II. kolo kategorie Z5. Z čísel a vyškrtneme celkem 5 číslic. Pak od většího z takto vzniklých

Rozměr: px
Začít zobrazení ze stránky:

Download "II. kolo kategorie Z5. Z čísel a vyškrtneme celkem 5 číslic. Pak od většího z takto vzniklých"

Transkript

1 II. kolo kategorie Z5 Z5 II 1 Z čísel a vyškrtneme celkem 5 číslic. Pak od většího z takto vzniklých čísel odečteme číslo menší. Jaký nejmenší rozdíl můžeme dostat? Řešení. Z jednoho čísla vyškrtneme 2 číslice, z druhého 3 číslice, a to tak, aby první číslo (2 vyškrtnuté číslice) bylo co nejmenší a druhé (3 vyškrtnuté číslice) bylo co největší. Jsou tedy dvě možnosti: 1. 2 číslice z a 3 číslice z : = 4 387, 2. 2 číslice z a 3 číslice z : = 79 Nejmenší rozdíl, který můžeme dostat, je 79. Z5 II 2 Když se dva obdélníky skamarádí, spojí se stranami tak, aby měly alespoň jeden vrchol společný. Po skamarádění 2 obdélníků vznikl obrázek: Urči, jaké mohly být rozměry původních obdélníků. Řešení. Jsou dvě možnosti: 1. jeden obdélník 42 cm a 24 cm, druhý 27 cm a 19 cm 2. jeden obdélník 27 cm a 43 cm, druhý 15 cm a 24 cm (Dillingerová) Z5 II 3 Pan Majer chová 25 beránků a 30 oveček. Jednoho beránka ostříhá za čtvrt hodiny. Ostřihání 5 oveček mu trvá stejně dlouho jako ostřihání 4 beránků. Co mu bude trvat déle: ostřihání všech oveček anebo všech beránků? O kolik minut? (kolektiv autorů) Řešení. Ze zadání vyplývá, že pan Majer ostřihá za 1 hodinu 4 beránky a za tutéž dobu 5 oveček. Všechny ovečky ostříhá za 30 : 5 = 6 hodin. Za 6 hodin ale ostříhá jen 6 4 = = 24 beránků (jeden zbyde neostřihaný). Déle bude střihat beránky, a to o 15 minut.

2 II. kolo kategorie Z6 Z6 II 1 Tatínek vyřízl z kartonu čtvercového tvaru rámeček o šířce 4 cm. Obsah rámečku je 320 cm 2. Zjisti vnější a vnitřní rozměr rámečku. (Hozová) Řešení. Nejprve si rámeček rozdělíme na 4 shodné obdélníky. Obsah každého z nich je 320 : 4 = 80 cm 2. Šířka tohoto obdélníka je 4 cm. Délka tedy je 80 : 4 = 20 cm. Z obrázku je vidět, že vnitřní rozměr rámečku je 20 4 = 16 cm, vnější rozměr rámečku je 20+4 = 24 cm. Z6 II 2 a) Máš tyto kartičky s čísly: Použij všechny kartičky a sestav z nich dvě čísla tak, aby jejich rozdíl byl co nejmenší. b) Máš tyto kartičky s čísly: Použij všechny kartičky a sestav z nich dvě čísla tak, aby jejich rozdíl byl co nejmenší. (Volfová) Řešení. a) Žáci zřejmě budou zkoušet různé kombinace takových čísel: = 22, = 11, = 9, = 13, = 18, = 7. Jistě přijdou na to, že číslice na místě desítek u obou čísel se musí lišit jen o 1 a dále že zbývající číslice u většího z čísel musí být co nejmenší. Výsledkem jsou tedy čísla 31 a 24. b) V tomto příkladu využijí poznatků z části a). Najdou tak dvojici čísel a , jejichž rozdíl je 247.

3 Z6 II 3 Paní Hodná koupila dva stejné balíčky lentilek. Pět jejích dětí si je spravedlivě rozdělilo mezi sebe. Každé dostalo 6 lentilek a ty co už nešly rozdělit, snědla paní Hodná. Pan Hodný koupil 4 balíčky lentilek (stejné jako jeho žena). Děti si lentilky opět spravedlivě rozdělily a ty co už nešly rozdělit, snědl pan Hodný. Kolik lentilek je v krabičce, když víš, že pan Hodný snědl méně lentilek než jeho žena? Řešení. 1) Paní Hodná: Děti snědly dohromady 6 5 = 30 lentilek. Protože paní Hodná koupila 2 stejné balíčky, musel být nerozdělitelný zbytek sudé číslo, tedy 2 nebo 4 lentilky. V jednom balíčku tedy mohlo být buď (30+2) : 2 = 16, nebo (30+4) : 2 = 17 lentilek. 2) Pan Hodný: Ve čtyřech balíčcích potom mohlo být 4 16 = 64 nebo 4 17 = 68 lentilek. Děti pak dohromady snědly 60 (balíček po 16 lentilkách) nebo 65 (balíček po 17 len tilkách) lentilek. Na pana Hodného pak zbyly buď 4 (balíček po 16 lentilkách), nebo 3 (balíček po 17 len tilkách) lentilky. Protože pan Hodný snědl méně lentilek než paní Hodná, muselo být v jednom balíčku 17 lentilek.

4 II. kolo kategorie Z7 Z7 II 1 V čísle škrtni několik číslic tak, aby vzniklo co největší zrca dlové číslo (tedy takové, co zůstává stejné, ať je čteme zleva doprava či naopak), které je dělitelné číslem 36. Řešení. Číslo je dělitelné číslem 36, je-li dělitelné čísly 9 a 4 (36 = 9 4). Původní číslo je dělitelné devíti, je tedy nutno vyškrtnout jen ty číslice, jejichž součet je dělitelný devíti. Nejdříve škrtneme devítku, neboť číslo končící devítkou není dělitelné čtyřmi: a) Aby bylo číslo končící číslicí 8 dělitelné čtyřmi, musí být poslední dvojčíslí dělitelné čtyřmi, tj. 08, 28, 48, 68, 88: 08: nemá řešení, neboť 808 není dělitelné devíti, 28: nemá řešení, neboť ani , ani , ani nejsou dělitelná devíti, 48: má řešení , škrtneme-li číslice 5, 6, 7, vznikne 11ciferné číslo, 68: je nejvhodnější, vznikne 13ciferné číslo , škrtneme-li číslice 7 a 2 nebo 12ciferné číslo , škrtneme-li číslice 7, 2, 0, 88: nemá řešení, neboť 88 není dělitelné devíti. Uvažujme o čísle končícím na číslici 6: b) aby bylo číslo končící číslicí 6 dělitelné čtyřmi, musí mít poslední dvojčíslí 16, 36, 56: 16: nemá řešení, neboť ani nejsou dělitelná devíti, 36: má řešení, vznikne pěticiferné číslo , škrtneme-li číslice 5, 4, 2, 1 nebo čtyř ciferné číslo 6 336, škrtneme-li číslice 5, 4, 2, 1, 0, 56: má řešení, vznikne 11ciferné číslo , škrtneme-li číslice 3, nebo dese ticiferné číslo , škrtneme-li číslice 3, 0. Odpověď : Největší z daných zrcadlových čísel je 13ciferné číslo Z7 II 2 Míša změřila strany narýsovaného trojúhelníka a s překvapením zjistila: To je zvlášt ní; když vynásobím délky všech tří stran trojúhelníka s počtem korun, které mám v pe něžence, dostanu číslo, které je letopočtem Kolik mohla mít Míša peněz? Najdi všechna řešení. (Hozová) Řešení = Číslo 2004 napíšeme jako součin čtyř čísel: 2004 = = = = = = = = = = = Největší čísla v jednotlivých součinech nemohou vyjadřovat délku strany, znamenají tedy počet korun. U zbývajících tří čísel je třeba uvážit, zda splňují trojúhelníkovou ne rovnost. Strany trojúhelníka splňují tyto trojice: (1, 1, 1), (1, 2, 2) a (2, 2, 3). Odpověď : Úloha má tři řešení. Jsou-li strany trojúhelníka (1, 1, 1), má Míša 2004 Kč, jsou-li strany (1, 2, 2), má 501 Kč, jsou-li strany (2, 2, 3), má Míša 167 Kč.

5 Z7 II 3 V rovnoběžníku ABCD je AB : BC = 1 : 2 a Jaká je velikost úhlu XAD? XDA = α, kde X je střed BC. (Ptáčková) Řešení. Přidáme ještě jeden shodný rovnoběžník BEF C (obr.). Vznikne kosočtverec AEF D, který má kolmé úhlopříčky; proto je AXD = 90 ; XAD = 90 α. D α C F X 90 α A B E

6 II. kolo kategorie Z8 Z8 II 1 Myslím si dvě dvojciferná čísla. Pokud první z nich vydělíme druhým, dostaneme zbytek 45. Pokud druhé vydělíme prvním, dostaneme zbytek 34. Jaké čísla si myslím? Řešení. Označme první hledané číslo a a druhé b. První zbytek je 45 a druhý 34. Pokud oba zbytky sečteme, dostaneme číslo 79. Nyní stačí položit a = 45 a b = 79. Z8 II 2 Úhlopříčka dělí lichoběžník na dvě části, jejichž obsahy jsou v poměru 2 : 3. V jakém poměru jsou obsahy dvou částí, na které dělí tento lichoběžník jeho střední příčka? Řešení. Ze zadání je zřejmé, že jedna základna lichoběžníka je dlouhá 3 díly a druhá 2 díly. Proto je jeho střední příčka dlouhá 5 2 dílu. Poměr částí na které dělí střední příčka lichoběžník je poměrem obsahů malých lichoběžníků. Tedy = Střední příčka dělí lichoběžník v poměru Z8 II 3 Po sezóně zbyly v prodejně letní trička za 70 Kč. Majitel prodejny snížil jejich cenu o více než 25 %, ale o méně než 50 %. Nová cena vyjádřená v korunách je celé číslo. Všechna takto zlevněná trička prodal a získal za ně Kč. Kolik triček prodal po zlevnění? (Hozová) Řešení. Trička po zlevnění mohla stát nejméně 36 a nejvíce 52 korun. Rozložme číslo 2430 na součin prvočísel, 2430 = Z rozkladu nyní musíme vytvořit číslo, které je větší nebo rovno 36 a menší nebo rovno 52. Jediná možnost je 45. Cena trička po zlevnění byla 45 Kč a majitel prodejny prodal celkem 54 zlevněných triček.

7 II. kolo kategorie Z9 Z9 II 1 Tělesová úhlopříčka kvádru měří 17 cm. Jaké mohou být rozměry takového kvádru, jsou-li v cm vyjádřeny navzájem různými přirozenými čísly? (Ptáčková) Řešení. Označme strany kvádru a, b, c a úhlopříčky (stěnovou i tělesovou jako na ob rázku). b u s u t c a Z Pythagorovy věty plyne, že Vzhledem k zadání platí, že Po dosazení za u 2 s dostáváme rovnici: u 2 s = a 2 + b 2, u 2 t = u 2 s + c = u 2 s + c = a 2 + b 2 + c 2. Hledáme tedy takovou trojici přirozených čísel, aby součet jejich druhých mocnin byl 17 2, tedy 289. Tomu vyhovují pouze čísla 12, 9 a 8. Rozměry kvádru jsou 12 cm, 9 cm a 8 cm. Z9 II 2 V delfináriu měli jednotné vstupné 4 euro. Poslední neděli snížili vstupné, tím se počet návštěvníků zvýšil o dvě třetiny a příjem v pokladně stoupl o 25 %. O kolik euro bylo sníženo vstupné? (Krejčová) Řešení. Označíme n počet návštěvníků před slevou a x cenu lístku po slevě. Ze zadání úlohy plyne rovnice (n n ) x = 4 n 1,25. Odtud po úpravě dostaneme, že x = 3. Nová cena je tedy 3 euro, vstupné bylo sníženo o 1 euro.

8 Z9 II 3 Moderní čísla jsou taková, jejichž některé 4 po sobě jdoucí číslice jsou 2, 0, 0, 3 (v tomto pořadí). Najděte nejmenší moderní číslo, které se dá beze zbytku dělit každou svou nenu lovou číslicí. Řešení. Ze zadání je patrné, že hledané číslo musí být sudé. Musíme tedy na poslední místo přidat sudou číslici. Současně, ale musí být hledané číslo dělitelné třemi a to lze splnit jen pokud přidáme 4. Dostaneme tak číslo , to však není dělitelné 4. Vidíme, že přidat jednu cifru nestačí. Pokud budeme na konec přidávat dvě cifry, tak ihned vidíme, že nejmenší možné moderní číslo je Ještě bychom mohli přidávat jednu cifru na první místo a jednu na poslední. Vzhledem k tomu, že už máme nalezeno číslo nemá smysl dát na první číslo jinou cifru než 1. Hledáme tedy moderní číslo ve tvaru , kde je sudé číslo. Vidíme, že číslo je moderní a je nejmenší možné. Z9 II 4 Jakou částí obsahu obdélníka je kosočtverec KLM N? (Hozová) 30 N 30 K M L Řešení. Lze očekávat, že žáci budou postupovat různě. Využít lze goniometrických funkcí, Pythagorovy věty a vlastností trojúhelníků. Ukažme jeden možný postup. Vzhledem k symetrii se omezíme na horní levou čtvrtinu obdélníka. Dostaneme tak následující obrázek.

9 A 30 N T K S U Máme tedy určit, jakou část obdélníka T UNA tvoří trojúhelník KUN. Bod S je střed úsečky T U. AT S je polovinou rovnostranného trojúhelníka (velikosti jeho vnitřních úhlů jsou 30, 60, 90 ). Protože v každém rovnostranném trojúhelníku je každá těžnice zároveň výškou a navíc půlí vnitřní úhel trojúhelníka, je T S těžnicí a AK částí těžnice. Bod K je těžištěm. Proto KS = 2 KT a KU = 5 T U. Obsah trojúhelníka KUN je obsahu obdélníka AT UN. Kosočtverec KLMN tedy zabírá 12 plochy daného obdélníka.

10 III. kolo kategorie Z9 Z9 III 1 Najdi taková dvě čísla, pro která současně platí: jedno je dvojciferné a druhé je trojciferné, obě končí stejnou cifrou, jejich druhé mocniny končí stejným trojčíslím, jejich druhé odmocniny jsou celá čísla a končí stejnou číslicí. (Dillingerová) Řešení. Ze zadání je patrné, že hledané dvouciferné číslo musí být některé z čísel 25, 36, 49, 64, 81. Vzhledem k tomu, že druhé mocniny hledaných čísel končí stejným trojčíslím, je hledané trojciferné číslo ve tvaru 25, 36, 49, 64, 81. Toto číslo má být zároveň druhou mocninou nějakého přirozeného čísla a to splňují pouze čísla 225, 625. Nyní se již snadno se ověří, že úloha má dvě řešení (25, 225) a (25, 625). Z9 III 2 Mám červenou kuličku, která má stejnou hmotnost jako zelená a bílá dohromady. Modrá kulička se žlutou má stejnou hmotnost jako tři bílé. Dvě zelené a dvě bílé mají stejnou hmotnost, co modrá s bílou. A konečně červená a modrá kulička vyváží dvě zelené, žlutou a dvě bílé. Které dvě kuličky různých barev mají stejnou hmotnost? (Ptáčková) Řešení. Pomocí symbolů zapíšeme vztahy: č = z + b, m + ž = 3b, 2z + 2b = m + b, č + m = 2z + ž + 2b. Dosadíme z první rovnice do čtvrté, upravíme třetí a dostaneme m + ž = 3b, 2z + b = m, z + b + m = 2z + ž + 2b. Po úpravě platí: m + ž = 3b, 2z + b = m, m = z + ž + b. Pak ze druhé a třetí rovnice plyne, že stejnou hmotnost mají zelená a žlutá kulička.

11 Z9 III 3 Jakou částí obsahu obdélníka je pravidelný šestiúhelník KLM N OP? (Hozová) D C O N P M A 30 K L B Řešení. Lze očekávat, že žáci budou postupovat různě. Využít lze goniometrických funkcí, Pythagorovy věty a vlastností trojúhelníků. Ukažme jeden možný postup. Vzhledem k symetrii se omezíme na horní pravou čtvrtinu obdélníka. Přidáme vhodné úsečky a dostaneme tak následující obrázek. C N S M 3 16 Nyní je již i bez dalších výpočtů zřejmé, že pravidelný šestiúhelník KLMNOP zabírá čtverce ABCD. Z9 III 4 V Janině třídě je 40 % chlapců. Jejich průměrná výška je 145 cm. Průměrná výška všech dětí v Janině třídě je 142 cm. Ve své třídě je Jana mezi děvčaty nadprůměrně vysoká, ale je

12 menší než je průměrná výška všech dětí v její třídě. Zjistěte, kolik Jana měří, pokud víte, že její výška je v centimetrech celé číslo. Řešení. Shrňme všechny známé údaje do tabulky: chlapci 40 %, tj. 2 díly průměrná výška cm dívky 60 %, tj. 3 díly průměrná výška... x cm Pak platí (vážený aritmetický průměr): x 5 = 142. Odtud po úpravě dostáváme, že x = 140. Průměrná výška dívek je tedy 140 cm. Jana je vyšší, ale menší než 142 cm (což je průměrná výška celé třídy), proto měří 141 cm.

I. kolo kategorie Z7

I. kolo kategorie Z7 60. ročník Matematické olympiády I. kolo kategorie Z7 Z7 I 1 Součin číslic libovolného vícemístného čísla je vždy menší než toto číslo. Pokud počítáme součin číslic daného vícemístného čísla, potom součin

Více

Prvočísla a čísla složená

Prvočísla a čísla složená Prvočísla a čísla složená Prvočíslo je každé přirozené číslo, které má právě dva různé dělitele, číslo 1 a samo sebe. Nejmenším a jediným sudým je prvočíslo 2. Další prvočísla: 2, 3, 5, 7, 11, 13, 17,

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6.

Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6. Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6. ROČNÍK Zadání úloh Autorka úloh: Mgr. Lucie Filipenská Katedra didaktiky

Více

1. Opakování učiva 6. ročníku

1. Opakování učiva 6. ročníku . Opakování učiva 6. ročníku.. Čísla, zlomek ) Z číslic, 6 a sestavte všechna trojciferná čísla tak, aby v každém z nich byly všechny tři číslice různé. ) Z číslic, 0, 3, sestavte všechna čtyřciferná čísla

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

Sbírka úloh z matematiky. 6. - 9. ročník

Sbírka úloh z matematiky. 6. - 9. ročník Sbírka úloh z matematiky 6. - 9. ročník Pro základní školy srpen 2011 Vypracovali: Mgr. Jaromír Čihák Ing. Jan Čihák Obsah 1 Úvod 2 2 6. ročník 3 2.1 Přirozená čísla.................................. 3

Více

Matematika. Až zahájíš práci, nezapomeò:

Matematika. Až zahájíš práci, nezapomeò: 9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

Obecné informace: Typy úloh a hodnocení:

Obecné informace: Typy úloh a hodnocení: Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou zakresleny dva

Více

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Variace 1 Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 62. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Čtvercová tabulka je rozdělena na 16 16 políček. Kobylka se po ní pohybuje dvěma směry: vpravo nebo dolů, přičemž střídá skoky

Více

Příklady k opakování učiva ZŠ

Příklady k opakování učiva ZŠ Příklady k opakování učiva ZŠ 1. Číslo 78 je dělitelné: 8 7 3. Rozhodněte, které z následujících čísel je dělitelem čísla 94: 4 14 15 3. Určete všechny dělitele čísla 36:, 18, 4, 9, 6, 3, 1, 3, 6, 1 3,

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou čtyři červené

Více

Nápovědy k numerickému myšlení TSP MU

Nápovědy k numerickému myšlení TSP MU Nápovědy k numerickému myšlení TSP MU Numerické myšlení 2011/var. 01 26. Ciferné součty čísel v každém z kruhů mají tutéž hodnotu. Pozor, hledáme číslo, které se nehodí na místo otazníku. Jedná se o dvě

Více

Moravské gymnázium Brno s.r.o.

Moravské gymnázium Brno s.r.o. Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika Elementární teorie čísel Ročník 1. Datum tvorby

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

MATEMATIKA. 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5. vážil celý nákup? (A) 4,25 kg (B) 4,5 kg (C) 5 kg (D) 5,25 kg 6.

MATEMATIKA. 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5. vážil celý nákup? (A) 4,25 kg (B) 4,5 kg (C) 5 kg (D) 5,25 kg 6. MATEMATIKA 9. třída. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 7 (B) M = 4N (C) M N

Více

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1. Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =

Více

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116.

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. Cykly a pole Tato část sbírky je tvořena dalšími úlohami na práci s cykly. Na rozdíl od předchozího oddílu se zde již v řešeních úloh objevuje více cyklů, ať už prováděných po sobě nebo vnořených do sebe.

Více

Úlohy domácí části I. kola kategorie B

Úlohy domácí části I. kola kategorie B 6. ročník Matematické olympiády Úlohy domácí části I. kola kategorie B. Mezi všemi desetimístnými čísly dělitelnými jedenácti, v nichž se žádná číslice neopakuje, najděte nejmenší a největší. Řešení. Uvažovaná

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Kolik os souměrnosti má kruh?

Více

Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB.

Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. 8. Trojúhelník 6. ročník 8. Trojúhelník 8.1. Základní pojmy 8.1.1. Trojúhelník Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. Trojúhelník popisujeme proti chodu hodinových

Více

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5 MATEMATIKA 9. TŘÍDA 1. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 17 (B) M = 4N (C) M

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

II. kolo kategorie Z6

II. kolo kategorie Z6 Z6 II 1 Pat napsal na tabuli příklad: 62. ročník Matematické olympiády II. kolo kategorie Z6 589+544+80=2013. Mat chtěl příklad opravit, aby se obě strany skutečně rovnaly, a pátral po neznámém čísle,

Více

101 Střední škola, město Zadání - Náboj 2008 Úloha 1. Kolik různých trojúhelníků s celočíselnými délkami stran má obvod 7? Které to jsou?

101 Střední škola, město Zadání - Náboj 2008 Úloha 1. Kolik různých trojúhelníků s celočíselnými délkami stran má obvod 7? Které to jsou? Úloha 1. Kolik různých trojúhelníků s celočíselnými délkami stran má obvod 7? Které to jsou? Úloha 2. V růžovém království se platí mincemi v hodnotě 3 a 7. Určete největší částku, která se nedá pomocí

Více

MATEMATICKÁ OLYMPIÁDA

MATEMATICKÁ OLYMPIÁDA MATEMATICKÁ OLYMPIÁDA pro žáky základních škol a nižších ročníků víceletých gymnázií 65. ROČNÍK, 2015/2016 http://math.muni.cz/mo Milí mladí přátelé, máte rádi zajímavé matematické úlohy a chtěli byste

Více

MATEMATIKA 7 M7PID15C0T01. 1 Základní informace k zadání zkoušky

MATEMATIKA 7 M7PID15C0T01. 1 Základní informace k zadání zkoušky MATEMATIKA 7 M7PID15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ),

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), Tělesa 1/6 Tělesa 1.Mnohostěny n-boký hranol Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), hranol kosý hranol kolmý (boční stěny jsou kolmé k rovině podstavy) pravidelný

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gmnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro základní vzdělávání Vzdělávací oblast: Matematika a její aplikace Tematický okruh:

Více

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna 16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná

Více

53. ročník matematické olympiády. q = 65

53. ročník matematické olympiády. q = 65 53. ročník matematické olympiády! 1. V rovině je dán obdélník ABCD, kde AB = a < b = BC. Na jeho straně BC eistuje bod K a na straně CD bod L tak, že daný obdélník je úsečkami AK, KL a LA rozdělen na čtyři

Více

Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro

Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro Příjímací zkoušky 01 Přípravný kurz k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) 1. Číselné obory 1.1. Doplňte číslo do rámečku tak, aby platila rovnost: 1.1.1.

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Do jednoho vagonu se vejde 70

Více

Opakování k maturitě matematika 4. roč. TAD 2 <

Opakování k maturitě matematika 4. roč. TAD 2 < 8.. Otázka číslo Mocniny a odmocniny. b.) Zjednodušte: 6 b. b Opakování k maturitě matematika. roč. TAD : 6.) Zjednodušte: 6 6.) Vypočtěte: a. y : ( a. y ) =.) Usměrněte zlomek =.. Otázka číslo Lineární

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

Poměry a úměrnosti. Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku

Poměry a úměrnosti. Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku Poměry a úměrnosti Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku S poměrem lze pracovat jako se zlomkem a : b = a b porovnávat,

Více

NESTANDARDNÍ APLIKAČNÍ ÚLOHY A PROBLÉMY

NESTANDARDNÍ APLIKAČNÍ ÚLOHY A PROBLÉMY NESTANDARDNÍ APLIKAČNÍ ÚLOHY A PROBLÉMY Růžena Blažková Úvod Tématický okruh Nestandardní aplikační úlohy a problémy poskytuje žákům možnosti řešení úloh a problémů zábavnou formou, úloh s tématikou z

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

Doučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy

Doučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy Doučování sekunda měsíc Probírané učivo Základní učivo září Opakování učiva z primy Desetinná čísla Krychle a kvádr Prvočísla a čísla složená Společný násobek a dělitel Prvočísla a čísla složená Trojúhelník

Více

U každé úlohy je uveden maximální počet bodů.

U každé úlohy je uveden maximální počet bodů. MATEMATIKA MPZD1C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 1 Maximální bodové hodnocení: 0 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 0 minut.

Více

Úloha2.Naleznětevšechnydvojicereálnýchčísel(a,b)takové,žečísla10, a, b, abtvořívtomtopořadí aritmetickou posloupnost.

Úloha2.Naleznětevšechnydvojicereálnýchčísel(a,b)takové,žečísla10, a, b, abtvořívtomtopořadí aritmetickou posloupnost. Úloha. V Americe se pro měření teploty používají místo Celsiových stupňů stupně Fahrenheitovy. PřepočetzCelsiovýchstupňůnaFahrenheitovylzeprovéstpodlevzorce f = 9 5 c+32(cjsoustupně Celsiovy, f Farenheitovy).

Více

Matematika Název Ročník Autor

Matematika Název Ročník Autor Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná

Více

Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek)

Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek) Mária adloňová Fajn MATIKA (nejen) na přijímačky 50 řešených příkladů (vorek) 0 Mgr. Mária adloňová FajnMATIKA (nejen) na přijímačky 50 řešených příkladů (reklamní vorek) Mgr. Mária adloňová, 0 Vydavatel

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

1BMATEMATIKA. 0B9. třída

1BMATEMATIKA. 0B9. třída BMATEMATIKA 0B. třída. Na mapě v měřítku : 40 000 je vyznačena červená turistická trasa o délce cm. Za jak dlouho ujde tuto trasu turista, který se pohybuje stálou rychlostí 4 km/h? (A) za minut (B) za

Více

Matematický KLOKAN 2005 kategorie Junior

Matematický KLOKAN 2005 kategorie Junior Matematický KLOKAN 2005 kategorie Junior Vážení přátelé, v následujících 75 minutách vás čeká stejný úkol jako mnoho vašich vrstevníků v řadě dalších evropských zemí. V níže uvedeném testu je zadáno čtyřiadvacet

Více

I. kolo kategorie Z5

I. kolo kategorie Z5 I. kolo kategorie Z5 Z5 I 1 Housenka Leona spadla doprostřed čtvercové sítě. Rozhodla se, že poleze do spirály tak,jakjenaznačenonaobrázku;nažádnémčtverečkunebudedvakrátažádný čtvereček nevynechá. 5 4

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 15. 10. 2013 Obtížnost 1 Úloha 1 Přednáška trvala 80 minut a skončila

Více

Úvod do teorie dělitelnosti

Úvod do teorie dělitelnosti Úvod do teorie dělitelnosti V předchozích hodinách matematiky jste se seznámili s desítkovou soustavou. Umíte v ní zapisovat celá i desetinná čísla a provádět zpaměti i písemně základní aritmetické operace

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Železná trubka o délce 3 metry

Více

Matematická party 1401 Náboj

Matematická party 1401 Náboj Matematická party 1401 Náboj Úloha 1. V kruhu sedí 2014 lidí, každý má v ruce určitý počet kamínků, počet kamínků, který mají dva sousední lidé se liší o 2 nebo 3, jaký největší rozdíl kamínků může být

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Pavlína

Více

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou zakresleny rovinné

Více

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. Jednoduché cykly Tento oddíl obsahuje úlohy na první procvičení práce s cykly. Při řešení každé ze zde uvedených úloh stačí použít vedle podmíněných příkazů jen jediný cyklus. Nepotřebujeme používat ani

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

2.3.17 Slovní úlohy vedoucí na soustavy rovnic I

2.3.17 Slovní úlohy vedoucí na soustavy rovnic I .3.7 Slovní úlohy vedoucí na soustavy rovnic I Předpoklady: 34 Pedagogická poznámka: Jak už bylo uvedeno dříve slovní úlohy tvoří specifickou část matematiky jednoduše proto, že nestačí sledovat dříve

Více

( ) Zadání SPORT 2014. 1. Kolik % z 2,5 Kč je 0,5 Kč? a) 5% b) 10% c) 20% d) 25% 2. Žák popleta v písemce napsal: ( x 1) x 1

( ) Zadání SPORT 2014. 1. Kolik % z 2,5 Kč je 0,5 Kč? a) 5% b) 10% c) 20% d) 25% 2. Žák popleta v písemce napsal: ( x 1) x 1 Zadání SPORT 0. Kolik % z,5 Kč 0,5 Kč? a) 5% b) 0% c) 0% d) 5%. Žák popleta v písemce napsal: ( x ) x =. Pro která x ho výpočet správný? a) x = b) x = c) x = 0 d) pro žádné x. Určete délku x podle údajů

Více

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0. Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,

Více

MATEMATICKÁ OLYMPIÁDA

MATEMATICKÁ OLYMPIÁDA MATEMATICKÁ OLYMPIÁDA pro žáky základních škol a nižších ročníků víceletých gymnázií 65. ROČNÍK, 2015/2016 http://math.muni.cz/mo Milí mladí přátelé, máte rádi zajímavé matematické úlohy a chtěli byste

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

2. Dělitelnost přirozených čísel

2. Dělitelnost přirozených čísel 2. Dělitelnost přirozených čísel 6. ročník - 2. Dělitelnost přirozených čísel Číslo 4 756 můžeme rozložit 4 756 = 4. 1 000 + 7. 100 + 5. 10 + 6 Obdobně : čtyřciferné číslo můžeme zapsat ve tvaru a bcd

Více

KOMBINATORIKA. 1. cvičení

KOMBINATORIKA. 1. cvičení KOMBINATORIKA 1. cvičení TYPY VÝBĚRŮ Uspořádanost výběru uspořádaný výběr = VARIACE, záleží na pořadí vybraných prvků neuspořádaný výběr = KOMBINACE, nezáleží na pořadí vybraných prvků Opakované zařazení

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

MATEMATIKA 9 M9PID15C0T01. 1 Základní informace k zadání zkoušky

MATEMATIKA 9 M9PID15C0T01. 1 Základní informace k zadání zkoušky MATEMATIKA 9 M9PID15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

Test Matematika Var: 101

Test Matematika Var: 101 Test Matematika Var: 101 Pokyny: Vyplňte příslušné kolečko odpovídající správné odpovědi u každé otázky ve zvláštním odpovědním formuláři, který Vám byl rozdán spolu se zadáním testu. 1. Přímky p: y =

Více

Kombinatorika. 1. Variace. 2. Permutace. 3. Kombinace. Název: I 1 9:11 (1 z 24)

Kombinatorika. 1. Variace. 2. Permutace. 3. Kombinace. Název: I 1 9:11 (1 z 24) Kombinatorika 1. Variace 2. Permutace 3. Kombinace Název: I 1 9:11 (1 z 24) Název: I 1 10:02 (2 z 24) Variace Jsou to skupiny prvků, ve kterých: záleží na pořadí prvků značíme je Název: I 1 10:02 (3 z

Více

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar Kvadratická rovnice Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar ax 2 + bx + c = 0. x neznámá; v kvadratické rovnici se vyskytuje umocněná na

Více

ÚLOHY VYUŽÍVAJÍCÍ DIRICHLETŮV PRINCIP

ÚLOHY VYUŽÍVAJÍCÍ DIRICHLETŮV PRINCIP ÚLOHY VYUŽÍVAJÍCÍ DIRICHLETŮV PRINCIP Doc. PhDr. Marta Volfová, CSc., Katedra matematiky Název úloh byl zvolen podle významného německého matematika G. L. Dirichleta (1805 59). Dirichletův princip pomáhá

Více

DOVEDNOSTI V MATEMATICE

DOVEDNOSTI V MATEMATICE Hodnocení výsledků vzdělávání žáků 9. tříd ZŠ 2006 MA2ACZZ906DT DOVEDNOSTI V MATEMATICE didaktický test B Testový sešit obsahuje 13 úloh. Na řešení úloh máte 40 minut. Všechny odpovědi pište do záznamového

Více

Obsahy. Trojúhelník = + + 2

Obsahy. Trojúhelník = + + 2 Obsahy Obsah nám říká, jak velkou plochu daný útvar zaujímá. Třeba jak velký máme byt nebo pozemek kolik metrů čtverečných (m 2 ), hektarů (ha), centimetrů čtverečných (cm 2 ), Základní jednotkou obsahu

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává

Více

MATEMATIKA 9 M9PID15C0T01. 1 Základní informace k zadání zkoušky

MATEMATIKA 9 M9PID15C0T01. 1 Základní informace k zadání zkoušky MATEMATIKA 9 M9PID15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

3. Mocnina a odmocnina. Pythagorova věta

3. Mocnina a odmocnina. Pythagorova věta . Mocnina a odmocnina. Pythagorova věta 7. ročník -. Mocnina, odmocnina, Pythagorovavěta.. Mocnina... Vymezení pojmu Součin stejných činitelů můţeme napsat v podobě mocniny. Například : součin...... můţeme

Více

5.1.3 Obrazy těles ve volném rovnoběžném promítání I

5.1.3 Obrazy těles ve volném rovnoběžném promítání I 5.1.3 Obrazy těles ve volném rovnoběžném promítání I Předpoklady: 5102 Pedagogická poznámka: K obrazům těles ve volném rovnoběžném promítání je možné přistoupit dvěma způsoby: Látku v podstatě přeskočit

Více

M - Planimetrie pro studijní obory

M - Planimetrie pro studijní obory M - Planimetrie pro studijní obory Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

4a) Racionální čísla a početní operace s nimi

4a) Racionální čísla a početní operace s nimi Racionální čísla a početní operace s nimi Množinu racionálních čísel získáme z množiny čísel celých, jejím rozšířením o čísla desetinná s ukončeným des. rozvojem nebo periodická a zlomky, které lze na

Více

Co víme o přirozených číslech

Co víme o přirozených číslech Co víme o přirozených číslech 4. Největší společný dělitel a nejmenší společný násobek In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 24 31. Persistent

Více

(Miroslava Smitková) +8 :5 +10 :4 +6 +1 :7 :2 +4 +4 :2 +3

(Miroslava Smitková) +8 :5 +10 :4 +6 +1 :7 :2 +4 +4 :2 +3 57. ročník- Kategorie Z5 1. Kuchyňskýstůlmátvarobdélníkuorozměrech90cm 140cm.Chceme na něj ušít ubrus tak, aby na všech okrajích stolu přesahoval stejně. a)koliklátkyšířky140cmjetřebakoupit,abychomjižnemuselilátku

Více

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose 3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,

Více

Kombinatorika. Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz.

Kombinatorika. Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. Variace 1 Kombinatorika Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kombinatorika, faktoriály, kombinační

Více

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta 1. Mnohočleny 2. Rovnice rovné nule 3. Nerovnice různé od nuly 4. Lomený výraz 5. Krácení lomených výrazů 6. Rozšiřování lomených výrazů 7. Sčítání lomených výrazů 8. Odčítání lomených výrazů 9. Násobení

Více

Matematika pro 9. ročník základní školy

Matematika pro 9. ročník základní školy Matematika pro 9. ročník základní školy Řešení Číselné výrazy 1. Prvočíslo je přirozené číslo, které je beze zbytku dělitelné právě dvěma různými přirozenými čísly, a to číslem jedna a sebou samým (tedy

Více

Neotvírej, dokud nedostaneš pokyn od zadávajícího!

Neotvírej, dokud nedostaneš pokyn od zadávajícího! 9. třída Neotvírej, dokud nedostaneš pokyn od zadávajícího! jméno třída číslo žáka až zahájíš práci, nezapomeň: www.scio.cz, s.r.o. Pobřežní, 86 00 Praha 8 tel.: 0 fax: 0 0 e-mail: scio@scio.cz www.scio.cz

Více

MATEMATIKA VYŠŠÍ ÚROVEŇ

MATEMATIKA VYŠŠÍ ÚROVEŇ NOVÁ MATURITNÍ ZKOUŠKA Ilustrační test 008 Vyšší úroveň obtížnosti MAVCZMZ08DT MATEMATIKA VYŠŠÍ ÚROVEŇ DIDAKTICKÝ TEST Testový sešit obsahuje 0 úloh. Na řešení úloh máte 10 minut. Úlohy řešte v testovém

Více

Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6)

Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6) Test žáka Zdroj testu: Domácí testování Školní rok 2014/2015 Test z celoplošné zkoušky I. MATEMATIKA 9. ročník ZŠ (kvarta G8, sekunda G6) Jméno: Třída: Škola: Termín testování: Datum tisku: 01. 02. 2015

Více

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra: GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového

Více