Šifrová ochrana informací historie PS4

Šifrová ochrana informací historie PS4 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 1 Bezpečnost informací BI Ing. Jindřich Kodl, CSc. Šifrová ochrana informací historie PS4 VŠFS; Aplikovaná informatika; SW systémy 2005/2006 2 Osnova

Více

Archivujeme pro budoucnost, nikoliv pro současnost. Miroslav Šedivý Telefónica ČR

Archivujeme pro budoucnost, nikoliv pro současnost. Miroslav Šedivý Telefónica ČR Archivujeme pro budoucnost, nikoliv pro současnost Miroslav Šedivý Telefónica ČR 2 Dokumenty vs. legislativa Archivací rozumíme souhrn činností spojených s řádnou péčí o dokumenty původců Ovšem jak to

Více

ČÍSELNÉ SOUSTAVY PŘEVODY

ČÍSELNÉ SOUSTAVY PŘEVODY ČÍSELNÉ SOUSTAVY V každodenním životě je soustava desítková (decimální, dekadická) o základu Z=10. Tato soustava používá číslice 0, 1, 2, 3, 4, 5, 6, 7, 8 a 9, není však vhodná pro počítače nebo číslicové

Více

ElGamal, Diffie-Hellman

ElGamal, Diffie-Hellman Asymetrické šifrování 22. dubna 2010 Prezentace do předmětu UKRY Osnova 1 Diskrétní logaritmus 2 ElGamal 3 Diffie-Hellman Osnova 1 Diskrétní logaritmus 2 ElGamal 3 Diffie-Hellman Osnova 1 Diskrétní logaritmus

Více

PSK2-5. Kanálové kódování. Chyby

PSK2-5. Kanálové kódování. Chyby PSK2-5 Název školy: Autor: Anotace: Vzdělávací oblast: Předmět: Tematická oblast: Výsledky vzdělávání: Klíčová slova: Druh učebního materiálu: Typ vzdělávání: Ověřeno: Zdroj: Vyšší odborná škola a Střední

Více

Praktické šifrování dat pomocí programu PGP

Praktické šifrování dat pomocí programu PGP Instalace prostředí Praktické šifrování dat pomocí programu PGP Jako první je nutné stáhnout program GPG a extrahovat jeho obsah do vybraného adresáře. Program získáme např. na adrese http://www.gnupg.org/.

Více

Číslo projektu CZ.1.07/1.5.00/34.0394 Škola SOŠ a SOU Hustopeče, Masarykovo nám. 1 Ing. Miriam Sedláčková Číslo

Číslo projektu CZ.1.07/1.5.00/34.0394 Škola SOŠ a SOU Hustopeče, Masarykovo nám. 1 Ing. Miriam Sedláčková Číslo Číslo projektu CZ.1.07/1.5.00/34.0394 Škola SOŠ a SOU Hustopeče, Masarykovo nám. 1 Autor Ing. Miriam Sedláčková Číslo VY_32_INOVACE_ICT.3.05 Název Teorie internetu- e-mail Téma hodiny Teorie internetu

Více

Základní jednotky používané ve výpočetní technice

Základní jednotky používané ve výpočetní technice Základní jednotky používané ve výpočetní technice Nejmenší jednotkou informace je bit [b], který může nabývat pouze dvou hodnot 1/0 (ano/ne, true/false). Tato jednotka není dostatečná pro praktické použití,

Více

České vysoké učení technické v Praze FAKULTA INFORMAČNÍCH TECHNOLOGIÍ katedra počítačových systémů. Digitální důvěra. Jiří Smítka

České vysoké učení technické v Praze FAKULTA INFORMAČNÍCH TECHNOLOGIÍ katedra počítačových systémů. Digitální důvěra. Jiří Smítka České vysoké učení technické v Praze FAKULTA INFORMAČNÍCH TECHNOLOGIÍ katedra počítačových systémů Digitální důvěra Jiří Smítka jiri.smitka@fit.cvut.cz 14.2.2011 1/17 Náplň přednášek Rychlé opakování pojmů

Více

Přednáška 10. X Window. Secure shell. Úvod do Operačních Systémů Přednáška 10

Přednáška 10. X Window. Secure shell. Úvod do Operačních Systémů Přednáška 10 Přednáška 10 X Window. Secure shell. 1 X Window systém I Systém pro správu oken. Poskytuje nástroje pro tvorbu GUI (Graphical User Interface) a grafických aplikací. Nezávislý na hardwaru. Transparentní

Více

SecureStore I.CA. Uživatelská příručka. Verze 2.16 a vyšší

SecureStore I.CA. Uživatelská příručka. Verze 2.16 a vyšší Uživatelská příručka Verze 2.16 a vyšší Obsah SecureStore I.CA 1. ÚVOD... 3 2. PŘÍSTUPOVÉ ÚDAJE KE KARTĚ... 3 2.1 Inicializace karty... 3 3. ZÁKLADNÍ OBRAZOVKA... 3 4. ZOBRAZENÍ INFORMACÍ O PÁRU KLÍČŮ...

Více

Číselné soustavy - Teorie

Číselné soustavy - Teorie 153 ( = 1 8 2 + 5 8 1 + 3 8 0 Číselné soustavy - Teorie Napsal/a: Žirafka Datum zveřejnění: : 17. 10. 2008 v 18:59 Dnešní povídání začnu několika jednoduchými rovnicemi: 11110011 = 243 10101010 = 170 9

Více

Šifrování. Tancuj tak, jako když se nikdo nedívá. Šifruj tak, jako když se dívají všichni! Martin Kotyk IT Security Consultnant

Šifrování. Tancuj tak, jako když se nikdo nedívá. Šifruj tak, jako když se dívají všichni! Martin Kotyk IT Security Consultnant Šifrování Tancuj tak, jako když se nikdo nedívá. Šifruj tak, jako když se dívají všichni! Martin Kotyk IT Security Consultnant Šifrování pevných disků Don't send the encryption key by email! Šifrování

Více

GnuPG pro normální lidi

GnuPG pro normální lidi GnuPG pro normální lidi Katarína 'Bubli' Machálková 22/03/05 Slide 1 Osnova přednášky Co je to GnuPG a k čemu slouží? Proč podepisovat a šifrovat poštu? Jak funguje elektronický podpis a šifrování? Jak

Více

Elektronické bankovníctvo základy, priame distribučné kanály. Tradičné vs. elektronické bankovníctvo BIVŠ 2007/2008

Elektronické bankovníctvo základy, priame distribučné kanály. Tradičné vs. elektronické bankovníctvo BIVŠ 2007/2008 Elektronické bankovníctvo základy, priame distribučné kanály Tradičné vs. elektronické bankovníctvo BIVŠ 2007/2008 ELBA distribučné kanály Telefónne bankovníctvo (phone banking) Internetové bankovníctvo

Více

INFORMAČNÍ BEZPEČNOST

INFORMAČNÍ BEZPEČNOST INFORMAČNÍ BEZPEČNOST INFORMAČNÍ BEZPEČNOST TECHNICKÝ POHLED 3 Shrnutí bezpečnostních mechanismů Základní atributy chráněných informací 1. Důvěrnost - ochrana před neoprávněným čtením (šifrovací mechanismy,

Více

CO JE KRYPTOGRAFIE Šifrovací algoritmy Kódovací algoritmus Prolomení algoritmu

CO JE KRYPTOGRAFIE Šifrovací algoritmy Kódovací algoritmus Prolomení algoritmu KRYPTOGRAFIE CO JE KRYPTOGRAFIE Kryptografie je matematický vědní obor, který se zabývá šifrovacími a kódovacími algoritmy. Dělí se na dvě skupiny návrh kryptografických algoritmů a kryptoanalýzu, která

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: Číslo šablony: 28 CZ.1.07/1.5.00/34.0410 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek:

Více

Secure Shell. X Window.

Secure Shell. X Window. Přednáška 10 Secure Shell. X Window. Katedra číslicových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2011 Příprava studijního programu Informatika je podporována projektem financovaným

Více

SIM karty a bezpečnost v mobilních sítích

SIM karty a bezpečnost v mobilních sítích Spojujeme software, technologie a služby SIM karty a bezpečnost v mobilních sítích Václav Lín programátor 19.5.2009 1 Osnova SIM karty Role SIM karet v telekomunikacích Hardwarové charakteristiky Bezpečnost

Více

Náhradní způsoby předávání a přebírání datových souborů

Náhradní způsoby předávání a přebírání datových souborů Příloha č. 4 Pravidel systému CERTIS Náhradní způsoby předávání a přebírání datových souborů Verze 5 účinnost od 1. listopadu 2018 OBSAH 1 Úvod... 3 2 Elektronický podpis (značka), průvodní list... 3 3

Více

Kódování a Šifrování. Iveta Nastoupilová

Kódování a Šifrování. Iveta Nastoupilová Kódování a Šifrování Iveta Nastoupilová 12.11.2007 Kódování Přeměna, transformace, šifrování signálů Převádění informace z jednoho systému do jiného systému znaků Kódování Úzce souvisí s procesem komunikace

Více

Číselné soustavy. Ve světě počítačů se využívají tři základní soustavy:

Číselné soustavy. Ve světě počítačů se využívají tři základní soustavy: Číselné soustavy Ve světě počítačů se využívají tři základní soustavy: dekadická binární hexadecimální patří mezi soustavy poziční, tj. desítková hodnota každé číslice (znaku) závisí na její pozici vzhledem

Více

DŮVĚRYHODNÁ ELEKTRONICKÁ ARCHIVACE. Jan Tejchman Electronic Archiving Consultant

DŮVĚRYHODNÁ ELEKTRONICKÁ ARCHIVACE. Jan Tejchman Electronic Archiving Consultant DŮVĚRYHODNÁ ELEKTRONICKÁ ARCHIVACE Jan Tejchman Electronic Archiving Consultant Vytváření PKI Biometrie Důvěryhodná digitalizace Příchozí dokumenty Důvěryhodný el. dokument Zpracování X Provozní systémy

Více

KAPITOLA 1 - ZÁKLADNÍ POJMY INFORMAČNÍCH A KOMUNIKAČNÍCH TECHNOLOGIÍ

KAPITOLA 1 - ZÁKLADNÍ POJMY INFORMAČNÍCH A KOMUNIKAČNÍCH TECHNOLOGIÍ KAPITOLA 1 - ZÁKLADNÍ POJMY INFORMAČNÍCH A KOMUNIKAČNÍCH TECHNOLOGIÍ KLÍČOVÉ POJMY technické vybavení počítače uchování dat vstupní a výstupní zařízení, paměti, data v počítači počítačové sítě sociální

Více

Digitální měna Bitcoin. Dalibor Hula Slezská univerzita v Opavě OPF v Karviné

Digitální měna Bitcoin. Dalibor Hula Slezská univerzita v Opavě OPF v Karviné Digitální měna Bitcoin Dalibor Hula Slezská univerzita v Opavě OPF v Karviné Výpomoc bankám Blokáda Wikileaks Peníze kryty zlatem Platby do zahraničí Peníze Odkud se berou? Co jim dává hodnotu? Kolik jich

Více

Náhradní způsoby předávání a přebírání datových souborů

Náhradní způsoby předávání a přebírání datových souborů Příloha č. 4 Pravidel systému CERTIS Náhradní způsoby předávání a přebírání datových souborů verze 4 účinná od 1. března 2017 Verze 4 účinná od 1. března 2017 Strana 1 z 5 Obsah 1. Úvod... 3 2. Elektronický

Více

Matematické základy šifrování a kódování

Matematické základy šifrování a kódování Matematické základy šifrování a kódování Permutace Pojem permutace patří mezi základní pojmy a nachází uplatnění v mnoha oblastech, např. kombinatorice, algebře apod. Definice Nechť je n-prvková množina.

Více