METEOROLOGIE Petr Skřehot Meteorologická Operativní Rada

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "METEOROLOGIE Petr Skřehot Meteorologická Operativní Rada"

Transkript

1 Úvod do studia METEOROLOGIE Petr Skřehot Meteorologická Operativní Rada

2 OBSAH 1 METEOROLOGIE HISTORIE METEOROLOGIE ROZDĚLENÍ METEOROLOGIE NA JEDNOTLIVÉ PODOBORY METEORY HYDROMETEORY FOTOMETEORY ELEKTROMETEORY METEOROLOGICKÉ PRVKY TEPLOTA VZDUCHU VLHKOST VZDUCHU ATMOSFÉRICKÝ TLAK A PROUDĚNÍ VZDUCHU ATMOSFÉRICKÉ SRÁŽKY SLUNEČNÍ SVIT OBLAČNOST DOHLEDNOST TLAKOVÉ ÚTVARY TLAKOVÁ NÍŽE TLAKOVÁ VÝŠE OBLAKA ATMOSFÉRICKÉ FRONTY TEPLÁ FRONTA STUDENÁ FRONTA OKLUZNÍ FRONTY STACIONÁRNÍ FRONTY ZVLNĚNÉ FRONTY VÝŠKOVÉ FRONTY PŘÍLOHY

3 1 METEOROLOGIE 1.1 Historie meteorologie Slovo meteorologie, coby název vědní disciplíny, vychází z řečtiny. Vzniklo spojením slova meteoros (vznášející se ve výši) a logia (nauka). V době českého národního obrození došlo k pokusům počeštit tento název a tehdejší buditelé v potřebě povznesení českého jazyka přicházeli s výrazy jako například oparozpyt, povětroznalství, povětrosloví nebo vzduchosloví. Jak ale bylo brzy pochopeno, žádný z těchto výrazů nemohl meteorologii nahradit. Výklad pojmu meteorologie lze dnes podat následovně: Meteorologie je vědní obor zabývající se všestranným studiem jevů probíhajících v atmosféře. Počátky studia atmosférických jevů, nebo lépe řečeno projevů počasí, lze hledat již ve starověkém Řecku. Přírodní vědy se tehdy těšily značnému zájmu a ne jinak tomu bylo také s meteorologií. Ačkoli tehdy meteorologie ještě nebyla chápána jako samostatný vědní obor, už od 6. století př. n. l. se sledování počasí těšilo velké oblibě a bylo prováděno s jistou pravidelností. O praktické využití poznatků pramenících z pečlivého a dlouhodobého pozorování počasí byl totiž velký zájem, což dosvědčuje i množství tehdejších tzv. parapegmat, čili kalendářů pro hospodáře, které byly již od 5. století př.n.l. vyvěšovány pro poučení lidu na veřejných místech. Největší sbírku povětrnostních pravidel sestavil Aristotelův žák Theofrastos a jeho dílo neslo název Kniha znamení. Tu z větší části převzal později do svého básnického díla Georgica římský básník Vergilius. Ve svém díle podává hospodářům návod, jak sledovat polní práce. Řecká a římská pravidla byla postupně doplněna o poznatky Arabů a Židů. Nutno podotknout, že v době starověku meteorologie existovala pouze jako okrajový obor tehdejší astronomie a astrologie. Vždyť právě hvězdáři k obloze vzhlíželi nejčastěji a všímali si též počasí. Díky těmto vazbám se však ještě dlouhá staletí přisuzoval nebeským tělesům vliv na počasí a na překonání tohoto dogma bylo nutné počkat až do vynálezu prvních meteorologických přístrojů, které umožnily exaktní popis a studium počasí. Postupné sledování dějů probíhajících v atmosféře, se stalo základem pro jejich vlastní výklad a pochopení. Doba středověku byla charakterizována zvláště lidovými knížkami, které obsahují v souhrnu soudobého lidského vědění i kapitoly o povětrnosti. Jednou z těchto knih byla Kniha přírody od Konráda z Megenbergu. Zvláště pak v 16. století byly velmi rozšířenými knihy tzv. selských praktik, jistou obdobou starořeckých parapegmat, převedených do srozumitelné řeči pranostik. Základem byla tzv. vánoční pranostika, která dávala návod jak předpovídat povětrnost měsíců příštího roku z počasí 12-ti dní nebo nocí okolo Božího hodu. Skutečného zlomu v meteorologii došlo teprve v 17. století, kdy byl vynalezen teploměr a tlakoměr. Předními proletáři tehdy byli velikáni zvučných jmen Galilei, Torricelli, Viviany, Santorio a holanďan Drebbel. Od té doby nebyla meteorologie již závislá jen na subjektivních pozorováních, což byl prvopočátek moderního přístupu ke studiu počasí. Začátkem 19. století (1820) přichází Heinrich W. Brandes s poznatkem o rozdělení tlaku vzduchu v Evropě. Spolu s Robertem Fitzroyem, byť nezávisle, vytvořili první synoptické povětrnostní mapy, čímž překonali jistě svou dobu a položili tak skutečné základy moderní synoptické meteorologie. Bohužel však po Fitzroyově náhlé smrti (spáchal z přepracování sebevraždu) v jeho pokrokovém bádání nikdo nepokračoval, a tak jeho poznatky upadly 3

4 na dlouho v zapomenutí. Trvalo celých 50 let, než na ně navázala norská meteorologická škola v čele s prof. Vilhelmem Bjerknesem, který je dnes chápán jako zakladatel fyzikální hydrodynamiky. Prudký rozmach fyzikálních disciplín v druhé polovině 19. století výrazně přispěl též k rozvoji meteorologie. K tomuto trendu se též přidal postupně fakt, že spolehlivá předpověď počasí se stávala čím dál žádanější, zvláště s ohledem na roztáčející se kola průmyslové revoluce. Důležitost kvalitní předpovědi počasí se ukázala zvláště po fatálním ztroskotání slavného anglo-francouzského loďstva, které bylo zničeno za Krymské války dne silnou bouří v Černém moři. Tato událost se stala velkou politickou odpovědností francouzského ministra války, který nařídil tehdejšímu řediteli pařížské hvězdárny Urbainu Le Verrierovi prošetřit celou nešťastnou událost. Pro pochopení celé situace přispěly zpětně vypracované synoptické mapy. Ministr války pochopil důležitost sledování počasí a učinil dne skvělý politický tah v podobě podání návrhu francouzskému císaři na zřízení meteorologické služby, která by měla podobným událostem předcházet tvorbou předpovědí. Postupně byla zřízena síť stálých meteorologických stanic a od roku 1856 se mohla Francie pochlubit první pravidelnou meteorologickou službou v Evropě. Na ni navázaly v letech 1857 USA a roku 1860 také Anglie. Postupně stále více bylo využíváno nejnovějších výdobytků techniky, ke kterým patřil zvláště telegraf, který se velmi osvědčil pro rychlý přenos dat na velké vzdálenosti, což předpovědi zase o notný kus zlepšilo. Pro studium fyzikálních dějů probíhajících v atmosféře začaly ke konci 19. století vznikat vysokohorské observatoře a také se započalo s vypouštěním výzkumných balónů. Od poloviny 20. století hrají největší prim družice umístěné na orbitu kolem Země. Využívá se družic geostacionárních, které obíhají ve výšce cca km a setrvávají neustále nad stejným místem planety, a dále polárních, které jsou ve výšce 800 až 1500 km a obíhají Zemi podél poledníků přes póly, takže Země se pod nimi jakoby podtáčí (viz obr. 1). Spojením výsledků z obou těchto typů dostáváme velmi ucelený pohled na vývoj povětrnosti na celé Zemi. Mimoto družice umožňují sledovat povrch Země hned v několika kanálech najednou infračerveném oboru, viditelném oboru a na vlnové délce vody (pro zjišťování vertikálního profilu rozložení vlhkosti v atmosféře). Obr.1: Globální systém operačních meteorologických družic 4

5 1.2 Rozdělení meteorologie na jednotlivé podobory Moderní meteorologie je komplexní vědou zahrnující několik podoborů, které jsou zaměřeny úzce na bližší studium či využití poznatků o stavu a vývoji počasí. Níže jsou uvedeny jednotlivé podobory a okruh jejich studia. Dynamická meteorologie studuje dynamiku a termodynamiku atmosféry. Jejím cílem je objektivní, fyzikálně podložená předpověď počasí Synoptická meteorologie analyzuje a studuje ty atmosférické jevy, které jsou důležité pro předpověď počasí Fyzikální meteorologie studuje fyziku oblaků a srážek, záření, optické, elektrické a akustické jevy v atmosféře Klimatologie popisuje průměrné atmosférické podmínky na základě dlouhodobého pozorování počasí na daném místě Hydrometeorologie zabývá se vztahy mezi meteorologickými prvky a hydrologickým režimem (tj. oběhem vody v přírodě s ohledem na meteorologická hlediska) Biometeorologie studuje vlivy počasí nebo jednotlivých meteorologických prvků na živé organismy Aplikovaná meteorologie zaměřuje se úzce na studium vlivu počasí na daný obor lidské činnosti a vypracovává předpovědi specializované pro potřeby například zemědělství či letecké dopravy Nauka o meteorologických přístrojích zabývá se konstrukcí a funkcí meteorologických přístrojů a systémů měření 5

6 2 METEORY Meteor je v obecném smyslu název pro jev pozorovaný v atmosféře nebo na zemském povrchu s výjimkou oblaků. Meteory dělíme podle své povahy do několika skupin: 1. Hydrometeory meteory vytvořené soustavou vodních částic v kapalném nebo tuhém skupenství, mohou být padající nebo vznášejících se v atmosféře. Patří sem např. déšť, mrholení, sníh, mlha, rosa, vodní tříšť, jíní, námraza aj. 2. Elektrometeory viditelné nebo slyšitelné projevy atmosférické elektřiny. Patří sem: bouřky, blýskavice, polární záře, Eliášův oheň 3. Fotometeory světelné jevy v ovzduší vyvolané odrazem, lomem, rozptylem či interferencí slunečního, popř. měsíčního světla. Patří sem: duha, halové jevy, koróna, zrcadlení, fata morgána, irizace, glórie, soumrakové jevy. 4. Litometeory meteory vytvořené soustavou částic, které jsou pevného skupenství avšak nepocházejí z vody. Patří sem: zákal, kouř, zvířený prach nebo písek, prachová či písečná bouře. 2.1 Hydrometeory Hydrometeory jsou meteory, vzniklé kondenzací vodní páry v kapalinu, popřípadě v pevnou částici. Z tohoto hlediska lze hydrometeory dělit podle skupenství a nebo podle vzniku a to na srážky padající a usazené. A) Srážky padající: Déšť je nejčastější formou kapalných padajících srážek. Tvoří jej vodní kapky o průměru 0,5 8 mm (nejčastěji 1 až 3 mm). Déšť posuzujeme podle intenzity na slabý (srážkový úhrn do 1 mm za hodinu), mírný (1,1 5,0 mm), silný (5,1 10,0 mm), velmi silný (10,1 15,0 mm), liják (15,1 23,0 mm), příval (23,1 58,0 mm) a průtrž mračen (více než 58,0 mm). Pro pozorovatelskou praxi se využívá pro vyjádření intenzity meteorů (tedy i deště) tzv. indexů (viz příloha 3 dole). Mrholení tvoří jej hustě padající vodní kapky menší než 0,5 mm Mrznoucí déšť a mrholení výskyt za chladného počasí, kdy na podchlazený povrch padají srážky v kapalném stavu. Je příčinou vzniku ledovky. Sníh hydrometeor tuhého skupenství. Skládá se z ledových krystalků složitých útvarů, přičemž základním tvarem jsou krystalky ledu šesterečné soustavy známé šesticípé sněhové vločky. Mohou se vyskytovat při teplotách menších jak 4 C. Sníh s deštěm směs padajícího sněhu a deště při teplotách 1 až 5 C. Majoritní složkou směsi je sníh. Déšť se sněhem obdoba sněhu s deštěm. Majoritní složkou směsi je déšť. Přeháňka je druh padající srážky s krátkým trváním. Mívá náhlý začátek i konec a časté kolísání intenzity. Většinou přeháňky provázejí bouřkový oblak Cumulonimbus. 6

7 Kroupy patří mezi pevné padající srážky. Princip vzniku krup je založen na postupném obalování kondenzačních jader vodou. Při transportu této soustavy výstupnými proudy v oblaku dochází k neustálému namrzání vodního filmu a několikerým opakováním tohoto cyklu dochází k narůstání kroupy mnohdy až do rozměrů několika centimetrů. Ve vzácných případech se mohou vyskytovat dokonce i kusy ledu. Obr. 2: Narůstání krup v bouřkovém oblaku Ledová tříšť a kusy ledu jsou zvláštními a ne příliš častými meteory. Podstata jejich vzniku je v dlouhodobějším narůstáním krup v oblaku Cumulonimbus, který je svými mohutnými výstupnými proudy dokáže udržet ve vznosu, dokud jejich tíže nepřeváží vztlakovou sílu, nebo dokud existuje výstupný proud. Mohou dorůst až do několikasetgramových či kilogramových velikostí. B) Srážky usazené: Ledovka tenká vrstva ledu vzniklá z mrznoucího deště. Vyskytuje se za situací, kdy na území, které bylo určitou dobu pod vlivem severního nebo severovýchodního mrazivého proudění, se nasouvá teplá fronta a srážky z ní vypadávající dopadají na stále ještě podchlazený povrch. Výskyt ledovky často působí nehody a dopravní kalamity. Rosa usazenina vodních kapek na zemském povrchu, hlavně na listech a na horizontálních površích předmětů. Vzniká kondenzací vodní páry z okolního vzduchu. Jíní krystalická usazenina ledových částic, nejčastěji ve tvaru jehliček, peříček nebo vějířků, vznikající analogicky jako rosa, avšak při ochlazení vzduchu pod 0 o C. Voda obsažená ve vzduchu se bezprostředně vylučuje v tuhém skupenství. Usazuje se pouze na zemském povrchu. Jinovatka tvoří se při velmi nízkých teplotách za relativní vlhkosti blízké 100%. Tvoří se převážně z mlhy a usazuje se i na vertikálně orientovaných předmětech (sloupy, ploty apod.), což jinovatku odlišuje od jíní. C) Ostatní hydrometeory: Mlha atmosférický aerosol sestávající se z velmi malých vodních kapiček rozptýlených ve vzduchu. Výrazně snižuje dohlednost. 7

8 2.2 Fotometeory Fotometeory jsou obecně řečeno optické úkazy v atmosféře. Rozlišujeme: A) Duhy: Jedním z nejnápadnějších a zároveň vcelku běžných optických jevů v atmosféře jsou právě duhy. Vznikají při průchodu slunečních paprsků vrstvami vzduchu obsahujícími v dostatečném počtu větší vodní kapky, obvykle kapky deště. Tento jev se vytváří v důsledku vnitřního odrazu světelných paprsků na povrchu kapek. Na obr. 3 je znázorněn průchod světelného paprsku kapkou v případě, že dochází k jednomu vnitřnímu odrazu. Obrázek názorně ukazuje také rozklad slunečního světla na spektrum barev duhy. Princip tohoto rozkladu je založen na tom, že vlnění o různých vlnových délkách se lomí na fázovém rozhraní pod různými úhly. Jedním vnitřním odrazem přímých slunečních paprsků na vodních kapkách vzniká duha hlavní neboli primární, která má vnější (horní) okraj červený a vnitřní (dolní) fialový. Úhlová šířka pásu barev bývá okolo 2. Úhlová vzdálenost primární duhy od protislunečního bodu činí 42. S klesající výškou Slunce nad obzorem se oblouk duhy stále více vysouvá vzhůru. Naopak při poloze Slunce více než 42 nad obzorem nelze duhu ze země pozorovat. Dvojnásobným vnitřním odrazem Obr. 3: Lom světla s jedním odrazem uvnitř dešťové kapky vznik hlavní duhy slunečních paprsků na vodních kapkách se vytváří duha vedlejší neboli sekundární. Sled barev je v tomto případě opačný než je tomu u duhy hlavní. Vedlejší duha se nalézá asi 8 nad duhou hlavní. Jeden vnitřní odraz světla na kapkách navíc se u sekundární duhy projeví tím, že úhlová šířka barevného pásu je větší než u duhy primární a činí asi 4. B) Halové jevy: Halové jevy jsou nejznámější skupinou atmosférických optických jevů podoby bílých, popř. barevných prstenců, kol, oblouků, sloupů nebo jasných skvrn (viz obr.4). Vznikají lomem nebo odrazem slunečního nebo měsíčního světla na oblacích z ledových krystalů (Cirrus, Cirrostratus) nebo na volných ledových krystalech rozptýlených v ovzduší, například při sněhových přeháňkách a když je Slunce nízko nad obzorem a může tudíž touto soustavou prosvítat. Mezi nejčastější a nejznámější halové jevy patří: 1. Malé halo bělavá nebo duhově zabarvená úplná nebo též neúplná kružnice v podobě kruhového oblouku kolem Slunce nebo Měsíce v úhlové vzdálenosti 22 o. 2. Velké halo slabý světelný kruh kolem Slunce popř. Měsíce ve vzdálenosti 46 o od středu disku. Vyskytuje se přibližně 3x méně často než malé halo. 8

9 3. Horizontální kruh kružnice vedená po nebeské klenbě rovnoběžně s ideálním geometrickým obzorem ve stejné výšce, jako se nachází Slunce. Nemusí být úplný. Vzniká odrazem slunečních paprsků na vertikálně orientovaných stěnách ledových krystalků (viz obr. 5). 4. Halový sloup prochází vertikálně Sluncem. Vyskytuje se nejčastěji při západu Slunce. Vzniká odrazem slunečních paprsků na horizontálně orientovaných plochách ledových krystalků, viz obr. 6: a) vznik dolní části sloupu, b) vznik horní části sloupu. 5. Vedlejší slunce nachází se ve vzdálenosti 22 o (vedlejší slunce malého hala) nebo 46 o (vedlejší slunce velkého hala) od Slunce a to ve stejné výšce nad obzorem jako sluneční disk. Může mít zabarvení bělavé, žlutavé či duhové. 6. Lowitzovy oblouky 7. Paranthelia vedlejší slunce v úhlové vzdálenosti 120 o od slunečního kotouče. 8. Dotykové oblouky malého hala 9. Parryho oblouk 10. Dotykový oblouk velkého hala 11. Protislunce světlá skvrna v úhlové vzdálenosti 180 od slunečního disku a pouze za situací, kdy je Slunce velmi nízko nad obzorem. 12. Horní cirkumezenitální oblouk Obr. 4: Schéma hlavních halových jevů Obr. 5 Obr. 6 C) Koróny: Vznikají na oblačnosti středního patra, zejména druhu Altocumulus. Mají podobu soustředných duhově zbarvených kruhů kolem Slunce či Měsíce. Na rozdíl od halových jevů mají průměr menší (pouze do 10 o ). D) Glórie, Irizace oblaků, Soumrakové jevy: Glórie je jev podobný koróně, avšak podstatně slabší intenzity. Glórie představuje opačný sled kroužků barev kolem stínu vrženého postavou nebo předmětem na níže ležící oblačnou vrstvu či mlhu. Uvedený jev se nejčastěji vyskytuje při východu Slunce na horách za mlhavého počasí. Glórie okolo stínu vrženého postavou bývá nazývána Brockenské strašidlo. Podobný jev lze sledovat z paluby letadel letících nízko nad mraky. 9

10 Kolem pohupujícího se stínu letadla se objevuje jasná záře duhových kol. Soumrakové jevy jsou jevy provázející východ či západ Slunce, kdy je vlivem znečištění atmosféry prachem, či vodním aerosolem sluneční světlo zabarveno do červena. Přítomnost oblačnosti pak celou scenérii ještě zvýrazňuje, neboť základny oblaků díky tomu nabývají oranžového až rudého nádechu. Nastalý jev pak nazýváme červánky. Zcela ojedinělými jsou krátkodobá zabarvení oblohy či části slunečního disku. V tomto případě hovoříme o tzv. fialové záři nebo zeleném paprsku. 2.3 Elektrometeory Elektrometeory jsou jevy spojené s výměnou a přenosem atmosférické elektřiny. Rozlišujeme tyto skupiny elektrometeorů: A) Blesky: Blesky jsou výboje atmosférické elektřiny vznikající při bouřkách. Rozlišujeme níže uvedené druhy blesků: 1. čárový blesk lomená nebo klikatá jasně svítící čára 2. rozvětvený blesk připomíná kořenový systém stromu 3. kulový blesk zvláštní forma blesku. Nejpravděpodobněji se jedná o shluk horké plasmy o velikosti 3 až 20 cm s jasností jako slabá elektrická žárovka. Nabývá barvy od červené až k bílé. Může jiskřit a točit se a znenadání se rozplynout nebo explodovat. 4. Plošný blesk (blýskavice) bezhlučný bělavý záblesk části bouřkového oblaku 5. Růžencový blesk má podobu šňůry s navléknutými korálky má velmi krátké trvání a převládají domněnky, že jednotlivé korálky jsou kulovými blesky. Blesky doprovází hřmění, což je akustický projev bleskového výboje. B) Ostatní elektrometeory: Oheň svatého Eliáše akustický a viditelný projev sršení hrotového výboje při silných bouřích. Dochází k němu na vyvýšených místech, hrotech, vrcholcích stromů apod. Polární záře jev vznikající ve vysokých vrstvách atmosféry vlivem interakce nabitých kosmických částic s magnetickým polem Země. Podle vzhledu rozlišujeme tzv. drapérie, koróny a paprsky. 10

11 3 METEOROLOGICKÉ PRVKY Pod pojmem meteorologické prvky rozumíme ty veličiny, které nám charakterizují fyzikální stav atmosféry v daném místě a čase. Základními meteorologickými prvky jsou teplota a vlhkost vzduchu, atmosférický tlak, směr a rychlost větru, oblačnost, atmosférické srážky a dohlednost. K nim mohou přistupovat ještě další podle toho, k jakým účelům chceme fyzikální stav atmosféry charakterizovat. 3.1 Teplota vzduchu Vzduch, jako ostatně každá hmota či těleso, se vyznačuje jistou teplotou. Teplota je termodynamickou veličinou, charakterizující kinetický stav základních stavebních částic molekul a atomů. Teplota vzduchu se mění v závislosti na místě zemského povrchu i na čase. Energii, kterou se atmosférický vzduch přímo ohřívá, dostává především od Slunce. Ovšem přímo slunečním zářením se ohřívá vzduch jen málo. Prostředníkem je mu zemský povrch či pevné nebo kapalné částice, které se ve vzduchu volně vznášejí. Část sluneční energie pohlcené zemským povrchem se zpět vyzařuje, což ohřívá částice vzduchu v těsné blízkosti povrchu. Odtud se teplo dostává pomocí molekulární výměny do atmosféry (do výšek řádu milimetrů od povrchu). Nejvýznamnější prvkem uplatňujícím se při přenášení tepla od povrchu do vyšších hladin je turbulentní výměna. Ta je založena na proudění vzduchu neuspořádanými vertikálními pohyby rychlostmi v řádu metrů za sekundu. Tomuto jevu říkáme též termická konvekce. Konvekce je teplotně podmíněný vertikální pohyb jednotlivých malých množství vzduchu (buněk), který probíhá převážně v denních hodinách a teplejší polovině roku, kdy se zemský povrch ohřívá na relativně vysokou teplotu. 3.2 Vlhkost vzduchu Ve vzduchu je prakticky vždy přítomna vodní pára, která má velmi velký význam pro vznik a průběh meteorologických dějů. Nejdůležitější veličiny, které charakterizují vlhkost vzduchu jsou uvedeny níže. Absolutní vlhkost a [kg.m -3 ] je hmotnost vodních par v kilogramech obsažená v jednom krychlovém metru vzduchu. V tomto smyslu můžeme též hovořit o hustotě vodní páry, protože rozměr absolutní vlhkosti je kg.m -3. Napětí (tlak) vodních par e [hpa] je parciální tlak vodní páry. Maximální absolutní vlhkost A je maximální množství vodní páry, které může vzduch obsahovat za dané teploty. Množství vyšší jak maximální pak kondenzuje a vzniká aerosol (mlha či oblak). Pozn.: v oblacích je relativní vlhkost rovna 100% a přebytečná voda kondenzuje ve formě malých kapiček viditelného aerosolu. Maximální tlak (napětí nasycení) E je tlak, při kterém je za dané teploty množství páry ve vzduchu nejvyšší. Relativní vlhkost r [%] je poměr e/e 11

12 Rosný bod [ C] je teplota, při níž vzduch dosahuje za daného tlaku stavu nasycení a vodní pára v něm obsažená se začíná srážet. Jeho hodnota tedy závisí na relativní vlhkosti vzduchu a atmosférickém tlaku. 3.3 Atmosférický tlak a proudění vzduchu Atmosférický vzduch vlivem síly tíže působí na zemský povrch tlakem (hydrostatický tlak), jehož množství závisí na množství vzduchu ležící nad danou plochou. Z tohoto důvodu je tlak nejvyšší u povrchu Země a s výškou klesá. Jako jednotka atmosférického tlaku se používá hektopascal [hpa], někdy se můžete setkat s jednotkou milibar [mbar], přičemž jejich vzájemný vztah je 1hPa ~ 1 mbar. Na aneroidech bývá dodnes udáván v jednotkách Torr, čemuž odpovídá přepočet 1 torr = 1 mm rtuťového sloupce a 1 torr ~ 4/3 hpa. Za normálních podmínek je tlak 1013,25 hpa (pro 45 o zeměpisné šířky a teplotu 273 K). Tento tlak je považován za standardní /~QNH/. Tlak vzduchu velmi silně závisí na nadmořské výšce. Při výstupu o každých 5.5 km výšky klesne tlak na polovinu, V přízemních hladinách lze přibližně počítat s poklesem tlaku vzduchu o 1 hpa na každých 8 metrů výšky. Tlak vzduchu je značně proměnlivá veličina, jehož kolísání probíhá bez jakékoliv pravidelnosti. Důvody nepravidelného kolísání tlaku vzduchu může způsobovat nepravidelné ohřívání zemského povrchu, výměna teplejších a tedy i lehčích vzduchových hmot za studenější a těžší a opačně nebo možné nahromadění vzduchu v jedněch oblastech a odčerpání z jiných. Kromě nepravidelných změn tlaku vzduchu existuje i určité pravidelné kolísání, a to denní a roční. Denní kolísání tlaku je významné pouze v tropických krajích, roční chod tlaku vzduchu záleží na zeměpisné poloze místa. Tak například na kontinentech je roční maximum tlaku vzduchu v zimě, minimum v létě. Ve vysokých horách je tomu obráceně. Na oceánech je roční chod tlaku vzduchu dvojitý; vyskytují se zde dvě maxima a to v létě a v zimě a dvě minima na podzim a na jaře. Vzhledem k nerovnoměrnému ohřívání zemského povrchu svírají plochy stejného tlaku vzduchu se zemským povrchem vždy nějaký úhel. Průsečnice těchto ploch se zemským povrchem se nazývají izobary. Je zřejmé, že se vzduchové částice budou pohybovat z oblasti vyššího tlaku směrem do oblastí tlaku nižšího. Tomuto proudění říkáme vítr. Kdyby se země neotáčela kolem osy, proudily by částice kolmo na izobary, tedy ve směru největšího spádu tlaku (horizontálního barického gradientu). Protože se však Země otáčí kolem osy, působí na každou částici, která se pohybuje vzhledem k zemskému povrchu, další síla síla Coriolisova. Tato síla je vždy kolmá ke směru pohybu vzduchové částice a působí na severní polokouli vpravo a na jižní vlevo od směru pohybu. Je tím větší, čím větší je rychlost částice. Vznikne-li v horizontální rovině nějaký rozdíl atmosférického tlaku, začne se vzduchová částice v prvním okamžiku pohybovat ve směru horizontálního gradientu tlaku, tedy kolmo na izobary. Zároveň ale začne působit Coriolisova síla, která je kolmá na směr pohybu, a poněkud změní směr postupu částice. Se vzrůstající rychlostí částice vzrůstá i Coriolisova síla a za nějaký čas dojde k ustálenému proudění, kdy síla barického gradientu je v rovnováze se silou Coriolisovou. Nepůsobí-li žádné další síly, proudí částice ve směru přímkových izobar tak, že nízký tlak ponechává po levé straně. Takovému větru říkáme geostrofický. 12

13 Ve skutečnosti jsou izobary vždy zakřiveny. Aby se vzduchová částice pohybovala podél zakřivených izobar, musí být v každém místě a okamžiku v rovnováze síla barického gradientu, síla Coriolisova a síla odstředivá. V případě cyklonálně zakřivených izobar působí odstředivá síla proti směru horizontálního barického gradientu, v případě anticyklonálně zakřivených izobar ve směru této síly. Nastane-li rovnováha těchto sil mluvíme o gradientovém větru. Z výše uvedeného je zřejmé, že v reálné atmosféře existuje ještě další, dosud nezmíněná síla, která výše zmíněný rovnovážný stav narušuje a způsobuje tak neustálou změnu počasí. Je to síla tření a působí proti směru proudění. V případě přímkových izobar budou udržovat rovnováhu tři síly síla horizontálního tlakového gradientu, síla Coriolisova a síla tření. Nad vrstvou tření však může napříč izobarami proudění probíhat. Takový stav způsobují například divergující (rozbíhající se) či konvergující (sbíhající se) izobary anebo existence oblasti vzestupu či poklesu tlaku vzduchu. Vítr jako vektor, je určen směrem a rychlostí. Směr větru vyjadřujeme obvykle ve stupních větrné růžice a to tak, že udáváme směr odkud vítr vane a jeho rychlost udáváme v metrech za sekundu či v kilometrech za hodinu (viz příloha 1). 3.4 Atmosférické srážky Hovoříme-li o atmosférických srážkách, nemáme na mysli kolize letadel, nýbrž produkty kondenzace vodní páry v ovzduší, které následně dopadají na zemský povrch, nebo se na něm usazují. Dělíme je dle skupenství na kapalné a tuhé a podle původu na padající (déšť, mrholení, sníh...) a usazené (rosa, jíní,...). Pro objektivní zhodnocení srážkové aktivity se měří množství, intenzita (tj.množství spadlých srážek za určitý časový úsek) a doba trvání. Srážky se měří v milimetrech, přičemž 1 mm odpovídá 1 litru vody spadlému na 1 m 2, u sněhu pak 1 mm odpovídá cca 1 cm prašanu. Pro kvantifikaci se používají přístroje jakými jsou srážkoměr a ombrograf. 3.5 Sluneční svit Sluneční svit, coby meteorologický prvek není příliš znám, nicméně jeho měření dokresluje celkový obraz průběhu počasí na daném místě. Pomocí přístroje zvaného heliograf se měří doba a intenzita slunečního svitu. 3.6 Oblačnost Oblačnost je úroveň pokrytí oblohy oblaky. V tomto ohledu určujeme druh oblaků (viz oddíl 5), jejich výšku a jejich tah (odkud kam) a zejména stupeň pokrytí oblohy oblačností v osminách či desetinách. 3.7 Dohlednost Dohlednost je veličinou subjektivně charakterizující míru znečištění přízemní vrstvy atmosféry vodním aerosolem, prachem či kouřem. Čím více je atmosféra znečištěná, tím horší je dohlednost. Dohlednost zhoršují mlha, kouřmo či zákal. 13

14 4 TLAKOVÉ ÚTVARY 4.1 Tlaková níže Tlaková níže, nebo též cyklóna, je oblastí s nižším tlakem vzduchu vyjádřená alespoň jednou uzavřenou izobarou. Očima laika bychom mohli při pohledu z orbitu cyklónu připodobnit k velkému atmosférickému víru. Charakteristické pro tlakovou níži je to, že směrem k jejímu středu klesá atmosférický tlak. Díky této skutečnosti dochází k proudění vzduchu zvenčí směrem dovnitř cyklóny, tj. z oblasti vyššího laku do oblasti s tlakem nižším. Toto proudění však není zcela přímočaré, nýbrž vlivem zemské rotace (Coriolisově síle) dochází k jeho stáčení a to na severní polokouli ve směru proti chodu hodinových ručiček, na jižní polokouli opačně (viz obr. 7). Uvnitř tlakové níže dochází ke sbíhání těchto vzdušných proudů a jejich výstupu kolmo k zemskému povrchu. Těmto proudům říkáme výstupné a prozradí je mohutná vrstevnatá oblačnost, která vzniká vlivem kondenzace vodních par obsažených ve vystupujícím vzduchu. Značení středu tlakových níží na synoptických mapách se u nás provádí písmenem N, v německy mluvících oblastech T a anglicky mluvících oblastech L. Typický ráz počasí v oblastech, které ovlivňuje svou přítomností tlaková níže je závislé zejména na tom, v jakém vývojovém stádiu se cyklóna nachází, a kterou svou částí dané území ovlivňuje. Poblíž svého středu a v oblastech okluze je počasí oblačné s trvalejšími avšak ne příliš intenzivními srážkami. V oblasti teplého sektoru ráz počasí určuje teplá fronta. Bývá zde oblačno s trvalým několikadenním mrholením nebo deštěm slabé intenzity a bezvětřím či jen slabým větrem. Naopak ve studeném sektoru bývá srážek méně (pouze na frontě můžeme očekávat výraznější úhrny) a někdy se zde vyskytuje za určitých situací též silný nárazový vítr. Velkého rozdílu mezi teplotami ve dne a v noci příliš není, zvláště v teplém sektoru a okluzi. Při letní cyklonální situaci dochází k ochlazení, v zimě k oteplení. Tradiční vánoční obleva není ničím jiným, než oteplení vlivem přílivu teplejšího oceánského vzduchu od západu podél přední strany tlakové níže se středem nad Británií. 4.2 Tlaková výše Tlaková výše, neboli anticyklóna je tlakový útvar v atmosféře, který je vyjádřen alespoň jednou uzavřenou izobarou, jako oblast vyššího tlaku vzduchu. Směrem do středu tlak stoupá. Pro tlakovou výši jsou typické sestupné pohyby vzduchu, při nichž se vzduch otepluje a vysušuje. Při zemi proudění vzduchu směřuje od středu s vysokým tlakem k okrajům s nízkým tlakem a opět se při svém pohybu zakřivuje, podobně jako v případě cyklóny, a to tedy ve směru pohybu hodinových ručiček na severní polokouli, na jižní proti opačně (viz obr. 7). Ráz počasí uvnitř tlakové výše určují sestupné proudy, které způsobují, že zde převládá jasné nebo málo oblačné počasí, beze srážek a se slabým větrem nebo bezvětřím. V létě bývá slunečné, suché a teplé počasí, v noci, díky radiačnímu vyzařování tepla, nastává poměrně rychlé ochlazování přízemní vrstvy a tedy výraznější pokles ranních teplot, což vede často ke tvorbě rosy a ranních mlh. V zimě bývá chladné jasné mrazivé počasí (tzv. suché mrazy), nebo naopak typická inverse s jednotvárným oblačným pokryvem oblaku druhu Stratus beze srážek a větru. Vždy záleží, podobně jako v předchozí kapitole, jakou svou částí dané území tlaková výše ovlivňuje. 14

15 Na synoptických mapách nalezneme pro tlakovou výši označení V, v německy a anglicky mluvících oblastech pak H. Obr. 7: Jednotlivé tlakové útvary a smysl jejich rotace na severní resp. jižní polokouli 15

16 5 OBLAKA Oblak neodborně mrak je viditelný shluk drobounkých vodních kapiček nebo ledových krystalků (popřípadě obojího) v ovzduší. Oblaky se skládají z kapiček vody či krystalků ledu (případně mohou obsahovat i větší vodní nebo ledové částice, popř. částice kouře nebo prachu). Viditelnými se stávají pakliže světlo odrážejí, rozptylují či propouštějí. Oblaky jsou v neustálém vývoji. Kolem roku 1840 prohlásil německý meteorolog H. W. Dove, že žádný oblak není stálým útvarem, ale že je to neustálý proces, děj. Obdobně sovětský meteorolog S.P.Chromov zdůrazňuje, že oblaky jsou ve stavu nepřetržitého vzniku a rozpouštění. Samotné oblaky, zvláště pak ty kupovité, mají krátkou životnost, která vždy závisí jen a pouze na dodávce nové vlhkosti. Kupříkladu individuální existence kupovitého oblaku trvá jen 10 až 15 minut. Vodní kapičky v oblaku se rychle vypařují a jsou ihned nahrazovány novými. Oblak je tedy pouze v daný okamžik viditelnou částí celkové hmoty vody, která se zúčastňuje tohoto procesu. Oblaky třídíme podle: - vzniku a vývoje (např. frontální, nefrontální, kupovité, turbulentní) - složení (vodní, ledové a smíšené) - výšky (nízké, střední, vysoké a s vertikálním vývojem) - vzhledu (na jednotlivé druhy dle mezinárodního dělení) V mírných zeměpisných výškách se oblaky vyskytují zhruba do výšky 13 km. Na základě úmluvy, byla tato vrstva, ve které se oblaka vyskytují, rozdělena na tři oblačná patra (viz obr. 8) a oblaky v nich se vyskytující jsou: - oblaky vysokého patra - oblaky středního patra - oblaky nízkého patra - oblaky vertikálního vývoje zasahují do více oblačných pater 16

17 Obr. 8: Oblačná patra, druhy oblaků a jejich podoby (podle W. Bertha, W. Kellera a U. Scharnowa, 1973) Mezinárodní rozdělení oblaků: Dle mezinárodní úmluvy rozdělujeme oblaky na 10 níže uvedených druhů: 1. Cirrus - Ci Jsou složeny s krystalků ledu a mají podobu jednotlivých vzájemně oddělených obláčků v podobě bílých vláken nebo bílých plošek či úzkých pruhů. Nezeslabují sluneční ani měsíční světlo. 2. Cirrocumulus - Cc Jsou složeny z ledových krystalků a mají podobu tenkých, menších nebo větších skupin bílých obláčků bez vlastního stínu. Často se jedná o malé chomáčky, vlnky nebo čočky. Lidově se jim přezdívá malé beránky. 3. Cirrostratus - Cs Oblak složený z ledových krystalků. Podobu má jako průsvitný bělavý závoj oblaků vláknitého nebo hladkého vzhledu, který úplně nebo částečně pokrývá oblohu. Nikdy není tak hustý, aby zmizely stíny předmětů ozářených Sluncem. 4. Altocumulus - Ac Jsou to menší nebo větší skupiny, či vrstvy oblaků, bílé šedé nebo obojí barvy mající vlastní stín. Říká se jim velké beránky a jsou složeny převážně z malých vodních kapiček. 17

18 5. Altostratus - As Je to šedavá nebo modravá oblačná plocha, s vláknitou nebo žebrovitou strukturou, pokrývající úplně nebo částečně oblohu. V jeho nejtenčích částech prosvítají obrysy Slunce nebo Měsíce jen nezřetelně jako matným sklem. Co do složení, jedná se o smíšený oblak, z něhož obvykle nevypadávají srážky, pokud však ano, pak jde většinou o trvalé srážky slabé intenzity v podobě deště či sněhu. 6. Nimbostratus - Ns Je to typický dešťový oblak v podobě šedé, často tmavé a jednotvárné oblačné vrstvy, ze které vždy vypadávají víceméně trvalé, stejnoměrné a někdy i poměrně intenzivní dešťové nebo sněhové srážky. Vrstva těchto oblaků je všude tak hustá, že poloha Slunce není nikdy patrná. Jedná se o typický oblak teplé fronty. 7. Stratocumulus - Sc Jsou to šedé nebo bělavé oblaky, popřípadě obojí barvy, menší či větší skupiny oblaků, které téměř vždy mají tmavá místa. Oblak se skládá z částí podobných dlaždicím zdánlivé velikosti větší jak 5 o. Nemá vláknitý vzhled. Je složen z vodních kapiček. Mohou z něj vypadávat srážky, ale vždy jen slabé intenzity. 8. Stratus - St Šedá poměrně jednotvárná oblačná vrstva s nízkou základnou, často se vyskytuje jen jako místní oblak. Je složen z malých vodních kapiček. Srážky z něj většinou nevypadávají, pokud však ano, pak jedině v podobě mrholení. 9. Cumulus - Cu Jsou to osamocené kypré, obvykle zářivě bílé a husté oblaky s ostře ohraničenými obrysy, vyvíjející se směrem vzhůru v podobě kup, kupolí nebo věží. Jejich rostoucí část má často podobu květáku, základna bývá tmavá a vodorovná. Vertikální profil je následující: základna v nízkém patře, vrcholky dosahují až do středního patra. Rozlišujeme 3 hlavní stadia vývoje oblaku Cumulus: 1. Cumulus humilis zploštělý oblak s rovnou základnou. Poměr šířky základny ku výšce oblaku je cca 2:1. 2. Cumulus mediocris poměr šířky základny ku výšce oblaku je cca 1:1. 3. Cumulus congestus mohutné kumuly s tmavými základnami, které se spojují do větších celků a vytvářejí tak rozmanité hrady či řady. Jsou počátečním stadiem pro vznik oblaků Cumulonimbus. Z tohoto oblaku již mohou vypadávat srážky a to ve formě slabých přeháněk. 18

19 10. Cumulonimbus - Cb Synonymem pro název tohoto oblaku je bouřkový oblak. Je to mohutný a hustý oblak velmi značného vertikálního rozsahu v podobě hor nebo obrovských věží. Část jeho vrcholu je obvykle hladká, popř. vláknitá nebo žebrovitá a téměř vždy zploštělá rozšiřuje se do podoby vějíře, kovadliny nebo širokého chocholu (obr. 9). Základna leží v nízkém patře (1 až 2 km ale i níže), vrchol sahá do středního či dokonce vysokého patra (u nás průměrně 7 až 9 km). Největší Cumulonimby můžeme nalézt v tropických oblastech, kde jejich vrcholy mohou dosahovat až k 20 km (u nás maximálně jen do 15 až 16 km). Na velikosti oblaku velmi záleží intenzita bouřkových projevů (množství, forma a intenzita srážek, četnost blesků, doba trvání bouřky apod.). Co do složení je smíšeným oblakem. Vytváří se postupným přerůstáním silně vyvinutých oblaků Cumulus congestus. Působí hrozivým dojmem. Díky silným vertikálním výstupným proudům, mohou vznikat v tomto oblaku kroupy či kusy ledu. Na přední straně silně vyvinutých Cumulonimbů se mohou ze základny oblaku spouštět rotující kužele vzdušných vírů v jejichž nitrech je značně nízký tlak. Díky tomu dochází k nasávání okolního vzduchu včetně lehčích a mnohdy i těžších předmětů vůkol. Dosáhne-li kužel země, hovoříme o trombě či tornádu. Vítr v těchto vírech dosahuje rychlostí až 120 m/s. Dalším jevem, souvisejícím s oblakem Cumulonimbus jsou blesky a hřmění. Jsou to projevy přenosu elektrického náboje mezi oblaky navzájem nebo mezi oblaky a zemí, a jsou důkazem toho, jakými obrovskými zásobárnami energie Cumulonimby jsou. Obr. 9: Profil Cumulonimbu a proudění v něm 19

20 6 ATMOSFÉRICKÉ FRONTY Slovo fronta bývá spojeno s představou bitevní linie, která odděluje dvě nepřátelské armády, které zpravidla nezůstávají dlouho na jednom místě přesouvají se ve směru tlaku silnější armády. Hovoříme-li však o atmosférických frontách, pak nemáme na mysli, že by proti sobě stály dvě bojující armády, nýbrž dvě vzduchové hmoty různých fyzikálních vlastností (teplý a studený vzduch). Pro pochopení pojmu vzduchová hmota je nutno předeslat, že jednotlivé vzduchové hmoty jsou skutečně ohraničené oblasti, které se v místě vzájemného styku (podél frontální plochy) promíchávají jen nepatrně. Mezi oběma hmotami se udržuje zřetelné přechodové pásmo, které představuje poměrně tenká vrstva vzduchu mající tloušťku většinou jen několik set metrů a délku stovek kilometrů. Existence frontální plochy je časově vymezena po tak dlouhou dobu, dokud jsou mezi jednotlivými vzduchovými hmotami teplotní kontrasty. Frontální plocha je vůči zemskému povrchu nakloněná v poměrně ostrém úhlu (jen 10 až 1 ) a protíná zemský povrch v tzv. frontální čáře. Jelikož je její sklon vůči povrchu takto malý, mohou se povětrnostní jevy vázané na fronty vyskytovat i ve velkých vzdálenostech před frontální čarou nebo za ní. Podmínky pro vznik atmosférických front existují v atmosféře neustále, a to v důsledku existence různých vzduchových hmot a přesunu těchto hmot z jedné oblasti do druhé. Fronty neustále vznikají, zesilují se, přemísťují se z jedné oblasti do druhé, slábnou a zanikají. Pohyb atmosférických front, podobně jako pohyb vzduchových hmot, usměrňuje velkoprostorová cirkulace atmosféry (systém převládajících vzdušných proudů, které způsobují výměnu vzduchu mezi pólem a rovníkem), která je podmíněna teplotními rozdíly, rotací Země a nestejnorodým povrchem. Atmosférické fronty jsou úzce spjaty s tlakovými nížemi (cyklónami). Na přední stranu tlakové níže se váže teplá fronta a na její zadní stranu fronta studená. Takový komplex front se nazývá frontální systém. Při přechodu front nad daným územím se mění hodnoty jednotlivých meteorologických prvků (např. pokrytí oblohy oblaky, druh a výška oblaků, teplota a vlhkost vzduchu) někdy až skokově a náhle, což je důsledkem toho, že nad dané území pronikla vzduchová hmota zcela odlišných fyzikálních vlastností. Přechod front doprovází zvětšená oblačnost a vypadávání srážek, jejichž charakter se může měnit. 6.1 Teplá fronta Teplá fronta (viz obr. 10) je úzké rozhraní mezi studeným a teplým vzduchem, kde dominantní roli hraje teplá vzduchová hmota směřující ke studené. Teplý vzduch je lehčí, vykluzuje po těžším studeném vzduchu a nasouvá se nad něj. V souvislosti s výstupnými proudy dochází ke kondenzaci vodní páry, takže se vytváří mohutný systém typické vrstevnaté oblačnosti, která sahá až stovky kilometrů před frontální čáru. Srážky, které zde vznikají kondenzací vodní páry, mají trvalý charakter a jejich intenzita je poměrně stálá. Šířka srážkového pásma bývá 300 až 400 km a nachází se před frontální čarou. Prvním příznakem blížící se teplé fronty jsou oblaky vysokého patra, které postupně zatahující oblohu (Cirrus a Cirrostratus). Oblačnost postupně houstne a snižuje se jejich základna. Přichází Altostratus a nakonec i mohutný dešťový oblak Nimbostratus. 20

Teplota vzduchu. Charakteristika základních meteorologických prvků. Teplota vzduchu. Teplota vzduchu. Teplota vzduchu Teplotní inverze

Teplota vzduchu. Charakteristika základních meteorologických prvků. Teplota vzduchu. Teplota vzduchu. Teplota vzduchu Teplotní inverze Charakteristika základních meteorologických prvků Klementinum - pravidelné sledování meteorologických údajů od r.1775 Teploměr G. Galilei (1564-1642) využil jako první tepelné roztažnosti vzduchu k měření

Více

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára)

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) SKUPENSTVÍ 1) Skupenství fáze, forma, stav 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) 3) Pevné látky nemění tvar, objem částice blízko sebe, pohybují se kolem urč.

Více

Manuál k vyplnění evidenčního listu a metodika pozorování

Manuál k vyplnění evidenčního listu a metodika pozorování Manuál k vyplnění evidenčního listu a metodika pozorování Vybavení K základnímu vybavení při cíleném pozorování bouřky patří poznámkový blok (či cokoliv na co lze psát), psací potřeby a hodinky (případně

Více

PODNEBÍ ČR - PROMĚNLIVÉ, STŘÍDAVÉ- /ČR JE NA ROZHRANÍ 2 HLAV.VLIVŮ/

PODNEBÍ ČR - PROMĚNLIVÉ, STŘÍDAVÉ- /ČR JE NA ROZHRANÍ 2 HLAV.VLIVŮ/ gr.j.mareš Podnebí EU-OP VK VY_32_INOVACE_656 PODNEBÍ ČR - PROMĚNLIVÉ, STŘÍDAVÉ- /ČR JE NA ROZHRANÍ 2 HLAV.VLIVŮ/ POČASÍ-AKTUÁLNÍ STAV OVZDUŠÍ NA URČITÉM MÍSTĚ PODNEBÍ-PRŮMĚR.STAV OVZDUŠÍ NA URČITÉM MÍSTĚ

Více

Základní jednotky v astronomii

Základní jednotky v astronomii v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve

Více

W = p. V. 1) a) PRÁCE PLYNU b) F = p. S W = p.s. h. Práce, kterou může vykonat plyn (W), je přímo úměrná jeho tlaku (p) a změně jeho objemu ( V).

W = p. V. 1) a) PRÁCE PLYNU b) F = p. S W = p.s. h. Práce, kterou může vykonat plyn (W), je přímo úměrná jeho tlaku (p) a změně jeho objemu ( V). 1) a) Tepelné jevy v životě zmenšení objemu => zvětšení tlaku => PRÁCE PLYNU b) V 1 > V 2 p 1 < p 2 p = F S W = F. s S h F = p. S W = p.s. h W = p. V 3) W = p. V Práce, kterou může vykonat plyn (W), je

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Hydrometeorologický a klimatický souhrn měsíce Meteoaktuality2014 LISTOPAD 2014

Hydrometeorologický a klimatický souhrn měsíce Meteoaktuality2014 LISTOPAD 2014 Hydrometeorologický a klimatický souhrn měsíce Meteoaktuality2014 LISTOPAD 2014 Autorství: Meteo Aktuality 1 Přehled dokumentu: Obsah Obecné shrnutí... 3 1. dekáda:...3 2. dekáda:...3 3. dekáda:...3 Podrobnější

Více

Tělesa sluneční soustavy

Tělesa sluneční soustavy Tělesa sluneční soustavy Měsíc dráha vzdálenost 356 407 tis. km (průměr 384400km); určena pomocí laseru/radaru e=0,0549, elipsa mění tvar gravitačním působením Slunce i=5,145 deg. měsíce siderický 27,321661

Více

METEOROLOGIE PRO PILOTY ZÁVĚSNÝCH KLUZÁKŮ

METEOROLOGIE PRO PILOTY ZÁVĚSNÝCH KLUZÁKŮ Ing. Vlastimil VYKOUK Jaroslav KOPÁČEK METEOROLOGIE PRO PILOTY ZÁVĚSNÝCH KLUZÁKŮ ÚV SVAZU PRO SPOLUPRÁCI S ARMÁDOU OBSAH 1. Úvod 7 2. Teplota, tlak a proudění vzduchu 9 2.1 Sluneční záření a distribuce

Více

VY_32_INOVACE_08.Fy.9. Slunce

VY_32_INOVACE_08.Fy.9. Slunce VY_32_INOVACE_08.Fy.9. Slunce SLUNCE Slunce je sice obyčejná hvězda, podobná těm, které vidíme na noční obloze, ale pro nás je velmi důležitá. Bez ní by naše Země byla tmavá a studená a žádný život by

Více

Přírodopis 9. Naše Země ve vesmíru. Mgr. Jan Souček. 2. hodina

Přírodopis 9. Naše Země ve vesmíru. Mgr. Jan Souček. 2. hodina Přírodopis 9 2. hodina Naše Země ve vesmíru Mgr. Jan Souček VESMÍR je soubor všech fyzikálně na sebe působících objektů, který je současná astronomie a kosmologie schopna obsáhnout experimentálně observační

Více

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země strana 2 Co je DPZ Dálkový průzkum je umění rozdělit svět na množství malých barevných čtverečků, se kterými si lze hrát na počítači a odhalovat jejich neuvěřitelný

Více

ZMĚNY SKUPENSTVÍ LÁTEK

ZMĚNY SKUPENSTVÍ LÁTEK ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak

Více

Vnitřní energie. Teplo. Tepelná výměna.

Vnitřní energie. Teplo. Tepelná výměna. Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie

Více

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15 Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření

Více

VY_32_INOVACE_06_III./17._PLANETY SLUNEČNÍ SOUSTAVY

VY_32_INOVACE_06_III./17._PLANETY SLUNEČNÍ SOUSTAVY VY_32_INOVACE_06_III./17._PLANETY SLUNEČNÍ SOUSTAVY Planety Terestrické planety Velké planety Planety sluneční soustavy a jejich rozdělení do skupin Podle fyzikálních vlastností se planety sluneční soustavy

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná fyzika Top-Hit Atomy a molekuly Atom Brownův pohyb Difúze Elektron Elementární náboj Jádro atomu Kladný iont Model atomu Molekula Neutron Nukleonové číslo Pevná látka Plyn Proton Protonové číslo

Více

OPTICKÉ JEVY Petr Skřehot Meteorologická Operativní Rada

OPTICKÉ JEVY Petr Skřehot Meteorologická Operativní Rada Atmosférické OPTICKÉ JEVY Petr Skřehot Meteorologická Operativní Rada OBSAH 1 ATMOSFÉRA ZEMĚ... 3 1.1 STRUČNÁ HISTORIE VÝVOJE ATMOSFÉRY... 3 1.2 ATMOSFÉRICKÁ FAKTOGRAFIE... 4 2 ATMOSFÉRICKÁ OPTIKA... 6

Více

Příručka pro studenty. Jakub Pelcl Brno 2009 TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČ TEM Č ESKÉ REPUBLIKY

Příručka pro studenty. Jakub Pelcl Brno 2009 TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČ TEM Č ESKÉ REPUBLIKY Příručka pro studenty Jakub Pelcl Brno 2009 TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČ TEM Č ESKÉ REPUBLIKY Atmosféra Příručka pro studenty Mgr. Jakub Pelcl Gymnázium

Více

materiál č. šablony/č. sady/č. materiálu: Autor:

materiál č. šablony/č. sady/č. materiálu: Autor: Masarykova základní škola Klatovy, tř. Národních mučedníků 185, 339 01 Klatovy; 376312154, fax 376326089 E-mail: skola@maszskt.investtel.cz; internet: www.maszskt.investtel.cz Kód přílohy vzdělávací VY_32_INOVACE_Z678HO_13_02_07

Více

Astronomie, sluneční soustava

Astronomie, sluneční soustava Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

Odraz světla na rozhraní dvou optických prostředí

Odraz světla na rozhraní dvou optických prostředí Odraz světla na rozhraní dvou optických prostředí Může kulová nádoba naplněná vodou sloužit jako optická čočka? Exponát demonstruje zaostření světla procházejícího skrz vodní kulovou čočku. Pohyblivý světelný

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

VY_32_INOVACE_FY.19 VESMÍR

VY_32_INOVACE_FY.19 VESMÍR VY_32_INOVACE_FY.19 VESMÍR Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Vesmír je souhrnné označení veškeré hmoty, energie

Více

Orientace. Světové strany. Orientace pomocí buzoly

Orientace. Světové strany. Orientace pomocí buzoly Orientace Orientováni potřebujeme být obvykle v neznámém prostředí. Zvládnutí základní orientace je předpokladem k použití turistických map a plánů měst. Schopnost určit světové strany nám usnadní přesuny

Více

ATMOSFÉRA. Plynný obal Země

ATMOSFÉRA. Plynný obal Země ATMOSFÉRA Plynný obal Země NEJDŮLEŽITĚJŠÍ PLYNY V ZEMSKÉ ATMOSFÉŘE PLYN MOLEKULA OBJEM V % Dusík N2 78,08 Kyslík O2 20,95 Argon Ar 0,93 Oxid uhličitý CO2 0,034 Neón Hélium Metan Vodík Oxid dusný Ozon Ne

Více

Nabídka vybraných pořadů

Nabídka vybraných pořadů Hvězdárna Valašské Meziříčí, p. o. Vsetínská 78 757 01 Valašské Meziříčí Nabídka vybraných pořadů Pro střední školy a učiliště Seznamte se s naší nabídkou poutavých naučných programů zaměřených nejen na

Více

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to

Více

Modré nebe. Nebe bez mráčku je za dne modré. Bez atmosféry bychom i ve dne hleděli do tmavého vesmíru.

Modré nebe. Nebe bez mráčku je za dne modré. Bez atmosféry bychom i ve dne hleděli do tmavého vesmíru. Modré nebe Modré nebe Nebe bez mráčku je za dne modré. Bez atmosféry bychom i ve dne hleděli do tmavého vesmíru. > Charakteristika Bez vzduchu by byla pozemská obloha stále bez oblak a černá. Slunce by

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program 1 VY_32_INOVACE_01_13 fyzika 6. Elektrické vlastnosti těles Výklad učiva PowerPoint 6 4 2 VY_32_INOVACE_01_14 fyzika 6. Atom Výklad učiva

Více

PLANETA ZEMĚ A JEJÍ POHYBY. Maturitní otázka č. 1

PLANETA ZEMĚ A JEJÍ POHYBY. Maturitní otázka č. 1 PLANETA ZEMĚ A JEJÍ POHYBY Maturitní otázka č. 1 TVAR ZEMĚ Geoid = skutečný tvar Země Nelze vyjádřit matematicky Rotační elipsoid rovníkový poloměr = 6 378 km vzdálenost od středu Země k pólu = 6 358 km

Více

STANICE A PŘÍSTROJE Petr Skřehot Meteorologická Operativní Rada

STANICE A PŘÍSTROJE Petr Skřehot Meteorologická Operativní Rada Meteorologické STANICE A PŘÍSTROJE Petr Skřehot Meteorologická Operativní Rada OBSAH 1 METEOROLOGICKÉ STANICE... 3 1.1 POZOROVACÍ MÍSTO... 3 1.2 UMÍSTĚNÍ PŘÍSTROJŮ... 3 1.3 POZOROVACÍ DOBA... 4 2 METEOROLOGICKÉ

Více

Meteorologie pro instruktory horolezectví ČHS

Meteorologie pro instruktory horolezectví ČHS Meteorologie pro instruktory horolezectví ČHS zpracoval: Radek Lienerth Jedná se o kompilační práci z otevřených zdrojů na internetu a literatury, která má sloužit zejména pro vzdělávání instruktorů a

Více

Základy meteorologie - měření tlaku a teploty vzduchu (práce v terénu + laboratorní práce)

Základy meteorologie - měření tlaku a teploty vzduchu (práce v terénu + laboratorní práce) Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.1.28/02.0055 Základy meteorologie - měření tlaku a teploty vzduchu (práce v terénu + laboratorní práce) Označení: EU-Inovace-F-8-12

Více

MIKROPORÉZNÍ TECHNOLOGIE

MIKROPORÉZNÍ TECHNOLOGIE MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Základní principy MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Co je to tepelná izolace? Jednoduše řečeno

Více

LODNÍ DENÍK NÁMOŘNÍ JACHTY

LODNÍ DENÍK NÁMOŘNÍ JACHTY LODNÍ DENÍK NÁMOŘNÍ JACHTY LEVANTER s.r.o. Jana Nohy 878/2, 725 25 Ostrava Polanka Tel: +420 605 957 257,Fax: +420 596 943 904 Copyright LEVANTER s.r.o. 2003 LODNÍ DENÍK ČÍSLO Jméno námořní jachty: Registrační

Více

Astronomie. Astronomie má nejužší vztah s fyzikou.

Astronomie. Astronomie má nejužší vztah s fyzikou. Astronomie Je věda, která se zabývá jevy za hranicemi zemské atmosféry. Zvláště tedy výzkumem vesmírných těles, jejich soustav, různých dějů ve vesmíru i vesmírem jako celkem. Astronom, česky hvězdář,

Více

Záludné otázky z meteorologie

Záludné otázky z meteorologie Univerzita Karlova v Praze Matematicko-fyzikální fakulta ZÁVĚREČNÁ PRÁCE Kurz Vyučování všeobecně vzdělávacího předmětu fyzika Mgr. Jan Karlický Záludné otázky z meteorologie Konzultant závěrečné práce:

Více

Orbit TM Tellerium Kat. číslo 113.4000

Orbit TM Tellerium Kat. číslo 113.4000 Orbit TM Tellerium Kat. číslo 113.4000 Orbit TM Tellerium s velkým glóbusem Země pro demonstrování ročních období, stínů a dne a noci Orbit TM Tellerium s malou Zemí pro demonstrování fází Měsíce a zatmění

Více

Výukový materiál zpracovaný v rámci projektu

Výukový materiál zpracovaný v rámci projektu Výukový materiál zpracovaný v rámci projektu Pořadové číslo projektu: cz.1.07/1.4.00/21.1936 č. šablony: III/2 č.sady: 6 Ověřeno ve výuce: 13.1.2012 Třída: 3 Datum:28.12. 2011 1 Sluneční soustava Vzdělávací

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

Identifikace práce. Žák jméno příjmení věk. Bydliště ulice, č.p. město PSČ. Škola ulice, č.p. město PSČ

Identifikace práce. Žák jméno příjmení věk. Bydliště ulice, č.p. město PSČ. Škola ulice, č.p. město PSČ vyplňuje žák Identifikace práce Žák jméno příjmení věk Bydliště ulice, č.p. město PSČ vyplňuje škola Učitel jméno příjmení podpis Škola ulice, č.p. město PSČ jiný kontakt (např. e-mail) A. Přehledový test

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

Pracovní list číslo 01

Pracovní list číslo 01 Pracovní list číslo 01 Měření délky Jak se nazývá základní jednotka délky? Jaká délková měřidla používáme k měření rozměrů a) knihy b) okenní tabule c) třídy.. d) obvodu svého pasu.. Jaké díly a násobky

Více

Fyzika aplikovaná v geodézii

Fyzika aplikovaná v geodézii Průmyslová střední škola Letohrad Vladimír Stránský Fyzika aplikovaná v geodézii 1 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního rozpočtu

Více

www.zlinskedumy.cz Inovace výuky prostřednictvím šablon pro SŠ

www.zlinskedumy.cz Inovace výuky prostřednictvím šablon pro SŠ Název projektu Číslo projektu Název školy Autor Název šablony Název DUMu Stupeň a typ vzdělávání Vzdělávací oblast Vzdělávací obor Tematický okruh Inovace výuky prostřednictvím šablon pro SŠ CZ.1.07/1.5.00/34.0748

Více

Stabilní počasí s inverzí a trvale zhoršenými rozptylovými podmínkami. To byl listopad

Stabilní počasí s inverzí a trvale zhoršenými rozptylovými podmínkami. To byl listopad Č. 26 PODZIM 2011 Úvodem.. Jaký byl podzim v počasí? V průběhu podzimu bylo počasí převážně teplé, krásné a časově velmi vydařené babí léto, poté sušší a velmi stabilní charakter počasí, na horách a v

Více

1.6.9 Keplerovy zákony

1.6.9 Keplerovy zákony 1.6.9 Keplerovy zákony Předpoklady: 1608 Pedagogická poznámka: K výkladu této hodiny používám freewareový program Celestia (3D simulátor vesmíru), který umožňuje putovat vesmírem a sledovat ho z různých

Více

Všechny galaxie vysílají určité množství elektromagnetického záření. Některé vyzařují velké množství záření a nazývají se aktivní.

Všechny galaxie vysílají určité množství elektromagnetického záření. Některé vyzařují velké množství záření a nazývají se aktivní. VESMÍR Model velkého třesku předpovídá, že vesmír vznikl explozí před asi 15 miliardami let. To, co dnes pozorujeme, bylo na začátku koncentrováno ve velmi malém objemu, naplněném hmotou o vysoké hustotě

Více

1. Učební texty pro popularizátory vědy

1. Učební texty pro popularizátory vědy Studijní opora k výukovému modulu v oblasti přírodních věd K4/MPV12 Počasí a podnebí pro školní mládež byla vytvořena v rámci projektu Poznej tajemství vědy. Projekt s reg. č. CZ.1.07/2.3.00/45.0019 je

Více

Jméno, příjmení: Test Shrnující Přírodní složky a oblasti Země

Jméno, příjmení: Test Shrnující Přírodní složky a oblasti Země Třída: Jméno, příjmení: Test Shrnující Přírodní složky a oblasti Země 1) Zemské těleso je tvořeno vyber správnou variantu: a) kůrou, zrnem a jádrem b) kůrou, slupkou a pláštěm c) kůrou, pláštěm a jádrem

Více

NAŠE ZEMĚ VE VESMÍRU Zamysli se nad těmito otázkami

NAŠE ZEMĚ VE VESMÍRU Zamysli se nad těmito otázkami NAŠE ZEMĚ VE VESMÍRU Zamysli se nad těmito otázkami Jak se nazývá soustava, ve které se nachází planeta Země? Sluneční soustava Která kosmická tělesa tvoří sluneční soustavu? Slunce, planety, družice,

Více

Sférická trigonometrie v matematické geografii a astronomii

Sférická trigonometrie v matematické geografii a astronomii Sférická trigonometrie v matematické geografii a astronomii Mgr. Hana Lakomá, Ph.D., Mgr. Veronika Douchová 00 Tento učební materiál vznikl v rámci grantu FRVŠ F1 066. 1 Základní pojmy sférické trigonometrie

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů

Více

Příprava pro lektora

Příprava pro lektora Příprava pro lektora stanoviště aktivita pomůcky 1 typy oblačnosti podle manuálu Globe stanov typy mraků na obrázcích pokryvnost oblohy vytvoř model oblohy s 25% oblačností, použij modrý papír (obloha)

Více

Základní přehled. Dalekohled přístroj, který nám při pohledu do něj přiblíží daný předmět tolikrát, kolik činí jeho zvětšení.

Základní přehled. Dalekohled přístroj, který nám při pohledu do něj přiblíží daný předmět tolikrát, kolik činí jeho zvětšení. Základní přehled Dalekohled přístroj, který nám při pohledu do něj přiblíží daný předmět tolikrát, kolik činí jeho zvětšení. Reflektor zrcadlový dalekohled, používající ke zobrazení dvou (primárního a

Více

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : Fyzika Ročník: I.ročník - kvinta Fyzikální veličiny a jejich měření Fyzikální veličiny a jejich měření Soustava fyzikálních veličin a jednotek

Více

2.1 Empirická teplota

2.1 Empirická teplota Přednáška 2 Teplota a její měření Termika zkoumá tepelné vlastnosti látek a soustav těles, jevy spojené s tepelnou výměnou, chování soustav při tepelné výměně, změny skupenství látek, atd. 2.1 Empirická

Více

NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník NÁZEV: VY_32_INOVACE_197_Planety

NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník NÁZEV: VY_32_INOVACE_197_Planety NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV: VY_32_INOVACE_197_Planety AUTOR: Ing. Gavlas Miroslav ROČNÍK, DATUM: 9., 25.11.2011 VZDĚL. OBOR, TÉMA: Fyzika ČÍSLO PROJEKTU:

Více

Venuše druhá planeta sluneční soustavy

Venuše druhá planeta sluneční soustavy Venuše druhá planeta sluneční soustavy Planeta Venuše je druhá v pořadí vzdáleností od Slunce (střední vzdálenost 108 milionů kilometrů neboli 0,72 AU) a zároveň je naším nejbližším planetárním sousedem.

Více

Šablona č. 01. 09 ZEMĚPIS. Výstupní test ze zeměpisu

Šablona č. 01. 09 ZEMĚPIS. Výstupní test ze zeměpisu Šablona č. 01. 09 ZEMĚPIS Výstupní test ze zeměpisu Anotace: Výstupní test je vhodný pro závěrečné zhodnocení celoroční práce v zeměpise. Autor: Ing. Ivana Přikrylová Očekávaný výstup: Žáci píší formou

Více

VY_32_INOVACE_06_III./19._HVĚZDY

VY_32_INOVACE_06_III./19._HVĚZDY VY_32_INOVACE_06_III./19._HVĚZDY Hvězdy Vývoj hvězd Konec hvězd- 1. možnost Konec hvězd- 2. možnost Konec hvězd- 3. možnost Supernova závěr Hvězdy Vznik hvězd Vše začalo už strašně dávno, kdy byl vesmír

Více

Velký halový slovník

Velký halový slovník Velký halový slovník Roman Maňák 2006 Předmluva Když jsem v říjnu 2004 propadnul kouzlu halových jevů, myslel jsem, že teorie jejich vzniku a vše, co je s tím spojené, zabere místo nanejvýš na třech čtyřech

Více

Fyzika pro 6.ročník. Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly. Elektrické vlastnosti látek, el.

Fyzika pro 6.ročník. Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly. Elektrické vlastnosti látek, el. Fyzika pro 6.ročník výstupy okruh učivo dílčí kompetence Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly Elektrické vlastnosti látek, el.pole, model atomu Magnetické vlastnosti látek, magnetické

Více

ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM

ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM Pozorně se podívejte na obrázky. Kterou rukou si nevěsta maluje rty? Na které straně cesty je automobil ve zpětném zrcátku? Zrcadla jsou vyleštěné, zpravidla kovové plochy

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

SKUPENSTVÍ LÁTEK Prima - Fyzika

SKUPENSTVÍ LÁTEK Prima - Fyzika SKUPENSTVÍ LÁTEK Prima - Fyzika Skupenství látek Pevné skupenství Skupenství látek Skupenství látek Pevné skupenství Kapalné skupenství Skupenství látek Pevné skupenství Kapalné skupenství Plynné skupenství

Více

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA1_11 Název materiálu: Teplo a teplota. Tematická oblast: Fyzika 1.ročník Anotace: Prezentace slouží k vysvětlení základních fyzikálních veličin tepla a teploty.

Více

Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby

Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby Předmět: ZEMĚPIS Ročník: 6. Časová dotace: 2 hodiny týdně Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby organizuje a přiměřeně hodnotí geografické informace a zdroje dat z dostupných kartografických

Více

Jednoduchý elektrický obvod

Jednoduchý elektrický obvod 21 25. 05. 22 01. 06. 23 22. 06. 24 04. 06. 25 28. 02. 26 02. 03. 27 13. 03. 28 16. 03. VI. A Jednoduchý elektrický obvod Jednoduchý elektrický obvod Prezentace zaměřená na jednoduchý elektrický obvod

Více

Eta Carinae. Eta Carinae. Mlhovina koňské hlavy. Vypracoval student Petr Hofmann 8.3.2004 z GChD jako seminární práci z astron. semináře.

Eta Carinae. Eta Carinae. Mlhovina koňské hlavy. Vypracoval student Petr Hofmann 8.3.2004 z GChD jako seminární práci z astron. semináře. Eta Carinae Vzdálenost od Země: 9000 ly V centru je stejnojmenná hvězda 150-krát větší a 4-milionkrát jasnější než Slunce. Do poloviny 19. století byla druhou nejjasnější hvězdou na obloze. Roku 1841 uvolnila

Více

Cvičení: APLIKOVANÁ BIOKLIMATOLOGIE. Ing. Petr Hlavinka, Ph.D. Dveře č. N5068 (tel.: 3090) phlavinka@centrum.cz

Cvičení: APLIKOVANÁ BIOKLIMATOLOGIE. Ing. Petr Hlavinka, Ph.D. Dveře č. N5068 (tel.: 3090) phlavinka@centrum.cz Cvičení: APLIKOVANÁ BIOKLIMATOLOGIE Ing. Petr Hlavinka, Ph.D. Dveře č. N5068 (tel.: 3090) phlavinka@centrum.cz Zápočet: -Docházka na cvičení (max. 2 absence) -Vyřešit 3 samostatné úkoly Meteorologická

Více

pokus č.1 URČUJEME TÍHOVÉ ZRYCHLENÍ

pokus č.1 URČUJEME TÍHOVÉ ZRYCHLENÍ pokus č.1 URČUJEME TÍHOVÉ ZRYCHLENÍ -tíhové zrychlení je cca 9,81 m.s ² -určuje se z doby kyvu matematického kyvadla (dlouhý závěs nulové hmotnosti s hmotným bodem na konci) T= π. (l/g) takže g=π².l/(t²)

Více

Zdroje optického záření

Zdroje optického záření Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon

Více

FYZIKA. Newtonovy zákony. 7. ročník

FYZIKA. Newtonovy zákony. 7. ročník FYZIKA Newtonovy zákony 7. ročník říjen 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443 Projekt

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

ANOTACE vytvořených/inovovaných materiálů

ANOTACE vytvořených/inovovaných materiálů ANOTACE vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Formát Druh učebního materiálu Druh interaktivity CZ.1.07/1.5.00/34.0722 III/2 Inovace a

Více

n =, kde n je počet podlaží. ψ 0 je redukční

n =, kde n je počet podlaží. ψ 0 je redukční Užitné zatížení Činnost lidí Je nahrazeno plošným a bodovým zatížením. Referenční hodnota 1 rok s pravděpodobností překročení 0,98 Zatížení stropů Velikost zatížení je dána v závislosti na druhu stavby

Více

M I K R O S K O P I E

M I K R O S K O P I E Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

Tvorba toků, charakteristiky, řečiště, sklon, odtok

Tvorba toků, charakteristiky, řečiště, sklon, odtok Tvorba toků, charakteristiky, řečiště, sklon, odtok Vodní toky Voda je jedním z nejvýraznějších modelačních činitelů v krajině. Vznik vodního toku pramen zdrojnice soutok 2 a více řek (Labe-Vltava, Labe-

Více

Detekce sekundárního kosmického záření v závislosti na meteorologických podmínkách

Detekce sekundárního kosmického záření v závislosti na meteorologických podmínkách Středoškolská odborná činnost 2012/2013 Obor 02 Fyzika Detekce sekundárního kosmického záření v závislosti na meteorologických podmínkách Autor: Veronika Valešová Gymnázium Pardubice, Dašická 1083 530

Více

TEORIE BOUŘEK Petr Skřehot Meteorologická Operativní Rada

TEORIE BOUŘEK Petr Skřehot Meteorologická Operativní Rada Stručné základy TEORIE BOUŘEK Petr Skřehot Meteorologická Operativní Rada OBSAH 1 BOUŘKA... 3 1.1 DEFINICE BOUŘKY... 3 1.2 DĚLENÍ BOUŘEK... 3 2 BOUŘKOVÉ OBLAKY... 4 2.1 VNĚJŠÍ PODMÍNKY VZNIKU OBLAKŮ...

Více

VY_32_INOVACE_FY.20 VESMÍR II.

VY_32_INOVACE_FY.20 VESMÍR II. VY_32_INOVACE_FY.20 VESMÍR II. Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Galaxie Mléčná dráha je galaxie, v níž se nachází

Více

Předpověď počasí na rok 2015

Předpověď počasí na rok 2015 Předpověď počasí na rok 2015 Již čtvrtý rok předpovídám počasí podle významného středověkého astrologa Johannese Keplera. Na začátku jsem čerpala pouze z jeho díla K pevnějším základům astrologie, ve kterém

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 6.1a 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace emisivní

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

Jak předpovídat počasí?

Jak předpovídat počasí? Jak předpovídat počasí? Umění předpovídat počasí je jednou z důležitých schopností všech zálesáků. Předpovídání počasí vyžaduje trochu postřeh a musíte vědět, kam a na co se dívat, pak ovšem snadno tuto

Více

Orientace v terénu bez mapy

Orientace v terénu bez mapy Písemná příprava na zaměstnání Terén Orientace v terénu bez mapy Zpracoval: por. Tomáš Diblík Pracoviště: OVIÚ Osnova přednášky Určování světových stran Určování směrů Určování č vzdáleností Určení č polohy

Více

Kapitola 7 TESTOVÁNÍ LAKTÁTOVÉHO PRAHU. Definice laktátového prahu

Kapitola 7 TESTOVÁNÍ LAKTÁTOVÉHO PRAHU. Definice laktátového prahu Kapitola 7 TESTOVÁNÍ LAKTÁTOVÉHO PRAHU Definice laktátového prahu Laktátový práh je definován jako maximální setrvalý stav. Je to bod, od kterého se bude s rostoucí intenzitou laktát nepřetržitě zvyšovat.

Více

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Více

Astronomie Sluneční soustavy I. PřF UP, Olomouc, 6.4.2012

Astronomie Sluneční soustavy I. PřF UP, Olomouc, 6.4.2012 Astronomie Sluneční soustavy I. PřF UP, Olomouc, 6.4.2012 Osnova přednášek: 1.) Tělesa Sluneční soustavy. Slunce, planety, trpasličí planety, malá tělesa Sluneční soustavy, pohled ze Země. Struktura Sluneční

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT ZŠ a MŠ Slapy, Slapy 34, 391 76 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Vzdělávací materiál: Powerpointová prezentace ppt. Jméno autora: Mgr. Soňa Růžičková Datum vytvoření: 9. červenec 2013

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro

Více