Akcelerátor pro KSOM

Rozměr: px
Začít zobrazení ze stránky:

Download "Akcelerátor pro KSOM"

Transkript

1 Akcelerátor pro KSOM Marek Bártů České vysoké učení v Praze, Fakulta elektrotechnická bartum1@fel.cvut.cz Abstrakt: In this work we are describing hardware implementation of Kohonen Self-Organizing Map. We examined existing neurocomputers and decided to work out our own neurocomputer with a different, more suitable architecture. Our neurocomputer is being realized on FPGA (Field-Programmable Gate Array). In this article we are describing basic neurocomputer unit structure as well as linkage of these elements into neurocomputer and units participation on computation process. 1. Úvod Při zpracování řeči lze využít metody založené na aplikacích umělých neuronových sítí. Jedním z typů umělých neuronových sítí (UNS) jsou KSOM. Jsou to UNS učící se bez učitele (viz [5]). KSOM jsou vhodnou alternativou ke klasickým metodám, a to zvláště v případech, kdy pracujeme se zašuměnými nebo nekompletními daty. KSOM lze s výhodou požít, mimo jiné, v úlohách vizualizace dat. KSOM mají schopnost konvertovat nelineární statistické vztahy mezi vícedimenzionálními daty do jednoduchých geometrických vztahů jejich obrazů v obvykle tří či dvourozměrném prostoru. Na našem pracovišti používáme KSOM ke klasifikaci a vizualizaci dat. Podstatnou nevýhodou KSOM je, tak jako u ostatních typů neuronových sítí, náročnost na výpočetní výkon. Pro reálné využití je výkonnost KSOM realizovaných na osobním počítači obvykle nedostatečná, proto se snažíme zkonstruovat akcelerátor - neuropočítač, který by umožnil vlastní výpočet výrazně zrychlit. Naším cílem je vyvinout neuropočítač, který by umožnil maximálně využít výhod hradlových polí - FPGA (Field Programmable Gate Array). Tím míníme možnosti integrace do autonomního systému a rekonfigurovatelnost (využíti prostředků FPGA i pro další úlohy spojené s příslušnou úlohou). Dalším požadavkem je možnost přizpůsobit neuropočítač konkrétnímu typu dat a dosáhnout zrychlení výpočtů. Posledním požadavkem na navrhovaný systém je možnost realizovat neuropočítač na komerčně dostupné vývojové desce s FPGA. 2. Problémy spojené s implementací KSOM Při hardwarové implementaci KSOM je důležitým faktorem konečná délka slova v realizovaném systému. Dostatečný počet bitů datového slova - délka slova - má zásadní vliv na rychlost konvergence sítě realizované neuropočítačem. Pokud je délka slova nižší než jistá kritická mez, dochází k divergenci sítě. Zároveň se zvyšujícím se počtem bitů stoupá složitost a nároky na hardware. To ovlivňuje vlastní výkonnost neuropočítače. Výsledná délka slova je tedy kompromisem mezi požadavky na rychlost konvergence sítě a hardwarovými nároky. Minimální délka slova pro konvergenci sítě záleží na distribuční funkci vstupních vektorů. Není možné vytvořit analytický popis pro obecný případ, a proto jsme při zjišťování optimální délky slova pro konkrétní úlohu odkázáni na simulace prováděné na reprezentativním vzorku vstupních dat. Při bližším rozboru v [1] se ukázalo že na vhodnou volbu délky slova jsou nejnáročnější synaptické váhy a funkce okolí neuronu.

2 Pro snazší implementaci byl algoritmus KSOM zjednodušen. Realizovaná zjednodušení nemají vliv na konvergenci algoritmu, to bylo již prokázáno v existujících akcelerátorech [2], [3]. Uvažujeme hlavně zjednodušení výpočtu vzdálenosti vstupního vektoru, funkce okolí neuronu a realizace učícího faktoru. Pro výpočet vzdálenosti je použita bloková vzdálenost (2) místo eukleidovské. Použití blokové vzdálenosti částečně zpomalí konvergenci, ale přináší výrazné úspory v implementaci nemusíme realizovat násobičku a odmocninu. 3. Akcelerátor V d= x i m i (1) i =1 Akcelerátor je tvořen zřetězením jednotek realizujících funkce neuronu (na obrázcích značených N) doplněných jednotkami realizujícími komparátory (označeno K). Akcelerátor lze tedy jednoduše přizpůsobit konkrétní aplikaci, potřebné velikosti sítě, požadované rychlosti a použitému hardware. Každé jednotce je přiřazena logická adresa, takže "sousedství" neuronů je respektováno bez ohledu na fyzické uspořádání jednotek. Na následujících obrázcích je znázorněn návrh několika možných realizací. Obrázek 1: Realizace akcelerátoru zřetězením jednotek Na Obrázku 1 je neuronová síť tvořená zřetězením jednotek - neuronů. Toto uspořádání neuronů nevyžaduje použití podpůrných jednotek komparátorů. Příklad je pouze ilustrativní, takto realizovaný akcelerátor by měl velmi pomalou odezvu (úměrnou počtu neuronů) a toto uspořádání není vhodné pro praktickou realizaci. Mnohem výhodnější je realizace zobrazená na Obrázku 2. Na obrázku 2 je znázorněna realizace akcelerátoru řazením neuronů do paralelních větví zakončených stromem komparátorů. Popis komparátoru je uveden dále v textu. Výhodou tohoto uspořádání je mnohem rychlejší odezva než v předchozím případě. Odezva bude rovna pouze počtu neuronů ve v nejdelší větvi a hloubce stromu komparátorů.

3 Obrázek 2: Realizace akcelerátoru řazením neuronů do paralelních větví Vhodným uspořádáním neuronů a komparátorů je možné realizovat strukturu na Obrázku 3. Tato struktura vychází přímo z původního algoritmu KSOM. V místě spojení větví je zařazen komparátor a v místě spojování cest v prostředním neuronu je dvojstupňový "strom" komparátorů. Data do struktury vcházejí z vnějšího okraje struktury a výsledek (vítěz) je nalezen po průchodu strukturou komparátorů uprostřed. Obrázek 3: Přirozená struktura KSOM Akcelerátor lze realizovat samostatně, je třeba pouze doplnit další podpůrné jednotky. Schéma takto realizovaného akcelerátoru je znázorněno na Obrázku 4. Vhodně uspořádané neurony jsou doplněny lokální pamětí, řadičem pro řízení výpočtu, řadičem pro řízení RAM paměti a blokem komunikace s osobním počítačem. Paměť RAM je externí paměť na prototypové desce FPGA. Řadič paměti se stará o její řízení a přesun dat do vyrovnávacích lokálních blokových pamětí (BRAM).

4 Obrázek 4: Schéma akcelerátoru Komunikační kanál má zajistit dodání potřebných dat neuročipu. Je třeba zadat inicializační hodnoty neuronů (přímý zápis do datových struktur jednotlivých neuronů) a sadu vstupních vektorů (uloženou v paměti RAM). Při trénování se vlastní kanál používá pouze k zadání dat a předávání výsledků, výpočet probíhá samostatně v čipu. Pro účely ladění předpokládám vybavení neuročipu diagnostickým režimem, který umožní pozastavit výpočet a přistupovat ke všem datovým strukturám v neuročipu. V režimu klasifikace bude nejvýhodnější, kvůli rychlosti komunikace, aby byla data zadána v dávkách. Data se uloží do RAM paměti, klasifikují a výsledky se potom odešlou všechny najednou. Prozatím máme k dispozici řadič pro UART [4]. Pokud by ale bylo třeba rychlejší komunikace, bylo by vhodné realizovat rychlejší komunikační kanál, např. USB. Základní funkcí řadiče je řídit vlastní neurony. V řadiči může být implementováno promíchání vstupních vektorů tedy postup, kdy se v jedné epoše vybírají vstupní vektory x náhodně, a to tak, že každý vektor je vstupem právě jednou. Klasická implementace předpokládá vstup vektorů v každé epoše v pořadí jak byly zadány. Další funkcí řadiče je určení poloměru okolí vzhledem k probíhající epoše trénování. Předpokládám využití tabulky, která bude předepisovat změny v určitých epochách. Obsah této tabulky bude součástí inicializačních dat, posílaných z PC. Jak bylo popsáno v předchozím odstavci, na konvergenci sítě má vliv konečná délka slova. Proto je v akcelerátoru možnost změnit počet bitů slova použitého k uložení synaptických vah neuronu, počet bitů akumulátoru i dimenzi vektoru vstupních dat. Je tedy možné generovat akcelerátor přímo přizpůsobený aplikaci, a to tak se, že se jednoduše změní tento parametr a znovu se provede syntéza. Simulaci vlivu konečné délky lze uskutečnit přímo ve VHDL simulátoru nebo v jiném vhodném prostředí s dostatečnou podporou pro matematické operace (Matlab). Akcelerátor lze také realizovat jako součást systému na čipu (SoC), akcelerátor pak bude v roli periferie.

5 4. Popis neuronu Schéma neuronu je na Obrázku 5. Silná čára reprezentuje tok dat, slabší čáry potom řídící signály. Neuron se do struktury akcelerátoru zapojuje pomocí vstupní a výstupní brány. Dále neuron obsahuje datovou paměť. Tato paměť slouží k uložení synaptických vah neuronu. Veškeré výpočty probíhají v SAD (Substitute-ADd) jednotce. Výpočty řídí řadič, který je implementován jako jednoduchý stavový automat. Bližší popis bloků včetně propojení s ostatními bloky, je uvedeno dále v textu. Obrázek 5: Schéma neuronu V akcelerátoru jsou neurony vzájemně propojeny pomocí vstupních a výstupních bran. Brány obsahují datové vodiče a indikaci přítomnosti dat. Dále pak obsahují signál "break", který indikuje, že příchozí datové slovo bude kódem příkazu. Bezprostřední průchod dat mezi vstupní a výstupní branou umožňuje neuronu fungovat v průchozím režimu bez zpracovávání dat. Tento mód je nutný v režimu ladění (debug) a inicializace. Pro realizaci paměti vah je možné využít blokové paměti na čipu FPGA nebo paměti distribuované složené z hradel FPGA obvodu. Distribuovaná paměť odčerpává část prostředků čipu FPGA, která by mohla být jinak použita k realizaci dalších neuronů. Nicméně, využití distribuované paměti je nutné, protože množství blokové paměti je omezené. Napojení na datovou sběrnici umožňuje nejen do paměti nahrát inicializační váhy, ale i číst obsah v ladícím módu. Obrázek 6: SAD jednotka

6 Veškeré aritmetické operace jsou realizovány v SAD (Substitute-Add Accumulate) jednotce. SAD jednotka má na starosti výpočet vzdálenosti mezi vstupním vektorem a váhami, nalezení vítěze, výpočet vzdálenosti od vítězného neuronu a úpravu vah v režimu trénování. Schéma SAD jednotky je na Obrázku 6. SAD jednotka se skládá z bloku výpočtu absolutní hodnoty rozdílu, akumulátoru, posuvného registru a bloku pro úpravu vah. Blok výpočtu absolutní hodnoty spolu se sčítačkou a akumulátorem se uplatní při výpočtu vzdálenosti neuronu od vstupního vektoru dat a při výpočtu vzdálenosti od vítězného neuronu. Podle výsledku tohoto výpočtu se nastaví posuvný registr. Posuvný registr se uplatní při výpočtu úpravy váhy podle vítězného neuronu. Při tomto výpočtu se vypočítá rozdíl váhy a příslušné složky vektoru a tento přírůstek se posune o určitý počet bitů vydělí mocninou dvou. Blok pro úpravu vah je sčítačka, která vypočítává hodnotu váhy neuronu podle vztahu (2). Konstanta představuje bitový posun dělení. 5. Postup výpočtu w n 1 i =w n i k w n i m i (2) Neuropočítač funguje následovně: v první, přípravné fázi, je pomocí PC nahrán soubor inicializačních hodnot a vstupních vektorů do paměti RAM na prototypové desce s vlastním hradlovým polem, v němž je neuropočítač realizován a jsou inicializovány jednotlivé neurony. Další fází je trénování - vstupní vektor je distribuován složku po složce. Jednotlivé neurony přímo provádí výpočet vzdálenosti. Mezivýsledek výpočtu je uložen v akumulátoru každého neuronu. Hledání vítěze provádí neuropočítač tak, že krajní neurony pošlou hodnotu svého akumulátoru (a svou adresu) následujícímu neuronu. Ten provede porovnání s vlastním akumulátorem a vítěznou hodnotu pošle dalšímu neuronu v cestě (včetně adresy). Tímto způsobem bude po posledním porovnání v prostředním neuronu znám vítěz pro daný vstupní vektor. Poslední částí trénování je adaptace. Všem neuronům je předána adresu vítězného neuronu a poloměr okolí. Každý neuron pak srovnáním obdržené a vlastní adresy individuálně zjistí svou příslušnost k okolí vítězného neuronu a provede úpravu svých vah. 6. Závěr Hlavní výhodou je plně distribuovaná architektura. Další výhodou je přímé komunikační schéma mezi neurony, bez nutnosti implementovat dlouhé a výpočet zpomalující sběrnice. Neurony přenášejí data přímo mezi sebou. Implementace v FPGA, které je založeno na SRAM, umožní škálovatelnost systému, použití v komplexním systému nebo při rekonfiguraci. Po první verzi jsem po implementaci získal následující odhady: implementace až 40 neuronů v obvodu XC2V1000, kdy každý neuron může pracovat na maximální hodinové frekvenci 150 MHz. V současné době dokončuji druhou verzi a plánuji numerické testy konvergence sítě akcelerátoru a porovnání rychlosti s osobním počítačem. 7. Poděkování Tento projekt je podporován grantem Transdisciplinární výzkum v biomedicínském inženýrství II, MSM Českého Vysokého Učení technického v Praze.

7 Reference [1] Thiran P., Peiris V., Heim P., Hochet B.: Quantization Effects in Digitally Behaving Circuit Implementations of Kohonen Networks, IEEE Transactions on Neural Networks No. 3, Vol. 5., 1994 [2] Porrman, M., Witkowski, U., Kalte, H., Ruckert, U.: Implementation of Artifical Neural Networks on a Reconfigurable Hardware Accelerator, In Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing, Grand Canaria Island, Spain, 2002, pp [3] Ienne, P.: Architectures for Neuro-Computers: Review and Performance Evaluation, Technical Report of the EPFL-DI no. 93/21, Lausanne, Swiss (1993) [4] Bártů M.: Implementation of communication protocol between the FPGA kit and the PC via the serial interface. Unpublished technical report Z06-3 (in Czech), FEE CTU Prague, Available at [5] Kohonen, T.: Self-Organizing Maps. Springer-Verlag Berlin, Heidelberg, New York, 3 rd ed., 2001, ISBN

Algoritmy a struktury neuropočítačů ASN - P14. Neuropočítače

Algoritmy a struktury neuropočítačů ASN - P14. Neuropočítače Neuropočítače speciální výpočetní prostředky pro urychlení výpočtů neuronových sítí implementace zjednodušených algoritmů obvykle celočíselná aritmetika v kombinaci s normováním vstupních vektorů Rozdělení

Více

Implementace KSOM. Marek Bártů. LANNA Katedra teorie obvodů FEL ČVUT.

Implementace KSOM. Marek Bártů. LANNA Katedra teorie obvodů FEL ČVUT. Implementace KSOM Marek Bártů marek.bartu@gmail.com LANNA Katedra teorie obvodů FEL ČVUT SSC Implementace KSOM 2 algoritmus KSOM úprava pro snadnější implementaci kvantizace reprezentace čísel podobnost

Více

Hardware - komponenty počítačů Von Neumannova koncepce počítače. Von Neumannova koncepce počítače

Hardware - komponenty počítačů Von Neumannova koncepce počítače. Von Neumannova koncepce počítače V roce 1945 vystoupil na přednášce v USA matematik John von Neumann a představil architekturu samočinného univerzálního počítače (von Neumannova koncepce/schéma/architektura). Základy této koncepce se

Více

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14 ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 14 0:40 1.3. Vliv hardware počítače na programování Vliv

Více

Algoritmy a struktury neuropočítačů ASN - P11

Algoritmy a struktury neuropočítačů ASN - P11 Aplikace UNS při rozpoznání obrazů Základní úloha segmentace obrazu rozdělení obrazu do několika významných oblastí klasifikační úloha, clusterová analýza target Metody Kohonenova metoda KSOM Kohonenova

Více

Paměťový podsystém počítače

Paměťový podsystém počítače Paměťový podsystém počítače typy pamětových systémů počítače virtuální paměť stránkování segmentace rychlá vyrovnávací paměť 30.1.2013 O. Novák: CIE6 1 Organizace paměťového systému počítače Paměťová hierarchie...

Více

Pohled do nitra mikroprocesoru Josef Horálek

Pohled do nitra mikroprocesoru Josef Horálek Pohled do nitra mikroprocesoru Josef Horálek Z čeho vycházíme = Vycházíme z Von Neumannovy architektury = Celý počítač se tak skládá z pěti koncepčních bloků: = Operační paměť = Programový řadič = Aritmeticko-logická

Více

REKONFIGURACE FPGA. Božetěchova 1/2, 612 66 Brno. imatousek@fit.vutbr.cz

REKONFIGURACE FPGA. Božetěchova 1/2, 612 66 Brno. imatousek@fit.vutbr.cz OPTIMALIZACE VYHLEDÁNÍ NEJDELŠÍHO PREFIXU SÍŤOVÉ ADRESY S VYUŽITÍM ČÁSTEČNÉ DYNAMICKÉ REKONFIGURACE FPGA Jiří Matoušek Výpočetní technika a informatika, 1. ročník, prezenční studium Školitel: Zdeněk Kotásek

Více

Semestrální práce z předmětu Speciální číslicové systémy X31SCS

Semestrální práce z předmětu Speciální číslicové systémy X31SCS Semestrální práce z předmětu Speciální číslicové systémy X31SCS Katedra obvodů DSP16411 ZPRACOVAL: Roman Holubec Školní rok: 2006/2007 Úvod DSP16411 patří do rodiny DSP16411 rozšiřuje DSP16410 o vyšší

Více

Disková pole (RAID) 1

Disková pole (RAID) 1 Disková pole (RAID) 1 Architektury RAID Důvod zavedení RAID: reakce na zvyšující se rychlost procesoru. Pozice diskové paměti v klasickém personálním počítači vyhovuje pro aplikace s jedním uživatelem.

Více

Digitální obvody. Doc. Ing. Lukáš Fujcik, Ph.D.

Digitální obvody. Doc. Ing. Lukáš Fujcik, Ph.D. Digitální obvody Doc. Ing. Lukáš Fujcik, Ph.D. Základní invertor v technologii CMOS dva tranzistory: T1 vodivostní kanál typ N T2 vodivostní kanál typ P při u VST = H nebo L je klidový proud velmi malý

Více

Návrh. číslicových obvodů

Návrh. číslicových obvodů Návrh číslicových obvodů SW Aritmetika HW Periférie CPU function AddSub(a,b,s); var c; a b k k a+b mpx c if (s==1) c=a+b; else c=a-b; a-b return c; End; PAMĚŤ s Princip: univerzální stroj Výhoda: univerzalita

Více

Disková pole (RAID) 1

Disková pole (RAID) 1 Disková pole (RAID) 1 Architektury RAID Základní myšlenka: snaha o zpracování dat paralelně. Pozice diskové paměti v klasickém personálním počítači vyhovuje pro aplikace s jedním uživatelem. Řešení: data

Více

Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)

Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.

Více

Struktura a architektura počítačů (BI-SAP) 11

Struktura a architektura počítačů (BI-SAP) 11 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 11 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

FPGA + mikroprocesorové jádro:

FPGA + mikroprocesorové jádro: Úvod: V tomto dokumentu je stručný popis programovatelných obvodů od firmy ALTERA www.altera.com, které umožňují realizovat číslicové systémy s procesorem v jenom programovatelném integrovaném obvodu (SOPC

Více

Direct Digital Synthesis (DDS)

Direct Digital Synthesis (DDS) ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Direct Digital Synthesis (DDS) Přímá číslicová syntéza Tyto materiály vznikly za podpory

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana Kubcová Název

Více

Profilová část maturitní zkoušky 2014/2015

Profilová část maturitní zkoušky 2014/2015 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2014/2015 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: technika

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY. MRBT Robotika

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY. MRBT Robotika VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘÍCÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

Více

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC Informační systémy 2 Obsah: Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC ROM RAM Paměti typu CACHE IS2-4 1 Dnešní info: Informační systémy 2 03 Informační systémy

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 8 SÍTĚ NAČIPU (NOC) doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii ČVUT v Praze Hana

Více

Algoritmy a struktury neuropočítačů ASN - P10. Aplikace UNS v biomedicíně

Algoritmy a struktury neuropočítačů ASN - P10. Aplikace UNS v biomedicíně Aplikace UNS v biomedicíně aplikace v medicíně postup při zpracování úloh Aplikace UNS v medicíně Důvod: nalezení exaktnějších, levnějších a snadnějších metod určování diagnóz pro lékaře nalezení šetrnějších

Více

Principy komunikace s adaptéry periferních zařízení (PZ)

Principy komunikace s adaptéry periferních zařízení (PZ) Principy komunikace s adaptéry periferních zařízení (PZ) Několik možností kategorizace principů komunikace s externími adaptéry, např.: 1. Podle způsobu adresace registrů, které jsou součástí adaptérů.

Více

Kryptoanalýza šifry PRESENT pomocí rekonfigurovatelného hardware COPACOBANA

Kryptoanalýza šifry PRESENT pomocí rekonfigurovatelného hardware COPACOBANA Kryptoanalýza šifry PRESENT pomocí rekonfigurovatelného hardware COPACOBANA Jan Pospíšil, pospij17@fit.cvut.cz, Martin Novotný, novotnym@fit.cvut.cz Katedra číslicového návrhu Fakulta informačních technologíı

Více

OPS Paralelní systémy, seznam pojmů, klasifikace

OPS Paralelní systémy, seznam pojmů, klasifikace Moorův zákon (polovina 60. let) : Výpočetní výkon a počet tranzistorů na jeden CPU chip integrovaného obvodu mikroprocesoru se každý jeden až dva roky zdvojnásobí; cena se zmenší na polovinu. Paralelismus

Více

5. Umělé neuronové sítě. Neuronové sítě

5. Umělé neuronové sítě. Neuronové sítě Neuronové sítě Přesný algoritmus práce přírodních neuronových systémů není doposud znám. Přesto experimentální výsledky na modelech těchto systémů dávají dnes velmi slibné výsledky. Tyto systémy, včetně

Více

Příklady popisu základních obvodů ve VHDL

Příklady popisu základních obvodů ve VHDL Příklady popisu základních obvodů ve VHDL INP - cvičení 2 Michal Bidlo, 2008 bidlom@fit.vutbr.cz entity Circuit is port ( -- rozhraní obvodu ); end Circuit; Proces architecture Behavioral of Circuit is

Více

Přerušovací systém s prioritním řetězem

Přerušovací systém s prioritním řetězem Přerušovací systém s prioritním řetězem Doplňující text pro přednášky z POT Úvod Přerušovací systém mikropočítače může být koncipován několika způsoby. Jednou z možností je přerušovací systém s prioritním

Více

Operace ALU. INP 2008 FIT VUT v Brně

Operace ALU. INP 2008 FIT VUT v Brně Operace ALU INP 2008 FIT VUT v Brně 1 Princip ALU (FX) Požadavky: Logické operace Sčítání (v doplňkovém kódu) Posuvy/rotace Násobení ělení B A not AN OR XOR + Y 1) Implementace logických operací je zřejmá

Více

Algoritmy a struktury neuropočítačů ASN P3

Algoritmy a struktury neuropočítačů ASN P3 Algoritmy a struktury neuropočítačů ASN P3 SOM algoritmus s učitelem i bez učitele U-matice Vektorová kvantizace Samoorganizující se mapy ( Self-Organizing Maps ) PROČ? Základní myšlenka: analogie s činností

Více

Využití neuronové sítě pro identifikaci realného systému

Využití neuronové sítě pro identifikaci realného systému 1 Portál pre odborné publikovanie ISSN 1338-0087 Využití neuronové sítě pro identifikaci realného systému Pišan Radim Elektrotechnika 20.06.2011 Identifikace systémů je proces, kdy z naměřených dat můžeme

Více

Architektury počítačů

Architektury počítačů Architektury počítačů skupina Identifyingvýzkumná the Interesting Points in Geometrical Figures of Certain Class Vysoké učení technické v Brně, Fakulta informačních technologií, Božetěchova 2, 612 66 Brno

Více

Samoučící se neuronová síť - SOM, Kohonenovy mapy

Samoučící se neuronová síť - SOM, Kohonenovy mapy Samoučící se neuronová síť - SOM, Kohonenovy mapy Antonín Vojáček, 14 Květen, 2006-10:33 Měření a regulace Samoorganizující neuronové sítě s učením bez učitele jsou stále více využívány pro rozlišení,

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Petr

Více

Architektury CISC a RISC, uplatnění v personálních počítačích

Architektury CISC a RISC, uplatnění v personálních počítačích Architektury CISC a RISC, uplatnění v personálních počítačích 1 Cíl přednášky Vysvětlit, jak pracují architektury CISC a RISC, upozornit na rozdíly. Zdůraznit, jak se typické rysy obou typů architektur

Více

Organizace předmětu, podmínky pro získání klasifikovaného zápočtu

Organizace předmětu, podmínky pro získání klasifikovaného zápočtu ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Organizace předmětu, podmínky pro získání klasifikovaného zápočtu Kurz A0B38FPGA Aplikace

Více

Počítač jako prostředek řízení. Struktura a organizace počítače

Počítač jako prostředek řízení. Struktura a organizace počítače Řídicí počítače - pro řízení technologických procesů. Specielní přídavná zařízení - I/O, přerušovací systém, reálný čas, Č/A a A/Č převodníky a j. s obsluhou - operátorské periferie bez obsluhy - operátorský

Více

Architektura počítačů

Architektura počítačů Architektura počítačů Studijní materiál pro předmět Architektury počítačů Ing. Petr Olivka katedra informatiky FEI VŠB-TU Ostrava email: petr.olivka@vsb.cz Ostrava, 2010 1 1 Architektura počítačů Pojem

Více

OSA. maximalizace minimalizace 1/22

OSA. maximalizace minimalizace 1/22 OSA Systémová analýza metodika používaná k navrhování a racionalizaci systémů v podmínkách neurčitosti vyšší stupeň operační analýzy Operační analýza (výzkum) soubor metod umožňující řešit rozhodovací,

Více

Náplň. v.0.03 16.02.2014. - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění

Náplň. v.0.03 16.02.2014. - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění Náplň v.0.03 16.02.2014 - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění Spojení dvou samostatně setříděných polí void Spoj(double apole1[], int adelka1, double

Více

2.8 Procesory. Střední průmyslová škola strojnická Vsetín. Ing. Martin Baričák. Název šablony Název DUMu. Předmět Druh učebního materiálu

2.8 Procesory. Střední průmyslová škola strojnická Vsetín. Ing. Martin Baričák. Název šablony Název DUMu. Předmět Druh učebního materiálu Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Ověřeno ve výuce dne, třída Střední průmyslová škola strojnická Vsetín

Více

INFORMAČNÍ A KOMUNIKAČNÍ TECHNOLOGIE

INFORMAČNÍ A KOMUNIKAČNÍ TECHNOLOGIE Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Ing. Hana Šmídová Název materiálu: VY_32_INOVACE_13_HARDWARE_S1 Číslo projektu: CZ 1.07/1.5.00/34.1077

Více

Studium závislosti výpočetního času algoritmu GPC prediktivního řízení na volbě typu popisu matematického modelu v regulátoru

Studium závislosti výpočetního času algoritmu GPC prediktivního řízení na volbě typu popisu matematického modelu v regulátoru 1 Portál pre odborné publikovanie ISSN 1338-0087 Studium závislosti výpočetního času algoritmu GPC prediktivního řízení na volbě typu popisu matematického modelu v regulátoru Barot Tomáš Elektrotechnika

Více

Počítač jako elektronické, Číslicové zařízení

Počítač jako elektronické, Číslicové zařízení Počítač jako elektronické, Číslicové Autor: Ing. Jan Nožička SOŠ a SOU Česká Lípa VY_32_INOVACE_1135_Počítač jako elektrornické, číslicové _PWP Název školy: Číslo a název projektu: Číslo a název šablony

Více

Řízení IO přenosů DMA řadičem

Řízení IO přenosů DMA řadičem Řízení IO přenosů DMA řadičem Doplňující text pro POT K. D. 2001 DMA řadič Při přímém řízení IO operací procesorem i při použití přerušovacího systému je rychlost přenosu dat mezi IO řadičem a pamětí limitována

Více

MSP 430F1611. Jiří Kašpar. Charakteristika

MSP 430F1611. Jiří Kašpar. Charakteristika MSP 430F1611 Charakteristika Mikroprocesor MSP430F1611 je 16 bitový, RISC struktura s von-neumannovou architekturou. Na mikroprocesor má neuvěřitelně velkou RAM paměť 10KB, 48KB + 256B FLASH paměť. Takže

Více

xrays optimalizační nástroj

xrays optimalizační nástroj xrays optimalizační nástroj Optimalizační nástroj xoptimizer je součástí webového spedičního systému a využívá mnoho z jeho stavebních bloků. xoptimizer lze nicméně provozovat i samostatně. Cílem tohoto

Více

FVZ K13138-TACR-V004-G-TRIGGER_BOX

FVZ K13138-TACR-V004-G-TRIGGER_BOX TriggerBox Souhrn hlavních funkcí Synchronizace přes Ethernetový protokol IEEE 1588 v2 PTP Automatické určení možnosti, zda SyncCore zastává roli PTP master nebo PTP slave dle mechanizmů standardu PTP

Více

Princip funkce počítače

Princip funkce počítače Princip funkce počítače Princip funkce počítače prvotní úlohou počítačů bylo zrychlit provádění matematických výpočtů první počítače kopírovaly obvyklý postup manuálního provádění výpočtů pokyny pro zpracování

Více

PK Design. MB-S2-150-PQ208 v1.4. Základová deska modulárního vývojového systému MVS. Verze dokumentu 1.0 (11. 6. 03)

PK Design. MB-S2-150-PQ208 v1.4. Základová deska modulárního vývojového systému MVS. Verze dokumentu 1.0 (11. 6. 03) MB-S2-150-PQ208 v1.4 Základová deska modulárního vývojového systému MVS Uživatelský manuál Verze dokumentu 1.0 (11. 6. 03) Obsah 1 Upozornění...3 2 Úvod...4 2.1 Vlastnosti základové desky...4 2.2 Vlastnosti

Více

Profilová část maturitní zkoušky 2015/2016

Profilová část maturitní zkoušky 2015/2016 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: technika

Více

Mezipaměti počítače. L2 cache. L3 cache

Mezipaměti počítače. L2 cache. L3 cache Mezipaměti počítače Cache paměť - mezipaměť Hlavní paměť procesoru je typu DRAM a je pomalá. Proto se mezi pomalou hlavní paměť a procesor vkládá menší, ale rychlá vyrovnávací (cache) paměť SRAM. Rychlost

Více

Přehled paralelních architektur. Dělení paralelních architektur Flynnova taxonomie Komunikační modely paralelních architektur

Přehled paralelních architektur. Dělení paralelních architektur Flynnova taxonomie Komunikační modely paralelních architektur Přehled paralelních architektur Přehled paralelních architektur Dělení paralelních architektur Flynnova taxonomie Komunikační modely paralelních architektur Přehled I. paralelní počítače se konstruují

Více

Historie počítačů. 0.generace. (prototypy)

Historie počítačů. 0.generace. (prototypy) Historie počítačů Historie počítačů se dělí do tzv. generací, kde každá generace je charakteristická svou konfigurací, rychlostí počítače a základním stavebním prvkem. Generace počítačů: Generace Rok Konfigurace

Více

Činnost CPU. IMTEE Přednáška č. 2. Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus

Činnost CPU. IMTEE Přednáška č. 2. Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus Činnost CPU Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus Hodinový cyklus CPU je synchronní obvod nutné hodiny (f CLK ) Instrukční cyklus IF = doba potřebná

Více

Zpracování obrazu v FPGA. Leoš Maršálek ATEsystem s.r.o.

Zpracování obrazu v FPGA. Leoš Maršálek ATEsystem s.r.o. Zpracování obrazu v FPGA Leoš Maršálek ATEsystem s.r.o. Základní pojmy PROCESOROVÉ ČIPY Křemíkový čip zpracovávající obecné instrukce Různé architektury, pracují s různými paměti Výkon instrukcí je závislý

Více

7. Pracovní postupy. Fakulta informačních technologií MI-NFA, zimní semestr 2011/2012 Jan Schmidt

7. Pracovní postupy. Fakulta informačních technologií MI-NFA, zimní semestr 2011/2012 Jan Schmidt Fakulta informačních technologií MI-NFA, zimní semestr 2011/2012 Jan Schmidt EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI 7. Pracovní postupy Posloupnosti analytických a syntetických

Více

VÝUKOVÝ MATERIÁL. 3. ročník učebního oboru Elektrikář Přílohy. bez příloh. Identifikační údaje školy

VÝUKOVÝ MATERIÁL. 3. ročník učebního oboru Elektrikář Přílohy. bez příloh. Identifikační údaje školy VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Autor Tematická oblast Číslo a název materiálu Anotace Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková

Více

NG C Implementace plně rekurentní

NG C Implementace plně rekurentní NG C Implementace plně rekurentní neuronové sítě v systému Mathematica Zdeněk Buk, Miroslav Šnorek {bukz1 snorek}@fel.cvut.cz Neural Computing Group Department of Computer Science and Engineering, Faculty

Více

Obsluha periferních operací, přerušení a jeho obsluha, vybavení systémových sběrnic

Obsluha periferních operací, přerušení a jeho obsluha, vybavení systémových sběrnic Obsluha periferních operací, přerušení a jeho obsluha, vybavení systémových sběrnic 1 Cíl přednášky Zabývat se principy využití principů přerušení. Popsat, jak se tyto principy odrazily v konstrukci systémových

Více

SYSTÉMY NAČIPU MI-SOC

SYSTÉMY NAČIPU MI-SOC Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti SYSTÉMY NAČIPU MI-SOC doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii ČVUT v Praze Hana Kubátová

Více

VÝVOJ ŘÍDICÍCH ALGORITMŮ HYDRAULICKÝCH POHONŮ S VYUŽITÍM SIGNÁLOVÉHO PROCESORU DSPACE

VÝVOJ ŘÍDICÍCH ALGORITMŮ HYDRAULICKÝCH POHONŮ S VYUŽITÍM SIGNÁLOVÉHO PROCESORU DSPACE VÝVOJ ŘÍDICÍCH ALGORITMŮ HYDRAULICKÝCH POHONŮ S VYUŽITÍM SIGNÁLOVÉHO PROCESORU DSPACE Přednáška na semináři CAHP v Praze 4.9.2013 Prof. Ing. Petr Noskievič, CSc. Ing. Miroslav Mahdal, Ph.D. Katedra automatizační

Více

Architektura počítače

Architektura počítače Architektura počítače Výpočetní systém HIERARCHICKÁ STRUKTURA Úroveň aplikačních programů Úroveň obecných funkčních programů Úroveň vyšších programovacích jazyků a prostředí Úroveň základních programovacích

Více

4. Úvod do paralelismu, metody paralelizace

4. Úvod do paralelismu, metody paralelizace 4. Úvod do paralelismu, metody paralelizace algoritmů Ing. Michal Bližňák, Ph.D. Ústav informatiky a umělé inteligence Fakulta aplikované informatiky UTB Zĺın Paralelní procesy a programování, Zĺın, 26.

Více

Systémy pro měření, diagnostiku a testování prototypů II. Odůvodnění vymezení technických podmínek podle 156 odst. 1 písm. c) ZVZ

Systémy pro měření, diagnostiku a testování prototypů II. Odůvodnění vymezení technických podmínek podle 156 odst. 1 písm. c) ZVZ Název veřejné zakázky: Systémy pro měření, diagnostiku a testování prototypů II. Odůvodnění vymezení technických podmínek podle 156 odst. 1 písm. c) ZVZ Technická podmínka: Odůvodnění Zaškolení obsluhy:

Více

Z čeho se sběrnice skládá?

Z čeho se sběrnice skládá? Sběrnice Co je to sběrnice? Definovat sběrnici je jednoduché i složité zároveň. Jedná se o předávací místo mezi (typicky) více součástkami počítače. Sběrnicí však může být i předávací místo jen mezi dvěma

Více

Principy počítačů I Netradiční stroje

Principy počítačů I Netradiční stroje Principy počítačů I Netradiční stroje snímek 1 Principy počítačů Část X Netradiční stroje VJJ 1 snímek 2 Netradiční procesory architektury a organizace počítačů, které se vymykají struktuře popsané Johnem

Více

Hardwarové zpracování obrazu

Hardwarové zpracování obrazu Hardwarové zpracování obrazu Cíle kapitoly: Zpracování obrazu na vývojové desce TI DaVinci řešící náročné výpočty v reálném čase 1 Teoretický úvod Prakticky můžeme zpracování obrazu rozdělit na zpracování

Více

ANALÝZA A ZPRACOVÁNÍ ŘEČOVÝCH A BIOLOGICKÝCH SIGNÁLŮ SBORNÍK PRACÍ 2006

ANALÝZA A ZPRACOVÁNÍ ŘEČOVÝCH A BIOLOGICKÝCH SIGNÁLŮ SBORNÍK PRACÍ 2006 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Katedra teorie obvodů ANALÝZA A ZPRACOVÁNÍ ŘEČOVÝCH A BIOLOGICKÝCH SIGNÁLŮ SBORNÍK PRACÍ 2006 Editoři sborníku Doc. Ing. Petr Pollák, CSc.

Více

Přednášky o výpočetní technice. Hardware teoreticky. Adam Dominec 2010

Přednášky o výpočetní technice. Hardware teoreticky. Adam Dominec 2010 Přednášky o výpočetní technice Hardware teoreticky Adam Dominec 2010 Rozvržení Historie Procesor Paměť Základní deska přednášky o výpočetní technice Počítací stroje Mechanické počítačky se rozvíjely už

Více

Pokročilé architektury počítačů

Pokročilé architektury počítačů Pokročilé architektury počítačů Architektura IO podsystému České vysoké učení technické, Fakulta elektrotechnická A4M36PAP Pokročílé architektury počítačů Ver.1.00 2010 1 Co je úkolem? Propojit jednotlivé

Více

Cíle. Teoretický úvod

Cíle. Teoretický úvod Předmět Ú Úloha č. 7 BIO - igitální obvody Ú mikroelektroniky Sekvenční logika návrh asynchronních a synchronních binárních čítačů, výhody a nevýhody, využití Student Cíle Funkce čítačů a použití v digitálních

Více

Vstupně výstupní moduly. 13.přednáška

Vstupně výstupní moduly. 13.přednáška Vstupně výstupní moduly 13.přednáška Vstupně-výstupn výstupní modul (I/O modul) Přídavná zařízení sloužící ke vstupu a výstupu dat nebo k uchovávání a archivaci dat Nejsou připojována ke sběrnici přímo,

Více

Mikrokontroléry. Doplňující text pro POS K. D. 2001

Mikrokontroléry. Doplňující text pro POS K. D. 2001 Mikrokontroléry Doplňující text pro POS K. D. 2001 Úvod Mikrokontroléry, jinak též označované jako jednočipové mikropočítače, obsahují v jediném pouzdře všechny podstatné části mikropočítače: Řadič a aritmetickou

Více

Architektura počítačů

Architektura počítačů Architektura počítačů Co je architektura obecně: souhrn znalostí o prvcích, ze kterých se skládá nebo dá složit nějaký celek o způsobech, kterými lze tyto prvky využít pro dosažení požadovaných vlastností

Více

Rozvrhování výroby. František Koblasa Technická univerzita v Liberci. TU v Liberci

Rozvrhování výroby. František Koblasa Technická univerzita v Liberci. TU v Liberci Tento materiál vznikl jako součást projektu EduCom, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Rozvrhování výroby Technická univerzita v Liberci INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Více

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi

Více

Trénování sítě pomocí učení s učitelem

Trénování sítě pomocí učení s učitelem Trénování sítě pomocí učení s učitelem! předpokládá se, že máme k dispozici trénovací množinu, tj. množinu P dvojic [vstup x p, požadovaný výstup u p ]! chceme nastavit váhy a prahy sítě tak, aby výstup

Více

C2115 Praktický úvod do superpočítání

C2115 Praktický úvod do superpočítání C2115 Praktický úvod do superpočítání IX. lekce Petr Kulhánek, Tomáš Bouchal kulhanek@chemi.muni.cz Národní centrum pro výzkum biomolekul, Přírodovědecká fakulta, Masarykova univerzita, Kotlářská 2, CZ-61137

Více

DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH

DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH Viktor Haškovec, Martina Mudrová Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je věnován zpracování biomedicínských

Více

Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc

Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc Neuronové sítě a možnosti jejich využití Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc 1. Biologický neuron Osnova 2. Neuronové sítě Umělý neuron

Více

Metody připojování periferií

Metody připojování periferií Metody připojování periferií BI-MPP Přednáška 3 Ing. Miroslav Skrbek, Ph.D. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze Miroslav Skrbek 2010,2011

Více

LOKALIZACE ZDROJŮ AE NEURONOVÝMI SÍTĚMI NEZÁVISLE NA ZMĚNÁCH MATERIÁLU A MĚŘÍTKA

LOKALIZACE ZDROJŮ AE NEURONOVÝMI SÍTĚMI NEZÁVISLE NA ZMĚNÁCH MATERIÁLU A MĚŘÍTKA LOKALIZACE ZDROJŮ AE EUROOVÝMI SÍTĚMI EZÁVISLE A ZMĚÁCH MATERIÁLU A MĚŘÍTKA AE SOURCE LOCATIO BY EURAL ETWORKS IDEPEDET O MATERIAL AD SCALE CHAGES Milan CHLADA, Zdeněk PŘEVOROVSKÝ Ústav termomechaniky

Více

Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D.

Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D. OPTIMALIZACE BRAMOVÉHO PLYNULÉHO ODLÉVÁNÍ OCELI ZA POMOCI NUMERICKÉHO MODELU TEPLOTNÍHO POLE Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D. Fakulta strojního inženýrství

Více

Paralení programování pro vícejádrové stroje s použitím OpenMP. B4B36PDV Paralelní a distribuované výpočty

Paralení programování pro vícejádrové stroje s použitím OpenMP. B4B36PDV Paralelní a distribuované výpočty Paralení programování pro vícejádrové stroje s použitím OpenMP B4B36PDV Paralelní a distribuované výpočty Minulé cvičení: Vlákna a jejich synchronizace v C++ 11... 1 Minulé cvičení: Vlákna a jejich synchronizace

Více

Architektura Intel Atom

Architektura Intel Atom Architektura Intel Atom Štěpán Sojka 5. prosince 2008 1 Úvod Hlavní rysem Atomu je podpora platformy x86, která umožňuje spouštět a běžně používat řadu let vyvíjené aplikace, na které jsou uživatelé zvyklí

Více

Zprovoznění kitu Xilinx Spartan-6 FPGA Industrial Video Processing Kit

Zprovoznění kitu Xilinx Spartan-6 FPGA Industrial Video Processing Kit Zprovoznění kitu Xilinx Spartan-6 FPGA Industrial Video Processing Kit Technická zpráva - FI - VG20102015006-2011 03 Ing. Filip Orság, Ph.D. Fakulta informačních technologií, Vysoké učení technické v Brně

Více

GRAFICKÉ ROZHRANÍ V MATLABU PRO ŘÍZENÍ DIGITÁLNÍHO DETEKTORU PROSTŘEDNICTVÍM RS232 LINKY

GRAFICKÉ ROZHRANÍ V MATLABU PRO ŘÍZENÍ DIGITÁLNÍHO DETEKTORU PROSTŘEDNICTVÍM RS232 LINKY GRAFICKÉ ROZHRANÍ V MATLABU PRO ŘÍZENÍ DIGITÁLNÍHO DETEKTORU PROSTŘEDNICTVÍM RS232 LINKY Jiří Šebesta Ústav radioelektroniky, Fakulta elektroniky a komunikačních technologií Vysoké učení technické v Brně

Více

VYHLEDÁNÍ NEJDELŠÍHO SHODNÉHO PREFIXU V FPGA

VYHLEDÁNÍ NEJDELŠÍHO SHODNÉHO PREFIXU V FPGA VYHLEDÁNÍ NEJDELŠÍHO SHODNÉHO PREFIXU V FPGA Jiří Tobola Výpočetní technika a informatika, 2. ročník, prezenční studium Školitel: Vladimír Drábek Fakulta informačních technologií, Vysoké učení technické

Více

Programování v jazyce C a C++

Programování v jazyce C a C++ Programování v jazyce C a C++ Příklad na tvorbu třídy Richter 1 4. prosince 2017 1 Ing. Richter Miloslav, Ph.D., UAMT FEKT VUT Brno Dvourozměrné pole pomocí tříd Zadání Navrhněte a napište třídu pro realizace

Více

Umělé neuronové sítě

Umělé neuronové sítě Umělé neuronové sítě 17. 3. 2018 5-1 Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce 5-2 Neuronové aktivační

Více

Vzorový příklad. Postup v prostředí ISE. Zadání: x 1 x 0 y. Rovnicí y = x 1. x 0. Přiřazení signálů: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Vzorový příklad. Postup v prostředí ISE. Zadání: x 1 x 0 y. Rovnicí y = x 1. x 0. Přiřazení signálů: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Vzorový příklad. Zadání: Na přípravku realizujte kombinační obvod představující funkci logického součinu dvou vstupů. Mající následující pravdivostní tabulku. x 1 x 0 y 0 0 0 0 1 0 1 0 0 1 1 1 Rovnicí

Více

Sekvenční logické obvody

Sekvenční logické obvody Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

Struktura a architektura počítačů (BI-SAP) 10

Struktura a architektura počítačů (BI-SAP) 10 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 10 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

Řízení pohybu stanice v simulačním prostředí OPNET Modeler podle mapového podkladu

Řízení pohybu stanice v simulačním prostředí OPNET Modeler podle mapového podkladu Rok / Year: Svazek / Volume: Číslo / Number: 2011 13 5 Řízení pohybu stanice v simulačním prostředí OPNET Modeler podle mapového podkladu Map-based mobility control system for wireless stations in OPNET

Více

Vzorový příklad. Postup v prostředí ISE. Zadání: x 1 x 0 y Rovnicí y = x 1. Přiřazení signálů:

Vzorový příklad. Postup v prostředí ISE. Zadání: x 1 x 0 y Rovnicí y = x 1. Přiřazení signálů: Vzorový příklad. Zadání: Na přípravku realizujte kombinační obvod představující funkci logického součinu dvou vstupů. Mající následující pravdivostní tabulku. x 1 x 0 y 0 0 0 0 1 0 1 0 0 1 1 1 Rovnicí

Více

5. A/Č převodník s postupnou aproximací

5. A/Č převodník s postupnou aproximací 5. A/Č převodník s postupnou aproximací Otázky k úloze domácí příprava a) Máte sebou USB flash-disc? b) Z jakých obvodů se v principu skládá převodník s postupnou aproximací? c) Proč je v zapojení použit

Více

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/ Vzdělávání v informačních a komunikačních technologií

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/ Vzdělávání v informačních a komunikačních technologií VY_32_INOVACE_31_09 Škola Název projektu, reg. č. Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Tematická oblast Název Autor Vytvořeno, pro obor, ročník Anotace Přínos/cílové kompetence Střední

Více