Algoritmy a struktury neuropočítačů ASN P3
|
|
- Mária Matějková
- před 6 lety
- Počet zobrazení:
Transkript
1 Algoritmy a struktury neuropočítačů ASN P3 SOM algoritmus s učitelem i bez učitele U-matice Vektorová kvantizace Samoorganizující se mapy ( Self-Organizing Maps ) PROČ? Základní myšlenka: analogie s činností mozku různé podněty z jednotlivých orgánů jsou řízeny různými oblastmi mozku Vstupní data vstupují do neuronové sítě jsou zpracovávána zobrazují se v prostoru s nižší dimenzí
2 Podstata činnosti: vstupní erenční vektory se sdružují do skupin podle navzájem podobných vlastností a zobrazují se jako shluky (clustery) v elastické vrstvě mapy dochází ke změně vah komprese informací + zachování topologie a vzdáleností topological preserving maps SOM algoritmus funkce okolí W i (t+1) = W i (t) + h ci (t) [X(t) - W i (t)], i Nc h ci (t) 0, t proces konverguje Obvykle: h ci (t) = h( r c r i ) r c, r i poloha vektorů c, i Nejčastěji: h ci (t) = g(t), pro i N c h ci (t) = 0, pro i Nc
3 Adaptace W i (t+1) = W i (t) + g(t) [X(t) W i (t)], i Nc W i (t+1) = W i (t), pro všechna ostatní i N c je zvolené okolí vítězného neuronu, t je okamžitý čas, g(t) je skalár představující rychlost učení (gains) 0 < g(t) < 1 pouze doporučení přesnost mapování závisí na počtu iterací ( 500-krát více kroků než je neuronů v mapě) počet iterací je řádově 10 5 pro prvních 1000 iterací je obvykle g(t) konstantní, dále se monotónně snižuje (lineárně, exponenciálně, skokově, )
4 např. g(t) = 0.9 (1- t/1000), h ci (t) = g(t). exp {-[( r c r i ) 2 ] / 2a 2 (t)} konečná hodnota kolem 0.01 Gaussovská funkce, a šířka shluku volba velikosti okolí N c = N c (t) malé okolí na začátku procesu nejlépe neúplná mapa!!! minimálně 1/2 velikosti mapy SOM s učitelem nová varianta Kohonenova učení algoritmus učení je podobný SOM nové: do originálních trénovacích dat je přidán další parametr informace o třídě, do které vzorek náleží
5 dimenze vstupního vektoru se zvětší o počet tříd, do kterých chceme klasifikovat u každého tréninkového vektoru má jeden z nových parametrů hodnotu '1' (to odpovídá přidané třídě), ostatní mají hodnotu '0' Důvod: zlepšení klasifikace Příklad Topologie sítě je 12 x neuronů Trénování sítě: počet dětí je 20, věk 6-9 let, děvčata i chlapci trénují se vyslovené samohlásky 1810 vektorů všech samohlásek Řečový korpus: děti ze ZŠ, nejsou rozděleny podle věku. Důvod experimentu: ověření hypotézy o posunu v namapování samohlásek u nemocných dětí, případně dospělých jedinců Chyba na obrázcích je definována jako podíl (počet správných umístění) / (počet všech umístění) Jedná se o namapování konkrétní samohlásky do vokalického trojúhelníku vzniklého po natrénování promluv zdravých dětí.
6 Klasifikace samohlásky a muže Počet testovacích vektorů : 95 a m samohláska a vyslovená mužem Správná klasifikace bílá barva, chybná klasifikace černá barva KSOM chyba 60% SOM s učitelem chyba 44%
7 Klasifikace samohlásky a ženy Počet testovacích vektorů : 64 a z samohláska a vyslovená ženou Správná klasifikace bílá barva, chybná klasifikace černá barva KSOM chyba 43% SOM s učitelem chyba 40%
8 Klasifikace samohlásky a zdravých dětí Počet testovacích vektorů : 44 KSOM chyba 21% SOM s učitelem chyba 33%
9 Klasifikace samohlásky a nemocného dítěte č.1 Počet testovacích vektorů : 25 a 1n samohláska a vyslovená nemocným dítětem č.1 správná klasifikace bílá barva, chybná klasifikace černá barva KSOM chyba 82% SOM s učitelem chyba 58%
10 Klasifikace samohlásky a nemocného dítěte č.2 Počet testovacích vektorů : 47 a 2n samohláska a vyslovená nemocným dítětem č.2 správná klasifikace bílá barva, chybná klasifikace černá barva KSOM chyba 81% SOM s učitelem chyba 72%
11 Důvod: vizualizace shluků U - matice matice sjednocených vzdáleností jsou zobrazeny vzdálenosti mezi neurony a jejich sousedy vzdálenost mezi sousedními neurony je po výpočtu znázorněna různými barvami tmavé barvy mezi neurony velké vzdálenosti reprezentují velké rozdíly (mezery) ve vstupním prostoru světlé barvy mezi neurony vektory jsou ve vstupním prostoru blízko sebe Světlé oblasti reprezentují clustery a tmavé oblasti reprezentují hranice clusterů. Clustery jsou snadněji identifikovatelné. a) KSOM b) SOM s učitelem
12 Vektorová kvantizace (VQ) (Vector Quantization) Aproximace analogové hodnoty jednou z konečného počtu číselných hodnot = = kvantizace skalární - aproximuje jednotlivé parametry vektorová - aproximuje více parametrů současně Použití: pro kompresi dat Kvantizace je základ vektorových kvantizérů zobrazení množiny vektorů do předem neznámého počtu konečných skupin (tříd).
13 Rozdělení trénovací množiny na n oblastí Centroidy reprezentují jednotlivé oblasti Voronoiova mozaika (Voronoi tessellation) Používá se při rozpoznání vzorků pro ilustraci vektorové kvantizace. 2-dimenzionální prostor s konečným počtem kódových (erenčních) vektorů (bodů) souřadnice vymezuje hranice shluků pomocí po částech lineárních úseků Vektory v ohraničené části Voronoiovy mozaiky, které mají stejný erenční vektor, jako jejich nejbližší soused tvoří Voronoiovu množinu. Topologické uspořádání Vorinoiovy mozaiky je ekvivalentní množině okolí vítězů ze SOM
14 X 2 X 1 Voronoiova mřížka rozděluje 2-D prostor vzorků na oblasti kolem erenčních vektorů
15 Vektorová kvantizace učením ( Learning Vector Qvantization - LVQ ) hybridní neuronová síť kombinuje učení bez učitele a učení s učitelem Použití: klasifikace, jednoduché rozpoznání komprese dat pro přenos dat v digitálním kanálu pro snížení počtu stavů obecně pro možnost adaptivního rozšiřování počtu tříd Definuje kvantizační oblasti mezi sousedními vektory kódové knihy obdoba Voronoiových množin u klasické VQ
16 Hranice tříd : úseky po částech lineární Optimální hranice se určí odklonem všech váhových vektorů sítě, které leží mezi dvěma třídami a jejich přesunem blíž k jedné z nich. Není nutné počítat rozložení pravděpodobnosti!!! Výhoda oproti klasickému přístupu v Bayesově teorii pravděpodobnosti. Postup učení LVQ vypočteme centroidy pomocí samoorganizace charakterizují pravděpodobné třídy síti jsou opětovně předloženy trénovací vzory s informací o jejich příslušnosti k třídě určíme četnost, s jakou je každý vektor sítě nejblíže k trénovacím vektorům každé třídy přiřadíme třídu, která se vyskytuje nejčastěji
17 Pokud vzor nelze zařadit do již existující třídy, vytvoří se třída nová. Klasifikace do dvou tříd w i2 w i1 erenční vektory z třídy S1 erenční vektory z třídy S2 rozdělovací hranice určená podle LVQ Bayesova hranice
18 Varianty LVQ LVQ1 : minimalizace stupně chybné klasifikace W i jsou kódové vektory označující jednotlivé třídy vzorek x se umístí do stejné třídy, bude- li platit: c = arg mini X - W i Index pro nejbližší W i k X je index vítěze, centroidu. W i (t+1) = W c (t)+g(t)[ X (t) W c (t)], X a W c patří do stejné třídy W c (t+1) = W c (t) - g(t) [X (t) W c (t)], X a W c nepatří do stejné třídy 0< g(t) < 1 rychlost učení W i (t+1) = W i (t), i c
19 OLVQ1: optimalizovaná rychlost učení g(t) pro každý kódový vektor je individuálně modifikována g i (t) W c (t+1) = W c (t) + g c (t) [X(t) W c (t)], je-li X klasifikováno korektně W c (t+1) = W c (t) g c (t) [X(t) W c (t)], je-li X klasifikováno nekorektně W i (t+1) = W i (t), pro i c Pro rychlou konvergenci: W c (t+1) = [1 s (t) g c (t)] W c (t)+s (t) g c (t) X(t) s(t) = +1 pro korektní třídu s(t) = -1 pro nekorektní třídu Rekursívní tvar pro určení optimální hodnoty : g c (t) = [g c (t-1)] / [1+s(t) g c (t-1)]} Pro inicicializační hodnotu g(0) je dobré volit 0.3.
20 Batch LVQ1: W c (t+1) = W c (t)+g (t) s (t) δ ci [X(t) W c (t)] s(t) = +1 s(t) = -1 pro X a W c ze stejné třídy pro X a W c z různých tříd δ ci je Kroneckerovo delta, δ ci = 1 pro c = i, δ ci = 0 pro c i Pro každé i se určí nový erenční vektor ve tvaru W i * = t' s(t') X(t') / t' s(t') kde t' jsou vzorky v uzlu i. LVQ2 a LVQ2.1: redukce počtu bodů rozložení w i v blízkosti hraničních ploch. Rozdělení do tříd je stejné, jako u LVQ1, ale při učení existují 2 kódové knihy W i a W j.
21 Třídy se nacházejí ve vektorovém prostoru blízko sebe. Vektor X se musí klasifikovat do správné třídy, ale současně musí patřit do oblasti hodnot označených okénkem. min d d i j, d d j i s s 1 1 win win Euklideovské vzdálenosti X od W i a W j, Obvykle 0.2 < win < 0.3 relativní šířka okénka experimentálně
22 LVQ2.1 dovoluje, aby buď W i nebo W j byly uzavřené kódové knihy v LVQ2 to platilo pouze pro jednu z nich W c (t+1) = W c (t)+g(t) [X(t)- W c (t)], X (t) B k, X(t) S k W c (t+1) = W c (t)- g(t) [X(t) W c (t)], W i (t+1) = W i (t), i c X(t) B k, X(t) S r B k představuje Bayesovskou třídu. Ke korekci dochází jen pro X(t) z okna na špatné straně poloroviny.
23 LVQ3 : optimální umístění kódového vektoru W i (t+1) = W i (t) + g(t) [X(t) W j (t)], X(t) B k, X(t) S k, X(t) win W j (t+1) = W j (t) - g(t) [X(t) - W j (t)], X(t) B k, X(t) S r, X(t) win W k (t+1) = W k (t) ε g(t) [X(t) W k (t)], k {i, j} X(t), W i, W j patří dostejné třídy B k je Bayesovská třída win je šířka okénka 0.1 < ε < 0.5 pro win = 0.2 resp. win = 0.3
24 Optimální hodnota ε závisí přímo úměrně na šířce okénka. Optimální umístění kódových vektorů se během trénování nemění. Rozdíly mezi variantami: liší se mezi sebou v matematickém zápisu rovnic LVQ1 a LVQ3 jsou robustnější procesy pro LVQ1 je možné optimalizovat g(t), dosáhne se rychlejší konvergence LVQ 2 optimalizuje relativní vzdálenost kódových vektorů od hranic tříd, LVQ 2 negarantuje optimální umístění kódových vektorů U všech variant LVQ se definují hranice tříd podle pravidla nejbližšího okolí. Není třeba znát funkci rozložení vzorků jako u klasické VQ.
25 Přesnost klasifikace záleží na: přibližně optimálním počtu vektorů kódové knihy přiřazených k jednotlivým třídám na jejich inicializaci na použitém algoritmu na vhodném g(t) na vhodném kritériu ukončení učení Je vhodné provést inicializaci kódové knihy pomocí SOM. Konečné rozdělení kódových vektorů je totiž známé až po skončení učení!!! Doporučené pořadí: začít variantou LVQ1 nebo OLVQ1. Konvergence: počet iterací rovný 30ti 50ti násobku počtu kódových vektorů. OLVQ1 zrychluje učení. Ostatní varianty je možné navázat na LVQ1 resp. OLVQ1. Učení se ukončuje experimentálně.
Státnice odborné č. 20
Státnice odborné č. 20 Shlukování dat Shlukování dat. Metoda k-středů, hierarchické (aglomerativní) shlukování, Kohonenova mapa SOM Shlukování dat Shluková analýza je snaha o seskupení objektů do skupin
Algoritmy a struktury neuropočítačů ASN - P11
Aplikace UNS při rozpoznání obrazů Základní úloha segmentace obrazu rozdělení obrazu do několika významných oblastí klasifikační úloha, clusterová analýza target Metody Kohonenova metoda KSOM Kohonenova
Algoritmy a struktury neuropočítačů ASN - P2. Topologie neuronových sítí, principy učení Samoorganizující se neuronové sítě Kohonenovy mapy
Algoritmy a struktury neuropočítačů ASN - P2 Topologie neuronových sítí, principy učení Samoorganizující se neuronové sítě Kohonenovy mapy Topologie neuronových sítí (struktura, geometrie, architektura)
Algoritmy a struktury neuropočítačů ASN - P10. Aplikace UNS v biomedicíně
Aplikace UNS v biomedicíně aplikace v medicíně postup při zpracování úloh Aplikace UNS v medicíně Důvod: nalezení exaktnějších, levnějších a snadnějších metod určování diagnóz pro lékaře nalezení šetrnějších
ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT. Institut biostatistiky a analýz
ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT prof. Ing. Jiří Holčík,, CSc. NEURONOVÉ SÍTĚ otázky a odpovědi 1 AKD_predn4, slide 8: Hodnota výstupu závisí na znaménku funkce net i, tedy na tom, zda bude suma
Umělé neuronové sítě
Umělé neuronové sítě 17. 3. 2018 5-1 Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce 5-2 Neuronové aktivační
1. Soutěživé sítě. 1.1 Základní informace. 1.2 Výstupy z učení. 1.3 Jednoduchá soutěživá síť MAXNET
Obsah 1. Soutěživé sítě... 2 1.1 Základní informace... 2 1.2 Výstupy z učení... 2 1.3 Jednoduchá soutěživá síť MAXNET... 2 1.3.1 Organizační dynamika... 2 1.3.2 Adaptační dynamika... 4 1.3.3 Aktivní dynamika...
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.
Lineární klasifikátory
Lineární klasifikátory Lineární klasifikátory obsah: perceptronový algoritmus základní verze varianta perceptronového algoritmu přihrádkový algoritmus podpůrné vektorové stroje Lineární klasifikátor navrhnout
Zpracování biologických signálů umělými neuronovými sítěmi
Zpracování biologických signálů umělými neuronovými sítěmi Jana Tučková Katedra teorie obvodů - Laboratoř umělých neuronových sítí FEL ČVUT v Praze tuckova@fel.cvut.cz http://amber.feld.cvut.cz/user/tuckova
Algoritmy a struktury neuropočítačů ASN P4. Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby
Algoritmy a struktury neuropočítačů ASN P4 Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby Vrstevnatá struktura - vícevrstvé NN (Multilayer NN, MLNN) vstupní vrstva (input layer)
Neuronové sítě Ladislav Horký Karel Břinda
Neuronové sítě Ladislav Horký Karel Břinda Obsah Úvod, historie Modely neuronu, aktivační funkce Topologie sítí Principy učení Konkrétní typy sítí s ukázkami v prostředí Wolfram Mathematica Praktické aplikace
5. Umělé neuronové sítě. neuronové sítě. Umělé Ondřej Valenta, Václav Matoušek. 5-1 Umělá inteligence a rozpoznávání, LS 2015
Umělé neuronové sítě 5. 4. 205 _ 5- Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce _ 5-2 Neuronové aktivační
Úloha - rozpoznávání číslic
Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání
Už bylo: Učení bez učitele (unsupervised learning) Kompetitivní modely
Učení bez učitele Už bylo: Učení bez učitele (unsupervised learning) Kompetitivní modely Klastrování Kohonenovy mapy LVQ (Učení vektorové kvantizace) Zbývá: Hybridní modely (kombinace učení bez učitele
NG C Implementace plně rekurentní
NG C Implementace plně rekurentní neuronové sítě v systému Mathematica Zdeněk Buk, Miroslav Šnorek {bukz1 snorek}@fel.cvut.cz Neural Computing Group Department of Computer Science and Engineering, Faculty
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
Samoučící se neuronová síť - SOM, Kohonenovy mapy
Samoučící se neuronová síť - SOM, Kohonenovy mapy Antonín Vojáček, 14 Květen, 2006-10:33 Měření a regulace Samoorganizující neuronové sítě s učením bez učitele jsou stále více využívány pro rozlišení,
Miroslav Čepek
Vytěžování Dat Přednáška 5 Self Organizing Map Miroslav Čepek Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 21.10.2014 Miroslav Čepek
Trénování sítě pomocí učení s učitelem
Trénování sítě pomocí učení s učitelem! předpokládá se, že máme k dispozici trénovací množinu, tj. množinu P dvojic [vstup x p, požadovaný výstup u p ]! chceme nastavit váhy a prahy sítě tak, aby výstup
3. Vícevrstvé dopředné sítě
3. Vícevrstvé dopředné sítě! Jsou tvořeny jednou nebo více vrstvami neuronů (perceptronů). Výstup jedné vrstvy je přitom připojen na vstup následující vrstvy a signál se v pracovní fázi sítě šíří pouze
Vytěžování znalostí z dat
Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 1/50 Vytěžování znalostí z dat Pavel Kordík Department of Computer Systems Faculty of Information Technology Czech Technical
Klasifikace a rozpoznávání. Lineární klasifikátory
Klasifikace a rozpoznávání Lineární klasifikátory Opakování - Skalární součin x = x1 x 2 w = w T x = w 1 w 2 x 1 x 2 w1 w 2 = w 1 x 1 + w 2 x 2 x. w w T x w Lineární klasifikátor y(x) = w T x + w 0 Vyber
Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc
Neuronové sítě a možnosti jejich využití Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc 1. Biologický neuron Osnova 2. Neuronové sítě Umělý neuron
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
AVDAT Mnohorozměrné metody, metody klasifikace
AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných
Rozdělování dat do trénovacích a testovacích množin
Rozdělování dat do trénovacích a testovacích množin Marcel Jiřina Rozpoznávání je důležitou metodou při zpracování reálných úloh. Rozpoznávání je definováno dvěma kroky a to pořízením dat o reálném rozpoznávaném
Přednáška 13 Redukce dimenzionality
Vytěžování Dat Přednáška 13 Redukce dimenzionality Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL) Redukce dimenzionality 1 /
Kybernetika a umělá inteligence, cvičení 10/11
Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu
Statistická teorie učení
Statistická teorie učení Petr Havel Marek Myslivec přednáška z 9. týdne 1 Úvod Představme si situaci výrobce a zákazníka, který si u výrobce objednal algoritmus rozpoznávání. Zákazník dodal experimentální
Dynamické Kohonenovy mapy a jejich struktura
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Bc. Radek Křižka Dynamické Kohonenovy mapy a jejich struktura Katedra teoretické informatiky a matematické logiky Vedoucí diplomové
5. Umělé neuronové sítě. Neuronové sítě
Neuronové sítě Přesný algoritmus práce přírodních neuronových systémů není doposud znám. Přesto experimentální výsledky na modelech těchto systémů dávají dnes velmi slibné výsledky. Tyto systémy, včetně
výběr charakteristických rysů a zkušeností ze vstupních signálů,
Kapitola 3 Algoritmy učení Proces učení (trénink) je ve své podstatě optimalizační proces, ve kterém optimalizujeme tzv. účelovou funkci. To je chybová funkce při učení s učitelem (vyjadřuje vzájemnou
Asociativní sítě (paměti) Asociace známého vstupního vzoru s daným výstupním vzorem. Typická funkce 1 / 44
Asociativní paměti Asociativní sítě (paměti) Cíl učení Asociace známého vstupního vzoru s daným výstupním vzorem Okoĺı známého vstupního vzoru x by se mělo také zobrazit na výstup y odpovídající x správný
Úvod Příklad Výpočty a grafické znázornění. Filip Habr. České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská
Neuronové sítě-delta učení Filip Habr České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská 30. března 2009 Obsah prezentace Obsah prezentace Delta učení 1 Teorie k delta učení 2
UČENÍ BEZ UČITELE. Václav Hlaváč
UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group
Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme
Bayesovská klasifikace digitálních obrazů
Výzkumný ústav geodetický, topografický a kartografický Bayesovská klasifikace digitálních obrazů Výzkumná zpráva č. 1168/2010 Lubomír Soukup prosinec 2010 1 Úvod V průběhu nedlouhého historického vývoje
Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení.
Základní pojmy z oblasti neuronových sítí Zde je uveden přehled některých základních pojmů z oblasti neuronových sítí. Tento přehled usnadní studium a pochopení předmětu. ADALINE - klasická umělá neuronová
Moderní systémy pro získávání znalostí z informací a dat
Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:
Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011
Iterační metody řešení soustav lineárních rovnic Michal Čihák 27. prosince 2011 Přímé metody řešení soustav lineárních rovnic V přednáškách z lineární algebry jste se seznámili s několika metodami řešení
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
MODELOVÁNÍ BONITY OBCÍ POMOCÍ KOHONENOVÝCH SAMOORGANIZUJÍCÍCH SE MAP A LVQ NEURONOVÝCH SÍTÍ
MODELOVÁNÍ BONITY OBCÍ POMOCÍ KOHONENOVÝCH SAMOORGANIZUJÍCÍCH SE MAP A LVQ NEURONOVÝCH SÍTÍ Vladimír Olej, Petr Hájek Univerzita Pardubice, Fakulta ekonomicko-správní, informatiky Ústav systémového inženýrství
Klasifikace podle nejbližších sousedů Nearest Neighbour Classification [k-nn]
Klasifikace podle nejbližších sousedů Nearest Neighbour Classification [k-nn] Michal Houdek, Tomáš Svoboda, Tomáš Procházka 6. června 2001 1 Obsah 1 Úvod 3 2 Definice a postup klasifikace 3 3 Příklady
Připomenutí co je to soustava lineárních rovnic
Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. LINEÁRNÍ KLASIFIKACE PRINCIPY KLASIFIKACE pomocí diskriminačních funkcí funkcí,
Numerické metody a programování. Lekce 8
Numerické metody a programování Lekce 8 Optimalizace hledáme bod x, ve kterém funkce jedné nebo více proměnných f x má minimum (maximum) maximalizace f x je totéž jako minimalizace f x Minimum funkce lokální:
GIS Geografické informační systémy
GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu
Vícerozměrné statistické metody
Vícerozměrné statistické metody Shluková analýza Jiří Jarkovský, Simona Littnerová FSTA: Pokročilé statistické metody Typy shlukových analýz Shluková analýza: cíle a postupy Shluková analýza se snaží o
Technická kybernetika. Obsah. Principy zobrazení, sběru a uchování dat. Měřicí řetězec. Principy zobrazení, sběru a uchování dat
Akademický rok 2016/2017 Připravil: Radim Farana Technická kybernetika Principy zobrazení, sběru a uchování dat 2 Obsah Principy zobrazení, sběru a uchování dat strana 3 Snímač Měřicí řetězec Měřicí obvod
Co je obsahem numerických metod?
Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem
Newtonova metoda. 23. října 2012
Hledání kořenů rovnic jedné reálné proměnné Newtonova metoda Michal Čihák 23. října 2012 Newtonova metoda (metoda tečen) využívá myšlenku, že tečna v daném bodě grafu funkce nejlépe aproximuje graf funkce
Detekce kartografického zobrazení z množiny
Detekce kartografického zobrazení z množiny bodů Tomáš Bayer Katedra aplikované geoinformatiky Albertov 6, Praha 2 bayertom@natur.cuni.cz Abstrakt. Detekce kartografického zobrazení z množiny bodů o známých
Fakulta chemicko-technologická Katedra analytické chemie. 3.2 Metody s latentními proměnnými a klasifikační metody
Fakulta chemicko-technologická Katedra analytické chemie 3.2 Metody s latentními proměnnými a klasifikační metody Vypracoval: Ing. Tomáš Nekola Studium: licenční Datum: 21. 1. 2008 Otázka 1. Vypočtěte
Modifikace algoritmu FEKM
Modifikace algoritmu FEKM Marta Žambochová Katedra matematiky a informatiky Fakulta sociálně ekonomická Univerzita J. E. Purkyně v Ústí nad Labem ROBUST 9. 14. září 2012 Němčičky Motivace Potřeba metod
Obr. 1: Vizualizace dat pacientů, kontrolních subjektů a testovacího subjektu.
Řešení příkladu - klasifikace testovacího subjektu pomocí Bayesova klasifikátoru: ata si vizualizujeme (Obr. ). Objem mozkových komor 9 8 7 6 5 pacienti kontroly testovací subjekt 5 6 Objem hipokampu Obr.
Voronoiův diagram. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta
12 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info Definice V( P) nad množinou bodů P { p v rovině 1,
Pravděpodobně skoro správné. PAC učení 1
Pravděpodobně skoro správné (PAC) učení PAC učení 1 Výpočetní teorie strojového učení Věta o ošklivém kačátku. Nechť E je klasifikovaná trénovací množina pro koncept K, který tvoří podmnožinu konečného
Základní spádové metody
Základní spádové metody Petr Tichý 23. října 2013 1 Metody typu line search Problém Idea metod min f(x), f : x R Rn R. n Dána počáteční aproximace x 0. Iterační proces (krok k): (a) zvol směr d k, (b)
SLAM. Simultaneous localization and mapping. Ing. Aleš Jelínek 2015
SLAM Simultaneous localization and mapping Ing. Aleš Jelínek 2015 Komplexní inovace studijních programů a zvyšování kvality výuky na FEKT VUT v Brně OP VK CZ.1.07/2.2.00/28.0193 Obsah Proč sebelokalizace,
Rosenblattův perceptron
Perceptron Přenosové funkce Rosenblattův perceptron Rosenblatt r. 1958. Inspirace lidským okem Podle fyziologického vzoru je třívrstvá: Vstupní vrstva rozvětvovací jejím úkolem je mapování dvourozměrného
ZÁPOČTOVÁ PRÁCE Informace a neurčitost. SOMPak
UNIVERZITA PALACKÉHO V OLOMOUCI KATEDRA MATEMATICKÉ INFORMATIKY ZÁPOČTOVÁ PRÁCE Informace a neurčitost SOMPak Říjen 2005 Pavel Kubát Informatika V. ročník Abstrakt The objective of this work is describe
GIS Geografické informační systémy
GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu
Optimální rozdělující nadplocha 4. Support vector machine. Adaboost.
Optimální rozdělující nadplocha. Support vector machine. Adaboost. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics Opakování Lineární diskriminační
Algoritmy a struktury neuropočítačů ASN - P14. Neuropočítače
Neuropočítače speciální výpočetní prostředky pro urychlení výpočtů neuronových sítí implementace zjednodušených algoritmů obvykle celočíselná aritmetika v kombinaci s normováním vstupních vektorů Rozdělení
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Modely vyhledávání informací 4 podle technologie. 1) Booleovský model. George Boole 1815 1864. Aplikace booleovské logiky
Modely vyhledávání informací 4 podle technologie 1) Booleovský model 1) booleovský 2) vektorový 3) strukturní 4) pravděpodobnostní a další 1 dokumenty a dotazy jsou reprezentovány množinou indexových termů
2. RBF neuronové sítě
2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně
Pokročilé metody učení neuronových sítí. Tomáš Řehořek tomas.rehorek@fit.cvut.cz
Pokročilé metody učení neuronových sítí Tomáš Řehořek tomas.rehorek@fit.cvut.cz Problém učení neuronové sítě (1) Nechť N = (V, I, O, S, w, f, h) je dopředná neuronová síť, kde: V je množina neuronů I V
PV021: Neuronové sítě. Tomáš Brázdil
1 PV021: Neuronové sítě Tomáš Brázdil Cíl předmětu 2 Na co se zaměříme Základní techniky a principy neuronových sítí (NS) Přehled základních modelů NS a jejich použití Co si (doufám) odnesete Znalost základních
cv3.tex. Vzorec pro úplnou pravděpodobnost
3 cvičení - pravděpodobnost 2102018 18cv3tex n i=1 Vzorec pro úplnou pravděpodobnost Systém náhodných jevů nazýváme úplným, jestliže pro něj platí: B i = 1 a pro i k je B i B k = 0 Jestliže je (Ω, A, P
Numerická stabilita algoritmů
Numerická stabilita algoritmů Petr Tichý 9. října 2013 1 Numerická stabilita algoritmů Pravidla v konečné aritmetice Pro počítání v konečné aritmetice počítače platí určitá pravidla, která jsou důležitá
přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat
Zkouška ISR 2013 přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat 1. Rozdílné principy u induktivního a deduktivního
Matematická analýza III.
1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )
Semestrální práce z KIV/PRO. Využití Voroného diagramu pro inicializaci K-means
Semestrální práce z KIV/PRO Využití Voroného diagramu pro inicializaci K-means shlukování Jméno Příjmení (Osobní číslo) 11. prosince 2014 Obsah 1 Úvod 2 2 Vysvětlení pojmů 3 2.1 K-means shlukování.........................
Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma
Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky
l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky
Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení
Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice
8-9. Pravděpodobnostní rozhodování a predikce. Gerstnerova laboratoř katedra kybernetiky fakulta elektrotechnická ČVUT v Praze
KYBERNETIKA A UMĚLÁ INTELIGENCE 8-9. Pravděpodobnostní rozhodování a predikce laboratory Gerstner Gerstnerova laboratoř katedra kybernetiky fakulta elektrotechnická ČVUT v Praze Rozhodování za neurčitosti
8. přednáška z předmětu GIS1 Rastrový datový model a mapová algebra
8. přednáška z předmětu GIS1 Rastrový datový model a mapová algebra Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky z www.gis.zcu.cz Předmět KMA/UGI,
Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012
Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012 Problém hledání kořenů rovnice f(x) = 0 jeden ze základních problémů numerické matematiky zároveň i jeden
Algoritmy a struktury neuropočítačů ASN - P1
Algoritmy a struktury neuropočítačů ASN - P1 http://amber.feld.cvut.cz/ssc www.janatuckova.cz Prof.Ing. Jana Tučková,CSc. Katedra teorie obvodů K331 kancelář: 614, B3 tel.: 224 352 098 e-mail: tuckova@fel.cvut.cz
Typy umělých neuronových sítí
Tp umělých neuronových sítí umělá neuronová síť vznikne spojením jednotlivých modelů neuronů výsledná funkce sítě je určena způsobem propojení jednotlivých neuronů, váhami těchto spojení a způsobem činnosti
Asociační i jiná. Pravidla. (Ch )
Asociační i jiná Pravidla (Ch. 14 +...) Učení bez učitele Nemáme cílovou třídu Y, G; máme N pozorování což jsou p-dimenzionální vektory se sdruženou pravděpodobností chceme odvozovat vlastnosti. Pro málo
Univerzita Pardubice Fakulta ekonomicko-správní Ústav systémového inženýrství a informatiky
Univerzita Pardubice Fakulta ekonomicko-správní Ústav systémového inženýrství a informatiky Modelování dat charakterizujících virtuální server pomocí Kohonenových samoorganizujících se map Bc. Ivana Broklová
Matematika PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí
Úvod do GIS. Prostorová data II. část. Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium.
Úvod do GIS Prostorová data II. část Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Karel Jedlička Prostorová data Analogová prostorová data Digitální
stránkách přednášejícího.
Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce
Pravděpodobnost, náhoda, kostky
Pravděpodobnost, náhoda, kostky Radek Pelánek IV122 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností připomenutí, souvislosti
Dálkový průzkum Země. Klasifikace obrazu
Dálkový průzkum Země Klasifikace obrazu Neřízená klasifikace v IDRISI Modul CLUSTER (Image Processing / Hard Classifiers) využívá techniku histogramových vrcholů pásma pro klasifikaci výsledný obraz volba
Ambasadoři přírodovědných a technických oborů. Ing. Michal Řepka Březen - duben 2013
Ambasadoři přírodovědných a technických oborů Ing. Michal Řepka Březen - duben 2013 Umělé neuronové sítě Proč právě Neuronové sítě? K čemu je to dobré? Používá se to někde v praxi? Úvod Umělé neuronové
Zpracování digitalizovaného obrazu (ZDO) - Popisy III
Zpracování digitalizovaného obrazu (ZDO) - Popisy III Statistické popisy tvaru a vzhledu Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování
Neuropočítače. podnět. vnímání (senzory)
Neuropočítače Princip inteligentního systému vnímání (senzory) podnět akce (efektory) poznání plánování usuzování komunikace Typické vlastnosti inteligentního systému: schopnost vnímat podněty z okolního
Úvod do mobilní robotiky AIL028
SLAM - souběžná lokalizace a mapování {md zw} at robotika.cz http://robotika.cz/guide/umor07/cs 10. ledna 2008 1 2 3 SLAM intro Obsah SLAM = Simultaneous Localization And Mapping problém typu slepice-vejce
Využití metod strojového učení v bioinformatice David Hoksza
Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace
časovém horizontu na rozdíl od experimentu lépe odhalit chybné poznání reality.
Modelování dynamických systémů Matematické modelování dynamických systémů se využívá v různých oborech přírodních, technických, ekonomických a sociálních věd. Použití matematického modelu umožňuje popsat
Řešení příkladu - klasifikace testovacího subjektu podle minimální vzdálenosti:
Řešení příkladu - klasifikace testovacího subjektu podle minimální vzdálenosti: Postup: I) zvolení metriky pro výpočet vzdáleností dvou bodů II) zvolení metriky pro určení vzdálenosti mezi dvěma množinami
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u