Algoritmy a struktury neuropočítačů ASN P3

Rozměr: px
Začít zobrazení ze stránky:

Download "Algoritmy a struktury neuropočítačů ASN P3"

Transkript

1 Algoritmy a struktury neuropočítačů ASN P3 SOM algoritmus s učitelem i bez učitele U-matice Vektorová kvantizace Samoorganizující se mapy ( Self-Organizing Maps ) PROČ? Základní myšlenka: analogie s činností mozku různé podněty z jednotlivých orgánů jsou řízeny různými oblastmi mozku Vstupní data vstupují do neuronové sítě jsou zpracovávána zobrazují se v prostoru s nižší dimenzí

2 Podstata činnosti: vstupní erenční vektory se sdružují do skupin podle navzájem podobných vlastností a zobrazují se jako shluky (clustery) v elastické vrstvě mapy dochází ke změně vah komprese informací + zachování topologie a vzdáleností topological preserving maps SOM algoritmus funkce okolí W i (t+1) = W i (t) + h ci (t) [X(t) - W i (t)], i Nc h ci (t) 0, t proces konverguje Obvykle: h ci (t) = h( r c r i ) r c, r i poloha vektorů c, i Nejčastěji: h ci (t) = g(t), pro i N c h ci (t) = 0, pro i Nc

3 Adaptace W i (t+1) = W i (t) + g(t) [X(t) W i (t)], i Nc W i (t+1) = W i (t), pro všechna ostatní i N c je zvolené okolí vítězného neuronu, t je okamžitý čas, g(t) je skalár představující rychlost učení (gains) 0 < g(t) < 1 pouze doporučení přesnost mapování závisí na počtu iterací ( 500-krát více kroků než je neuronů v mapě) počet iterací je řádově 10 5 pro prvních 1000 iterací je obvykle g(t) konstantní, dále se monotónně snižuje (lineárně, exponenciálně, skokově, )

4 např. g(t) = 0.9 (1- t/1000), h ci (t) = g(t). exp {-[( r c r i ) 2 ] / 2a 2 (t)} konečná hodnota kolem 0.01 Gaussovská funkce, a šířka shluku volba velikosti okolí N c = N c (t) malé okolí na začátku procesu nejlépe neúplná mapa!!! minimálně 1/2 velikosti mapy SOM s učitelem nová varianta Kohonenova učení algoritmus učení je podobný SOM nové: do originálních trénovacích dat je přidán další parametr informace o třídě, do které vzorek náleží

5 dimenze vstupního vektoru se zvětší o počet tříd, do kterých chceme klasifikovat u každého tréninkového vektoru má jeden z nových parametrů hodnotu '1' (to odpovídá přidané třídě), ostatní mají hodnotu '0' Důvod: zlepšení klasifikace Příklad Topologie sítě je 12 x neuronů Trénování sítě: počet dětí je 20, věk 6-9 let, děvčata i chlapci trénují se vyslovené samohlásky 1810 vektorů všech samohlásek Řečový korpus: děti ze ZŠ, nejsou rozděleny podle věku. Důvod experimentu: ověření hypotézy o posunu v namapování samohlásek u nemocných dětí, případně dospělých jedinců Chyba na obrázcích je definována jako podíl (počet správných umístění) / (počet všech umístění) Jedná se o namapování konkrétní samohlásky do vokalického trojúhelníku vzniklého po natrénování promluv zdravých dětí.

6 Klasifikace samohlásky a muže Počet testovacích vektorů : 95 a m samohláska a vyslovená mužem Správná klasifikace bílá barva, chybná klasifikace černá barva KSOM chyba 60% SOM s učitelem chyba 44%

7 Klasifikace samohlásky a ženy Počet testovacích vektorů : 64 a z samohláska a vyslovená ženou Správná klasifikace bílá barva, chybná klasifikace černá barva KSOM chyba 43% SOM s učitelem chyba 40%

8 Klasifikace samohlásky a zdravých dětí Počet testovacích vektorů : 44 KSOM chyba 21% SOM s učitelem chyba 33%

9 Klasifikace samohlásky a nemocného dítěte č.1 Počet testovacích vektorů : 25 a 1n samohláska a vyslovená nemocným dítětem č.1 správná klasifikace bílá barva, chybná klasifikace černá barva KSOM chyba 82% SOM s učitelem chyba 58%

10 Klasifikace samohlásky a nemocného dítěte č.2 Počet testovacích vektorů : 47 a 2n samohláska a vyslovená nemocným dítětem č.2 správná klasifikace bílá barva, chybná klasifikace černá barva KSOM chyba 81% SOM s učitelem chyba 72%

11 Důvod: vizualizace shluků U - matice matice sjednocených vzdáleností jsou zobrazeny vzdálenosti mezi neurony a jejich sousedy vzdálenost mezi sousedními neurony je po výpočtu znázorněna různými barvami tmavé barvy mezi neurony velké vzdálenosti reprezentují velké rozdíly (mezery) ve vstupním prostoru světlé barvy mezi neurony vektory jsou ve vstupním prostoru blízko sebe Světlé oblasti reprezentují clustery a tmavé oblasti reprezentují hranice clusterů. Clustery jsou snadněji identifikovatelné. a) KSOM b) SOM s učitelem

12 Vektorová kvantizace (VQ) (Vector Quantization) Aproximace analogové hodnoty jednou z konečného počtu číselných hodnot = = kvantizace skalární - aproximuje jednotlivé parametry vektorová - aproximuje více parametrů současně Použití: pro kompresi dat Kvantizace je základ vektorových kvantizérů zobrazení množiny vektorů do předem neznámého počtu konečných skupin (tříd).

13 Rozdělení trénovací množiny na n oblastí Centroidy reprezentují jednotlivé oblasti Voronoiova mozaika (Voronoi tessellation) Používá se při rozpoznání vzorků pro ilustraci vektorové kvantizace. 2-dimenzionální prostor s konečným počtem kódových (erenčních) vektorů (bodů) souřadnice vymezuje hranice shluků pomocí po částech lineárních úseků Vektory v ohraničené části Voronoiovy mozaiky, které mají stejný erenční vektor, jako jejich nejbližší soused tvoří Voronoiovu množinu. Topologické uspořádání Vorinoiovy mozaiky je ekvivalentní množině okolí vítězů ze SOM

14 X 2 X 1 Voronoiova mřížka rozděluje 2-D prostor vzorků na oblasti kolem erenčních vektorů

15 Vektorová kvantizace učením ( Learning Vector Qvantization - LVQ ) hybridní neuronová síť kombinuje učení bez učitele a učení s učitelem Použití: klasifikace, jednoduché rozpoznání komprese dat pro přenos dat v digitálním kanálu pro snížení počtu stavů obecně pro možnost adaptivního rozšiřování počtu tříd Definuje kvantizační oblasti mezi sousedními vektory kódové knihy obdoba Voronoiových množin u klasické VQ

16 Hranice tříd : úseky po částech lineární Optimální hranice se určí odklonem všech váhových vektorů sítě, které leží mezi dvěma třídami a jejich přesunem blíž k jedné z nich. Není nutné počítat rozložení pravděpodobnosti!!! Výhoda oproti klasickému přístupu v Bayesově teorii pravděpodobnosti. Postup učení LVQ vypočteme centroidy pomocí samoorganizace charakterizují pravděpodobné třídy síti jsou opětovně předloženy trénovací vzory s informací o jejich příslušnosti k třídě určíme četnost, s jakou je každý vektor sítě nejblíže k trénovacím vektorům každé třídy přiřadíme třídu, která se vyskytuje nejčastěji

17 Pokud vzor nelze zařadit do již existující třídy, vytvoří se třída nová. Klasifikace do dvou tříd w i2 w i1 erenční vektory z třídy S1 erenční vektory z třídy S2 rozdělovací hranice určená podle LVQ Bayesova hranice

18 Varianty LVQ LVQ1 : minimalizace stupně chybné klasifikace W i jsou kódové vektory označující jednotlivé třídy vzorek x se umístí do stejné třídy, bude- li platit: c = arg mini X - W i Index pro nejbližší W i k X je index vítěze, centroidu. W i (t+1) = W c (t)+g(t)[ X (t) W c (t)], X a W c patří do stejné třídy W c (t+1) = W c (t) - g(t) [X (t) W c (t)], X a W c nepatří do stejné třídy 0< g(t) < 1 rychlost učení W i (t+1) = W i (t), i c

19 OLVQ1: optimalizovaná rychlost učení g(t) pro každý kódový vektor je individuálně modifikována g i (t) W c (t+1) = W c (t) + g c (t) [X(t) W c (t)], je-li X klasifikováno korektně W c (t+1) = W c (t) g c (t) [X(t) W c (t)], je-li X klasifikováno nekorektně W i (t+1) = W i (t), pro i c Pro rychlou konvergenci: W c (t+1) = [1 s (t) g c (t)] W c (t)+s (t) g c (t) X(t) s(t) = +1 pro korektní třídu s(t) = -1 pro nekorektní třídu Rekursívní tvar pro určení optimální hodnoty : g c (t) = [g c (t-1)] / [1+s(t) g c (t-1)]} Pro inicicializační hodnotu g(0) je dobré volit 0.3.

20 Batch LVQ1: W c (t+1) = W c (t)+g (t) s (t) δ ci [X(t) W c (t)] s(t) = +1 s(t) = -1 pro X a W c ze stejné třídy pro X a W c z různých tříd δ ci je Kroneckerovo delta, δ ci = 1 pro c = i, δ ci = 0 pro c i Pro každé i se určí nový erenční vektor ve tvaru W i * = t' s(t') X(t') / t' s(t') kde t' jsou vzorky v uzlu i. LVQ2 a LVQ2.1: redukce počtu bodů rozložení w i v blízkosti hraničních ploch. Rozdělení do tříd je stejné, jako u LVQ1, ale při učení existují 2 kódové knihy W i a W j.

21 Třídy se nacházejí ve vektorovém prostoru blízko sebe. Vektor X se musí klasifikovat do správné třídy, ale současně musí patřit do oblasti hodnot označených okénkem. min d d i j, d d j i s s 1 1 win win Euklideovské vzdálenosti X od W i a W j, Obvykle 0.2 < win < 0.3 relativní šířka okénka experimentálně

22 LVQ2.1 dovoluje, aby buď W i nebo W j byly uzavřené kódové knihy v LVQ2 to platilo pouze pro jednu z nich W c (t+1) = W c (t)+g(t) [X(t)- W c (t)], X (t) B k, X(t) S k W c (t+1) = W c (t)- g(t) [X(t) W c (t)], W i (t+1) = W i (t), i c X(t) B k, X(t) S r B k představuje Bayesovskou třídu. Ke korekci dochází jen pro X(t) z okna na špatné straně poloroviny.

23 LVQ3 : optimální umístění kódového vektoru W i (t+1) = W i (t) + g(t) [X(t) W j (t)], X(t) B k, X(t) S k, X(t) win W j (t+1) = W j (t) - g(t) [X(t) - W j (t)], X(t) B k, X(t) S r, X(t) win W k (t+1) = W k (t) ε g(t) [X(t) W k (t)], k {i, j} X(t), W i, W j patří dostejné třídy B k je Bayesovská třída win je šířka okénka 0.1 < ε < 0.5 pro win = 0.2 resp. win = 0.3

24 Optimální hodnota ε závisí přímo úměrně na šířce okénka. Optimální umístění kódových vektorů se během trénování nemění. Rozdíly mezi variantami: liší se mezi sebou v matematickém zápisu rovnic LVQ1 a LVQ3 jsou robustnější procesy pro LVQ1 je možné optimalizovat g(t), dosáhne se rychlejší konvergence LVQ 2 optimalizuje relativní vzdálenost kódových vektorů od hranic tříd, LVQ 2 negarantuje optimální umístění kódových vektorů U všech variant LVQ se definují hranice tříd podle pravidla nejbližšího okolí. Není třeba znát funkci rozložení vzorků jako u klasické VQ.

25 Přesnost klasifikace záleží na: přibližně optimálním počtu vektorů kódové knihy přiřazených k jednotlivým třídám na jejich inicializaci na použitém algoritmu na vhodném g(t) na vhodném kritériu ukončení učení Je vhodné provést inicializaci kódové knihy pomocí SOM. Konečné rozdělení kódových vektorů je totiž známé až po skončení učení!!! Doporučené pořadí: začít variantou LVQ1 nebo OLVQ1. Konvergence: počet iterací rovný 30ti 50ti násobku počtu kódových vektorů. OLVQ1 zrychluje učení. Ostatní varianty je možné navázat na LVQ1 resp. OLVQ1. Učení se ukončuje experimentálně.

Státnice odborné č. 20

Státnice odborné č. 20 Státnice odborné č. 20 Shlukování dat Shlukování dat. Metoda k-středů, hierarchické (aglomerativní) shlukování, Kohonenova mapa SOM Shlukování dat Shluková analýza je snaha o seskupení objektů do skupin

Více

Algoritmy a struktury neuropočítačů ASN - P11

Algoritmy a struktury neuropočítačů ASN - P11 Aplikace UNS při rozpoznání obrazů Základní úloha segmentace obrazu rozdělení obrazu do několika významných oblastí klasifikační úloha, clusterová analýza target Metody Kohonenova metoda KSOM Kohonenova

Více

Algoritmy a struktury neuropočítačů ASN - P2. Topologie neuronových sítí, principy učení Samoorganizující se neuronové sítě Kohonenovy mapy

Algoritmy a struktury neuropočítačů ASN - P2. Topologie neuronových sítí, principy učení Samoorganizující se neuronové sítě Kohonenovy mapy Algoritmy a struktury neuropočítačů ASN - P2 Topologie neuronových sítí, principy učení Samoorganizující se neuronové sítě Kohonenovy mapy Topologie neuronových sítí (struktura, geometrie, architektura)

Více

Algoritmy a struktury neuropočítačů ASN - P10. Aplikace UNS v biomedicíně

Algoritmy a struktury neuropočítačů ASN - P10. Aplikace UNS v biomedicíně Aplikace UNS v biomedicíně aplikace v medicíně postup při zpracování úloh Aplikace UNS v medicíně Důvod: nalezení exaktnějších, levnějších a snadnějších metod určování diagnóz pro lékaře nalezení šetrnějších

Více

ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT. Institut biostatistiky a analýz

ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT. Institut biostatistiky a analýz ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT prof. Ing. Jiří Holčík,, CSc. NEURONOVÉ SÍTĚ otázky a odpovědi 1 AKD_predn4, slide 8: Hodnota výstupu závisí na znaménku funkce net i, tedy na tom, zda bude suma

Více

Umělé neuronové sítě

Umělé neuronové sítě Umělé neuronové sítě 17. 3. 2018 5-1 Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce 5-2 Neuronové aktivační

Více

1. Soutěživé sítě. 1.1 Základní informace. 1.2 Výstupy z učení. 1.3 Jednoduchá soutěživá síť MAXNET

1. Soutěživé sítě. 1.1 Základní informace. 1.2 Výstupy z učení. 1.3 Jednoduchá soutěživá síť MAXNET Obsah 1. Soutěživé sítě... 2 1.1 Základní informace... 2 1.2 Výstupy z učení... 2 1.3 Jednoduchá soutěživá síť MAXNET... 2 1.3.1 Organizační dynamika... 2 1.3.2 Adaptační dynamika... 4 1.3.3 Aktivní dynamika...

Více

Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)

Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.

Více

Lineární klasifikátory

Lineární klasifikátory Lineární klasifikátory Lineární klasifikátory obsah: perceptronový algoritmus základní verze varianta perceptronového algoritmu přihrádkový algoritmus podpůrné vektorové stroje Lineární klasifikátor navrhnout

Více

Zpracování biologických signálů umělými neuronovými sítěmi

Zpracování biologických signálů umělými neuronovými sítěmi Zpracování biologických signálů umělými neuronovými sítěmi Jana Tučková Katedra teorie obvodů - Laboratoř umělých neuronových sítí FEL ČVUT v Praze tuckova@fel.cvut.cz http://amber.feld.cvut.cz/user/tuckova

Více

Algoritmy a struktury neuropočítačů ASN P4. Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby

Algoritmy a struktury neuropočítačů ASN P4. Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby Algoritmy a struktury neuropočítačů ASN P4 Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby Vrstevnatá struktura - vícevrstvé NN (Multilayer NN, MLNN) vstupní vrstva (input layer)

Více

Neuronové sítě Ladislav Horký Karel Břinda

Neuronové sítě Ladislav Horký Karel Břinda Neuronové sítě Ladislav Horký Karel Břinda Obsah Úvod, historie Modely neuronu, aktivační funkce Topologie sítí Principy učení Konkrétní typy sítí s ukázkami v prostředí Wolfram Mathematica Praktické aplikace

Více

5. Umělé neuronové sítě. neuronové sítě. Umělé Ondřej Valenta, Václav Matoušek. 5-1 Umělá inteligence a rozpoznávání, LS 2015

5. Umělé neuronové sítě. neuronové sítě. Umělé Ondřej Valenta, Václav Matoušek. 5-1 Umělá inteligence a rozpoznávání, LS 2015 Umělé neuronové sítě 5. 4. 205 _ 5- Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce _ 5-2 Neuronové aktivační

Více

Úloha - rozpoznávání číslic

Úloha - rozpoznávání číslic Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání

Více

Už bylo: Učení bez učitele (unsupervised learning) Kompetitivní modely

Už bylo: Učení bez učitele (unsupervised learning) Kompetitivní modely Učení bez učitele Už bylo: Učení bez učitele (unsupervised learning) Kompetitivní modely Klastrování Kohonenovy mapy LVQ (Učení vektorové kvantizace) Zbývá: Hybridní modely (kombinace učení bez učitele

Více

NG C Implementace plně rekurentní

NG C Implementace plně rekurentní NG C Implementace plně rekurentní neuronové sítě v systému Mathematica Zdeněk Buk, Miroslav Šnorek {bukz1 snorek}@fel.cvut.cz Neural Computing Group Department of Computer Science and Engineering, Faculty

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

Samoučící se neuronová síť - SOM, Kohonenovy mapy

Samoučící se neuronová síť - SOM, Kohonenovy mapy Samoučící se neuronová síť - SOM, Kohonenovy mapy Antonín Vojáček, 14 Květen, 2006-10:33 Měření a regulace Samoorganizující neuronové sítě s učením bez učitele jsou stále více využívány pro rozlišení,

Více

Miroslav Čepek

Miroslav Čepek Vytěžování Dat Přednáška 5 Self Organizing Map Miroslav Čepek Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 21.10.2014 Miroslav Čepek

Více

Trénování sítě pomocí učení s učitelem

Trénování sítě pomocí učení s učitelem Trénování sítě pomocí učení s učitelem! předpokládá se, že máme k dispozici trénovací množinu, tj. množinu P dvojic [vstup x p, požadovaný výstup u p ]! chceme nastavit váhy a prahy sítě tak, aby výstup

Více

3. Vícevrstvé dopředné sítě

3. Vícevrstvé dopředné sítě 3. Vícevrstvé dopředné sítě! Jsou tvořeny jednou nebo více vrstvami neuronů (perceptronů). Výstup jedné vrstvy je přitom připojen na vstup následující vrstvy a signál se v pracovní fázi sítě šíří pouze

Více

Vytěžování znalostí z dat

Vytěžování znalostí z dat Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 1/50 Vytěžování znalostí z dat Pavel Kordík Department of Computer Systems Faculty of Information Technology Czech Technical

Více

Klasifikace a rozpoznávání. Lineární klasifikátory

Klasifikace a rozpoznávání. Lineární klasifikátory Klasifikace a rozpoznávání Lineární klasifikátory Opakování - Skalární součin x = x1 x 2 w = w T x = w 1 w 2 x 1 x 2 w1 w 2 = w 1 x 1 + w 2 x 2 x. w w T x w Lineární klasifikátor y(x) = w T x + w 0 Vyber

Více

Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc

Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc Neuronové sítě a možnosti jejich využití Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc 1. Biologický neuron Osnova 2. Neuronové sítě Umělý neuron

Více

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních

Více

AVDAT Mnohorozměrné metody, metody klasifikace

AVDAT Mnohorozměrné metody, metody klasifikace AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných

Více

Rozdělování dat do trénovacích a testovacích množin

Rozdělování dat do trénovacích a testovacích množin Rozdělování dat do trénovacích a testovacích množin Marcel Jiřina Rozpoznávání je důležitou metodou při zpracování reálných úloh. Rozpoznávání je definováno dvěma kroky a to pořízením dat o reálném rozpoznávaném

Více

Přednáška 13 Redukce dimenzionality

Přednáška 13 Redukce dimenzionality Vytěžování Dat Přednáška 13 Redukce dimenzionality Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL) Redukce dimenzionality 1 /

Více

Kybernetika a umělá inteligence, cvičení 10/11

Kybernetika a umělá inteligence, cvičení 10/11 Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu

Více

Statistická teorie učení

Statistická teorie učení Statistická teorie učení Petr Havel Marek Myslivec přednáška z 9. týdne 1 Úvod Představme si situaci výrobce a zákazníka, který si u výrobce objednal algoritmus rozpoznávání. Zákazník dodal experimentální

Více

Dynamické Kohonenovy mapy a jejich struktura

Dynamické Kohonenovy mapy a jejich struktura Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Bc. Radek Křižka Dynamické Kohonenovy mapy a jejich struktura Katedra teoretické informatiky a matematické logiky Vedoucí diplomové

Více

5. Umělé neuronové sítě. Neuronové sítě

5. Umělé neuronové sítě. Neuronové sítě Neuronové sítě Přesný algoritmus práce přírodních neuronových systémů není doposud znám. Přesto experimentální výsledky na modelech těchto systémů dávají dnes velmi slibné výsledky. Tyto systémy, včetně

Více

výběr charakteristických rysů a zkušeností ze vstupních signálů,

výběr charakteristických rysů a zkušeností ze vstupních signálů, Kapitola 3 Algoritmy učení Proces učení (trénink) je ve své podstatě optimalizační proces, ve kterém optimalizujeme tzv. účelovou funkci. To je chybová funkce při učení s učitelem (vyjadřuje vzájemnou

Více

Asociativní sítě (paměti) Asociace známého vstupního vzoru s daným výstupním vzorem. Typická funkce 1 / 44

Asociativní sítě (paměti) Asociace známého vstupního vzoru s daným výstupním vzorem. Typická funkce 1 / 44 Asociativní paměti Asociativní sítě (paměti) Cíl učení Asociace známého vstupního vzoru s daným výstupním vzorem Okoĺı známého vstupního vzoru x by se mělo také zobrazit na výstup y odpovídající x správný

Více

Úvod Příklad Výpočty a grafické znázornění. Filip Habr. České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská

Úvod Příklad Výpočty a grafické znázornění. Filip Habr. České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Neuronové sítě-delta učení Filip Habr České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská 30. března 2009 Obsah prezentace Obsah prezentace Delta učení 1 Teorie k delta učení 2

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme

Více

Bayesovská klasifikace digitálních obrazů

Bayesovská klasifikace digitálních obrazů Výzkumný ústav geodetický, topografický a kartografický Bayesovská klasifikace digitálních obrazů Výzkumná zpráva č. 1168/2010 Lubomír Soukup prosinec 2010 1 Úvod V průběhu nedlouhého historického vývoje

Více

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení.

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení. Základní pojmy z oblasti neuronových sítí Zde je uveden přehled některých základních pojmů z oblasti neuronových sítí. Tento přehled usnadní studium a pochopení předmětu. ADALINE - klasická umělá neuronová

Více

Moderní systémy pro získávání znalostí z informací a dat

Moderní systémy pro získávání znalostí z informací a dat Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:

Více

Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011

Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011 Iterační metody řešení soustav lineárních rovnic Michal Čihák 27. prosince 2011 Přímé metody řešení soustav lineárních rovnic V přednáškách z lineární algebry jste se seznámili s několika metodami řešení

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

MODELOVÁNÍ BONITY OBCÍ POMOCÍ KOHONENOVÝCH SAMOORGANIZUJÍCÍCH SE MAP A LVQ NEURONOVÝCH SÍTÍ

MODELOVÁNÍ BONITY OBCÍ POMOCÍ KOHONENOVÝCH SAMOORGANIZUJÍCÍCH SE MAP A LVQ NEURONOVÝCH SÍTÍ MODELOVÁNÍ BONITY OBCÍ POMOCÍ KOHONENOVÝCH SAMOORGANIZUJÍCÍCH SE MAP A LVQ NEURONOVÝCH SÍTÍ Vladimír Olej, Petr Hájek Univerzita Pardubice, Fakulta ekonomicko-správní, informatiky Ústav systémového inženýrství

Více

Klasifikace podle nejbližších sousedů Nearest Neighbour Classification [k-nn]

Klasifikace podle nejbližších sousedů Nearest Neighbour Classification [k-nn] Klasifikace podle nejbližších sousedů Nearest Neighbour Classification [k-nn] Michal Houdek, Tomáš Svoboda, Tomáš Procházka 6. června 2001 1 Obsah 1 Úvod 3 2 Definice a postup klasifikace 3 3 Příklady

Více

Připomenutí co je to soustava lineárních rovnic

Připomenutí co je to soustava lineárních rovnic Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. LINEÁRNÍ KLASIFIKACE PRINCIPY KLASIFIKACE pomocí diskriminačních funkcí funkcí,

Více

Numerické metody a programování. Lekce 8

Numerické metody a programování. Lekce 8 Numerické metody a programování Lekce 8 Optimalizace hledáme bod x, ve kterém funkce jedné nebo více proměnných f x má minimum (maximum) maximalizace f x je totéž jako minimalizace f x Minimum funkce lokální:

Více

GIS Geografické informační systémy

GIS Geografické informační systémy GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Shluková analýza Jiří Jarkovský, Simona Littnerová FSTA: Pokročilé statistické metody Typy shlukových analýz Shluková analýza: cíle a postupy Shluková analýza se snaží o

Více

Technická kybernetika. Obsah. Principy zobrazení, sběru a uchování dat. Měřicí řetězec. Principy zobrazení, sběru a uchování dat

Technická kybernetika. Obsah. Principy zobrazení, sběru a uchování dat. Měřicí řetězec. Principy zobrazení, sběru a uchování dat Akademický rok 2016/2017 Připravil: Radim Farana Technická kybernetika Principy zobrazení, sběru a uchování dat 2 Obsah Principy zobrazení, sběru a uchování dat strana 3 Snímač Měřicí řetězec Měřicí obvod

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

Newtonova metoda. 23. října 2012

Newtonova metoda. 23. října 2012 Hledání kořenů rovnic jedné reálné proměnné Newtonova metoda Michal Čihák 23. října 2012 Newtonova metoda (metoda tečen) využívá myšlenku, že tečna v daném bodě grafu funkce nejlépe aproximuje graf funkce

Více

Detekce kartografického zobrazení z množiny

Detekce kartografického zobrazení z množiny Detekce kartografického zobrazení z množiny bodů Tomáš Bayer Katedra aplikované geoinformatiky Albertov 6, Praha 2 bayertom@natur.cuni.cz Abstrakt. Detekce kartografického zobrazení z množiny bodů o známých

Více

Fakulta chemicko-technologická Katedra analytické chemie. 3.2 Metody s latentními proměnnými a klasifikační metody

Fakulta chemicko-technologická Katedra analytické chemie. 3.2 Metody s latentními proměnnými a klasifikační metody Fakulta chemicko-technologická Katedra analytické chemie 3.2 Metody s latentními proměnnými a klasifikační metody Vypracoval: Ing. Tomáš Nekola Studium: licenční Datum: 21. 1. 2008 Otázka 1. Vypočtěte

Více

Modifikace algoritmu FEKM

Modifikace algoritmu FEKM Modifikace algoritmu FEKM Marta Žambochová Katedra matematiky a informatiky Fakulta sociálně ekonomická Univerzita J. E. Purkyně v Ústí nad Labem ROBUST 9. 14. září 2012 Němčičky Motivace Potřeba metod

Více

Obr. 1: Vizualizace dat pacientů, kontrolních subjektů a testovacího subjektu.

Obr. 1: Vizualizace dat pacientů, kontrolních subjektů a testovacího subjektu. Řešení příkladu - klasifikace testovacího subjektu pomocí Bayesova klasifikátoru: ata si vizualizujeme (Obr. ). Objem mozkových komor 9 8 7 6 5 pacienti kontroly testovací subjekt 5 6 Objem hipokampu Obr.

Více

Voronoiův diagram. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta

Voronoiův diagram. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta 12 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info Definice V( P) nad množinou bodů P { p v rovině 1,

Více

Pravděpodobně skoro správné. PAC učení 1

Pravděpodobně skoro správné. PAC učení 1 Pravděpodobně skoro správné (PAC) učení PAC učení 1 Výpočetní teorie strojového učení Věta o ošklivém kačátku. Nechť E je klasifikovaná trénovací množina pro koncept K, který tvoří podmnožinu konečného

Více

Základní spádové metody

Základní spádové metody Základní spádové metody Petr Tichý 23. října 2013 1 Metody typu line search Problém Idea metod min f(x), f : x R Rn R. n Dána počáteční aproximace x 0. Iterační proces (krok k): (a) zvol směr d k, (b)

Více

SLAM. Simultaneous localization and mapping. Ing. Aleš Jelínek 2015

SLAM. Simultaneous localization and mapping. Ing. Aleš Jelínek 2015 SLAM Simultaneous localization and mapping Ing. Aleš Jelínek 2015 Komplexní inovace studijních programů a zvyšování kvality výuky na FEKT VUT v Brně OP VK CZ.1.07/2.2.00/28.0193 Obsah Proč sebelokalizace,

Více

Rosenblattův perceptron

Rosenblattův perceptron Perceptron Přenosové funkce Rosenblattův perceptron Rosenblatt r. 1958. Inspirace lidským okem Podle fyziologického vzoru je třívrstvá: Vstupní vrstva rozvětvovací jejím úkolem je mapování dvourozměrného

Více

ZÁPOČTOVÁ PRÁCE Informace a neurčitost. SOMPak

ZÁPOČTOVÁ PRÁCE Informace a neurčitost. SOMPak UNIVERZITA PALACKÉHO V OLOMOUCI KATEDRA MATEMATICKÉ INFORMATIKY ZÁPOČTOVÁ PRÁCE Informace a neurčitost SOMPak Říjen 2005 Pavel Kubát Informatika V. ročník Abstrakt The objective of this work is describe

Více

GIS Geografické informační systémy

GIS Geografické informační systémy GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu

Více

Optimální rozdělující nadplocha 4. Support vector machine. Adaboost.

Optimální rozdělující nadplocha 4. Support vector machine. Adaboost. Optimální rozdělující nadplocha. Support vector machine. Adaboost. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics Opakování Lineární diskriminační

Více

Algoritmy a struktury neuropočítačů ASN - P14. Neuropočítače

Algoritmy a struktury neuropočítačů ASN - P14. Neuropočítače Neuropočítače speciální výpočetní prostředky pro urychlení výpočtů neuronových sítí implementace zjednodušených algoritmů obvykle celočíselná aritmetika v kombinaci s normováním vstupních vektorů Rozdělení

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Modely vyhledávání informací 4 podle technologie. 1) Booleovský model. George Boole 1815 1864. Aplikace booleovské logiky

Modely vyhledávání informací 4 podle technologie. 1) Booleovský model. George Boole 1815 1864. Aplikace booleovské logiky Modely vyhledávání informací 4 podle technologie 1) Booleovský model 1) booleovský 2) vektorový 3) strukturní 4) pravděpodobnostní a další 1 dokumenty a dotazy jsou reprezentovány množinou indexových termů

Více

2. RBF neuronové sítě

2. RBF neuronové sítě 2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně

Více

Pokročilé metody učení neuronových sítí. Tomáš Řehořek tomas.rehorek@fit.cvut.cz

Pokročilé metody učení neuronových sítí. Tomáš Řehořek tomas.rehorek@fit.cvut.cz Pokročilé metody učení neuronových sítí Tomáš Řehořek tomas.rehorek@fit.cvut.cz Problém učení neuronové sítě (1) Nechť N = (V, I, O, S, w, f, h) je dopředná neuronová síť, kde: V je množina neuronů I V

Více

PV021: Neuronové sítě. Tomáš Brázdil

PV021: Neuronové sítě. Tomáš Brázdil 1 PV021: Neuronové sítě Tomáš Brázdil Cíl předmětu 2 Na co se zaměříme Základní techniky a principy neuronových sítí (NS) Přehled základních modelů NS a jejich použití Co si (doufám) odnesete Znalost základních

Více

cv3.tex. Vzorec pro úplnou pravděpodobnost

cv3.tex. Vzorec pro úplnou pravděpodobnost 3 cvičení - pravděpodobnost 2102018 18cv3tex n i=1 Vzorec pro úplnou pravděpodobnost Systém náhodných jevů nazýváme úplným, jestliže pro něj platí: B i = 1 a pro i k je B i B k = 0 Jestliže je (Ω, A, P

Více

Numerická stabilita algoritmů

Numerická stabilita algoritmů Numerická stabilita algoritmů Petr Tichý 9. října 2013 1 Numerická stabilita algoritmů Pravidla v konečné aritmetice Pro počítání v konečné aritmetice počítače platí určitá pravidla, která jsou důležitá

Více

přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat

přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat Zkouška ISR 2013 přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat 1. Rozdílné principy u induktivního a deduktivního

Více

Matematická analýza III.

Matematická analýza III. 1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )

Více

Semestrální práce z KIV/PRO. Využití Voroného diagramu pro inicializaci K-means

Semestrální práce z KIV/PRO. Využití Voroného diagramu pro inicializaci K-means Semestrální práce z KIV/PRO Využití Voroného diagramu pro inicializaci K-means shlukování Jméno Příjmení (Osobní číslo) 11. prosince 2014 Obsah 1 Úvod 2 2 Vysvětlení pojmů 3 2.1 K-means shlukování.........................

Více

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky

Více

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení

Více

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice

Více

8-9. Pravděpodobnostní rozhodování a predikce. Gerstnerova laboratoř katedra kybernetiky fakulta elektrotechnická ČVUT v Praze

8-9. Pravděpodobnostní rozhodování a predikce. Gerstnerova laboratoř katedra kybernetiky fakulta elektrotechnická ČVUT v Praze KYBERNETIKA A UMĚLÁ INTELIGENCE 8-9. Pravděpodobnostní rozhodování a predikce laboratory Gerstner Gerstnerova laboratoř katedra kybernetiky fakulta elektrotechnická ČVUT v Praze Rozhodování za neurčitosti

Více

8. přednáška z předmětu GIS1 Rastrový datový model a mapová algebra

8. přednáška z předmětu GIS1 Rastrový datový model a mapová algebra 8. přednáška z předmětu GIS1 Rastrový datový model a mapová algebra Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky z www.gis.zcu.cz Předmět KMA/UGI,

Více

Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012

Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012 Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012 Problém hledání kořenů rovnice f(x) = 0 jeden ze základních problémů numerické matematiky zároveň i jeden

Více

Algoritmy a struktury neuropočítačů ASN - P1

Algoritmy a struktury neuropočítačů ASN - P1 Algoritmy a struktury neuropočítačů ASN - P1 http://amber.feld.cvut.cz/ssc www.janatuckova.cz Prof.Ing. Jana Tučková,CSc. Katedra teorie obvodů K331 kancelář: 614, B3 tel.: 224 352 098 e-mail: tuckova@fel.cvut.cz

Více

Typy umělých neuronových sítí

Typy umělých neuronových sítí Tp umělých neuronových sítí umělá neuronová síť vznikne spojením jednotlivých modelů neuronů výsledná funkce sítě je určena způsobem propojení jednotlivých neuronů, váhami těchto spojení a způsobem činnosti

Více

Asociační i jiná. Pravidla. (Ch )

Asociační i jiná. Pravidla. (Ch ) Asociační i jiná Pravidla (Ch. 14 +...) Učení bez učitele Nemáme cílovou třídu Y, G; máme N pozorování což jsou p-dimenzionální vektory se sdruženou pravděpodobností chceme odvozovat vlastnosti. Pro málo

Více

Univerzita Pardubice Fakulta ekonomicko-správní Ústav systémového inženýrství a informatiky

Univerzita Pardubice Fakulta ekonomicko-správní Ústav systémového inženýrství a informatiky Univerzita Pardubice Fakulta ekonomicko-správní Ústav systémového inženýrství a informatiky Modelování dat charakterizujících virtuální server pomocí Kohonenových samoorganizujících se map Bc. Ivana Broklová

Více

Matematika PRŮŘEZOVÁ TÉMATA

Matematika PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí

Více

Úvod do GIS. Prostorová data II. část. Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium.

Úvod do GIS. Prostorová data II. část. Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Úvod do GIS Prostorová data II. část Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Karel Jedlička Prostorová data Analogová prostorová data Digitální

Více

stránkách přednášejícího.

stránkách přednášejícího. Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností připomenutí, souvislosti

Více

Dálkový průzkum Země. Klasifikace obrazu

Dálkový průzkum Země. Klasifikace obrazu Dálkový průzkum Země Klasifikace obrazu Neřízená klasifikace v IDRISI Modul CLUSTER (Image Processing / Hard Classifiers) využívá techniku histogramových vrcholů pásma pro klasifikaci výsledný obraz volba

Více

Ambasadoři přírodovědných a technických oborů. Ing. Michal Řepka Březen - duben 2013

Ambasadoři přírodovědných a technických oborů. Ing. Michal Řepka Březen - duben 2013 Ambasadoři přírodovědných a technických oborů Ing. Michal Řepka Březen - duben 2013 Umělé neuronové sítě Proč právě Neuronové sítě? K čemu je to dobré? Používá se to někde v praxi? Úvod Umělé neuronové

Více

Zpracování digitalizovaného obrazu (ZDO) - Popisy III

Zpracování digitalizovaného obrazu (ZDO) - Popisy III Zpracování digitalizovaného obrazu (ZDO) - Popisy III Statistické popisy tvaru a vzhledu Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování

Více

Neuropočítače. podnět. vnímání (senzory)

Neuropočítače. podnět. vnímání (senzory) Neuropočítače Princip inteligentního systému vnímání (senzory) podnět akce (efektory) poznání plánování usuzování komunikace Typické vlastnosti inteligentního systému: schopnost vnímat podněty z okolního

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 SLAM - souběžná lokalizace a mapování {md zw} at robotika.cz http://robotika.cz/guide/umor07/cs 10. ledna 2008 1 2 3 SLAM intro Obsah SLAM = Simultaneous Localization And Mapping problém typu slepice-vejce

Více

Využití metod strojového učení v bioinformatice David Hoksza

Využití metod strojového učení v bioinformatice David Hoksza Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace

Více

časovém horizontu na rozdíl od experimentu lépe odhalit chybné poznání reality.

časovém horizontu na rozdíl od experimentu lépe odhalit chybné poznání reality. Modelování dynamických systémů Matematické modelování dynamických systémů se využívá v různých oborech přírodních, technických, ekonomických a sociálních věd. Použití matematického modelu umožňuje popsat

Více

Řešení příkladu - klasifikace testovacího subjektu podle minimální vzdálenosti:

Řešení příkladu - klasifikace testovacího subjektu podle minimální vzdálenosti: Řešení příkladu - klasifikace testovacího subjektu podle minimální vzdálenosti: Postup: I) zvolení metriky pro výpočet vzdáleností dvou bodů II) zvolení metriky pro určení vzdálenosti mezi dvěma množinami

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více