Amortizovaná složitost. Prioritní fronty, haldy (binární, d- regulární, binomiální, Fibonacciho), operace nad nimi a jejich složitost
|
|
- Matyáš Janda
- před 9 lety
- Počet zobrazení:
Transkript
1 Amortizovaná složitost. Prioritní fronty, haldy binární, d- regulární, binomiální, Fibonacciho), operace nad nimi a jejich složitost 1. Asymptotické odhady Asymptotická složitost je deklarována na základě nejhorší nejlepší) možné instance běhu algoritmu, což ale není vždy vypovídající, protože i nejhorší sekvence případů může mít výrazně lepší průběh, než by asymptotická složitost napovídala. Operace s vysokou složitostí změní datovou strukturu tak, že takto špatný případ nenastane po nějakou delší dobu - tím se složitá operace amortizuje. horní asymptotický odhad f je shora asymptoticky ohraničená funkcí g až na konstantu): f Og) 0 c > 0) n0 ) n > n ) : c g f dolní asymptotický odhad f je zespoda asymptoticky ohraničená funkcí g až na konstantu): f Ωg) 0 c > 0) n0 ) n > n ) : c g f optimální asymptotický odhad f je asymptoticky ohraničená funkcí g z obou stran až na konstantu): f Ωg) 2 c1, c2 > 0) n0 ) n > n0 ) : c1 g f c g 2. Amortizovaná složitost = průměrný čas na vykonání operace v sekvenci operací v nejhorším případě - nevyužívá pravděpodobnost => průměrný čas na operaci skutečně zaručený Příklad: vkládání prvků do ArrayListu - list zdvojnásobuje svou velikost pokaždé, když dojde k jeho naplnění - vkládání prvků bez realokace) vyžaduje čas O1), pro N prvků je to ON) - v nejhorším případě vkládání operace potřebuje čas až ON) - vložení N prvků včetně realokace) je tedy potřeba v nejhorším případě ON) + ON) = ON) - amortizovaný čas na jedno vložení prvku je pak ON)/N= O1) 3. Prioritní fronty - abstraktní datový typ ADT) - každý element má přiřazenu svou prioritu - první jsou z fronty vybírány elementy s nejnižší/nejvyšší prioritou - PF nemusí být implementována pouze haldou -1-
2 - PF musí implementovat alespoň tyto operace: void pushelement e) // vloží element s prioritou Element pull) // vybere z fronty element s nejnižší/nejvyšší prioritou 4. Binární halda - je to implementace ADT prioritní fronty - stromová struktura s vlastností: pokud A je potomek B, potom B<=A - operace: insertx) // vloží prvek x do haldy accessmin) // vrátí nejmenší prvek haldy deletemin) // odstraní z haldy nejmenší prvek obvykle koře decreasekeyx,d) // zmenší hodnotu prvku x o d mergeh1, H2) // sloučí haldy H1a H2 do jedné, kterou vrátí deletex) // odstraní prvek x z haldy insertx) Obrázek 1 - Binární halda je stromová struktura 1. přidáme prvek x na konec haldy; 2. while parentx)>x) { prohodíme prvek x s prvkem parentx); 3. } accessmin) - vrátí hodnotu kořene stromu - složitost O1) deletemin) 1. vrátí element x, který je kořenem stromu; -2-
3 2. na místo x vloží nejpravější prvek y ze spodního patra pozor, ten nemusí být maximální!) 3. whiley > nejmenší z jeho dětí){ prohoď y a jeho nejmenšího potomka // y probublává dolů stromem 4. } decreasekeyx, d) - zmenšíme hodnotu prvku x o d, prvek x necháme probublat stromem nahoru delete x) - podobné jako deletemin) Reprezentace binární haldy v paměti 1. stromovou dynamickou datovou strukturou s ukazateli v obou směrech 2. polem kořen má index 1, potomci mají index 2k a 2k+1) 5. d-regulární halda Obrázek 2 - Bin. halda jako pole - d udává stupeň štěpení stromu haldy - pro d=2 je d-regulární halda právě binární halda - operace a jejich složitost nad d-regulární haldou jsou analogické jako v případě binární haldy - přesná složitost se liší základem logaritmu základ je d) 6. Binomiální halda - mn. stromů řádu i=1,, log, každý řád je zastoupen max. jedním stromem - pro binomiální strom řádu i platí: každý vrchol je menší nebo roven všem svým potomkům má 2 i vrcholů má hloubku i jeho kořen má i synů strom řádu i vznikne ze dvou stromů řádu i -1-3-
4 Obrázek 3 - Řády stromu -implementace: pole ukazatelů na kořeny stromů řádu i, plus zvláštní ukazatel na min prvek kořen jednoho ze stromů) mergeh 1, h 2 ) - spojení dvou stromů - ke stromu, jehož kořen je menší, se jako další syn připojí strom s větším kořenem insertx), amortizovaná složitost je konstantní - prvek tvoří strom řádu 0, strom se sloučí s jiným stromem řádu 0 pokud existuje) a vznikne jeden strom řádu 1, ten se dále sloučí s dalším existujícím stromem řádu 1... accessmin) - složitost O1) - vrátí prvek reprezentovaný kořenem stromu, na nějž ukazuje MIN ukazatel deletemin) - vezmou se všechny podstromy, které vznikly odebráním kořene a ty se postupně mergují s ostatními stromy decreasekey) - funguje jako u binární haldy, poté se aktualizuje min. ukazatel 7. Fibonacciho halda - velmi podobná binomiální haldě, ale některé mají amortizovanou složitost - operace insert, accessmin a merge probíhají v O1) - vnitřní struktura je flexibilnější - podstromy nemají pevně daný tvar a v extrémním případě může každý prvek haldy tvořit izolovaný strom nebo naopak všechny prvky mohou být součástí jediného stromu hloubky N => jednoduchá implementace - operace, které nejsou potřebné, odkládáme a vykonáváme je až v okamžiku, kdy je to nevyhnutelné, například spojení nebo vložení nového prvku se jednoduše provede spojením -4-
5 kořenových seznamů s konstantní náročností) a jednotlivé stromy spojíme až při operaci snížení hodnoty klíče - každý vrchol má nejvýše log synů - velikost stromu řádu k je nejméně F k +2, kde F k je k-té Fibonacciho číslo - kořen každého stromu řádu k má právě k potomků - stromy haldy propojeny dvojitým kruhovým spojovým seznamem 8. Zdroje Obrázek 4 - Kruhový seznam [1] Genyk-Berezovskyj, Marko: Přednáška 1 z PAL. [2] Genyk-Berezovskyj, Marko: Přednáška 5 z PAL. [3] Wikipedia: Priority Queue. [4] Mička, Pavel: Amortizovaná složitost
Pokročilá algoritmizace amortizovaná složitost, Fibonacciho halda, počítačová aritmetika
amortizovaná složitost, Fibonacciho halda, počítačová aritmetika Jiří Vyskočil, Marko Genyg-Berezovskyj 2009 Amortizovaná složitost Asymptotická složitost často dostatečně nevypovídá o složitosti algoritmů,
TGH07 - Chytré stromové datové struktury
TGH07 - Chytré stromové datové struktury Jan Březina Technical University of Liberec 1. dubna 2014 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AccessMin, DeleteMin) - vrat prvek s minimálním
TGH07 - Chytré stromové datové struktury
TGH07 - Chytré stromové datové struktury Jan Březina Technical University of Liberec 5. dubna 2017 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AccessMin, DeleteMin) - vrat prvek s minimálním
Datové struktury Úvod
Datové struktury Úvod Navrhněte co nejjednodušší datovou strukturu, která podporuje následující operace: 1. Insert a Delete v O(n), Search v O(log n); Datové struktury Úvod Navrhněte co nejjednodušší datovou
ADT prioritní fronta. Haldy. Další operace nad haldou. Binární halda. Binomické stromy. Časová složitost jednotlivých operací.
ADT prioritní fronta Haldy množina M operace Přidej(M,x) přidá prvek x do množiny M Odeber(M) odeber z množiny M prvek, který je na řadě Zásobník (LIFO), Fronta (FIFO) Prioritní fronta: Přidej(M,x) přidá
Dynamické datové struktury III.
Dynamické datové struktury III. Halda. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra aplikované
Prioritní fronta, halda
Prioritní fronta, halda Priority queue, heap Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2018 1 / 26 Prioritní fronta Halda Heap sort 2 / 26 Prioritní fronta (priority queue) Podporuje
Stromy, haldy, prioritní fronty
Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík
Základní datové struktury III: Stromy, haldy
Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní
Dynamické datové struktury IV.
Dynamické datové struktury IV. Prioritní fronta. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra
2 Datové struktury. Pole Seznam Zásobník Fronty FIFO Haldy a prioritní fronty Stromy Hash tabulky Slovníky
Pole Seznam Zásobník Fronty FIFO Haldy a prioritní fronty Stromy Hash tabulky Slovníky 25 Pole Datová struktura kolekce elementů (hodnot či proměnných), identifikovaných jedním nebo více indexy, ze kterých
Datový typ prioritní fronta Semestrální práce z předmětu 36PT
Datový typ prioritní fronta Semestrální práce z předmětu 36PT Martin Tůma Cvičení 113, Út 18:00 22. května 2004 Specifikace problému Často potřebujeme přístup k informacím, tak aby tyto byly seřazeny podle
Pokročilé haldy. prof. Ing. Pavel Tvrdík CSc. Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010
Pokročilé haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (I-EFA) ZS 2010/11,
TGH05 - Problém za milion dolarů.
TGH05 - Problém za milion dolarů. Jan Březina Technical University of Liberec 20. března 2012 Časová složitost algoritmu Závislost doby běhu programu T na velikosti vstupních dat n. O(n) notace, standardní
AVL stromy. pro každý uzel u stromu platí, že rozdíl mezi výškou jeho levého a pravého podstromu je nejvýše 1 stromy jsou samovyvažující
Stromy 2 AVL AVL stromy jména tvůrců stromů: dva Rusové Adelson-Velskii, Landis vyvážené binární stromy pro každý uzel u stromu platí, že rozdíl mezi výškou jeho levého a pravého podstromu je nejvýše 1
Náplň. v.0.03 16.02.2014. - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění
Náplň v.0.03 16.02.2014 - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění Spojení dvou samostatně setříděných polí void Spoj(double apole1[], int adelka1, double
přirozený algoritmus seřadí prvky 1,3,2,8,9,7 a prvky 4,5,6 nechává Metody řazení se dělí:
Metody řazení ve vnitřní a vnější paměti. Algoritmy řazení výběrem, vkládáním a zaměňováním. Heapsort, Shell-sort, Radix-sort, Quicksort. Řazení sekvenčních souborů. Řazení souborů s přímým přístupem.
Dynamicky vázané metody. Pozdní vazba, virtuální metody
Dynamicky vázané metody Pozdní vazba, virtuální metody Motivace... class TBod protected: float x,y; public: int vrat_pocet_bodu() return 1; ; od třídy TBod odvodíme: class TUsecka: public TBod protected:
TGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 26. března 2013 Motivační problémy Silniční sít reprezentovaná grafem. Najdi nejkratší/nejrychlejší cestu z místa A do místa
Prioritní fronta, halda (heap), řazení
Prioritní fronta, halda (heap), řazení Co je prioritní fronta? Definována operacemi - vlož prvek - vyber největší (nejmenší) prvek Proč pf? Rozhraní: class PF { // ADT rozhrani PF(); boolean jeprazdna();
Abstraktní datové typy
Karel Müller, Josef Vogel (ČVUT FIT) Abstraktní datové typy BI-PA2, 2011, Přednáška 10 1/27 Abstraktní datové typy Ing. Josef Vogel, CSc Katedra softwarového inženýrství Katedra teoretické informatiky,
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 19. září 2017 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
Algoritmy na ohodnoceném grafu
Algoritmy na ohodnoceném grafu Dvě základní optimalizační úlohy: Jak najít nejkratší cestu mezi dvěma vrcholy? Dijkstrův algoritmus s t Jak najít minimální kostru grafu? Jarníkův a Kruskalův algoritmus
Programování 3. hodina. RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015
Programování 3. hodina RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015 Umíme z minulé hodiny Implementace zásobníku a fronty pomocí
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Datové struktury Daniela Szturcová
Binární vyhledávací strom pomocí směrníků Miroslav Hostaša L06620
Binární vyhledávací strom pomocí směrníků Miroslav Hostaša L06620 1. Vymezení pojmů Strom: Strom je takové uspořádání prvků - vrcholů, ve kterém lze rozeznat předchůdce - rodiče a následovníky - syny.
bin arn ı vyhled av an ı a bst Karel Hor ak, Petr Ryˇsav y 23. bˇrezna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT
binární vyhledávání a bst Karel Horák, Petr Ryšavý 23. března 2016 Katedra počítačů, FEL, ČVUT Příklad 1 Naimplementujte binární vyhledávání. Upravte metodu BinarySearch::binarySearch. 1 Příklad 2 Mysĺım
Datové struktury - haldy a třídicí algoritmy
Datové struktury - haldy a třídicí algoritmy I. Úvod V praxi se často setkáváme s následujícím problémem, který vzniká na uspořádaném univerzu, jehož uspořádání se však v průběhu času mění. Úloha se liší
Binární Vyhledávací Stromy, u kterých je. složitost operací v nejhorším. rovná O(log n)
Stromy Binární Vyhledávací Stromy, u kterých je č asová složitost operací v nejhorším případě rovná O(log n) Vlastnosti Red-Black Stromů Vlastnosti Red-Black stromů Každý uzel stromu je obarven červenou
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 20. září 2016 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
Konstruktory a destruktory
Konstruktory a destruktory Nedostatek atributy po vytvoření objektu nejsou automaticky inicializovány hodnota atributů je náhodná vytvoření metody pro inicializaci, kterou musí programátor explicitně zavolat,
Vyvažování a rotace v BVS, všude se předpokládá AVL strom
Vyvažování a rotace v BVS, všude se předpokládá AVL strom 1. Jednoduchá levá rotace v uzlu u má operační složitost a) závislou na výšce levého podstromu uzlu u b) mezi O(1) a Θ(n) c) závislou na hloubce
Stromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy
Stromy úvod Stromy Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Neorientovaný strom Orientovaný strom Kořenový orientovaný
Základní datové struktury
Základní datové struktury Martin Trnečka Katedra informatiky, Přírodovědecká fakulta Univerzita Palackého v Olomouci 4. listopadu 2013 Martin Trnečka (UPOL) Algoritmická matematika 1 4. listopadu 2013
Intervalové stromy. Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme. 1. Změna jednoho čísla v posloupnosti.
Intervalové stromy Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme průběžně provádět tyto dvě operace: 1. Změna jednoho čísla v posloupnosti. 2. Zjištění součtu čísel
V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2
Euklidův algoritmus Doprovodný materiál pro cvičení Programování I. NPRM044 Autor: Markéta Popelová Datum: 31.10.2010 Euklidův algoritmus verze 1.0 Zadání: Určete největšího společného dělitele dvou zadaných
autoři: Rudolf Bayer, Ed McCreight všechny vnější uzly (listy) mají stejnou hloubku ADS (abstraktní datové struktury)
definice ( tree) autoři: Rudolf Bayer, Ed McCreight vyvážený strom řádu m ( ) každý uzel nejméně a nejvýše m potomků s výjimkou kořene každý vnitřní uzel obsahuje o méně klíčů než je počet potomků (ukazatelů)
Lineární datové struktury
Lineární datové struktury doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Lineární datové
Cílem kapitoly je seznámit studenta se seznamem a stromem. Jejich konstrukci, užití a základní vlastnosti.
Seznamy a stromy Cílem kapitoly je seznámit studenta se seznamem a stromem. Jejich konstrukci, užití a základní vlastnosti. Klíčové pojmy: Seznam, spojový seznam, lineární seznam, strom, list, uzel. Úvod
TGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 31. března 2015 Motivační problémy Silniční sít reprezentovaná grafem. Ohodnocené hrany - délky silnic. Najdi nejkratší/nejrychlejší
Šablony, kontejnery a iterátory
7. října 2010, Brno Připravil: David Procházka Šablony, kontejnery a iterátory Programovací jazyk C++ Šablony Strana 2 / 21 Šablona funkce/metody Šablona je obecný popis (třídy, funkce) bez toho, že by
Adresní vyhledávání (přímý přístup, zřetězené a otevřené rozptylování, rozptylovací funkce)
13. Metody vyhledávání. Adresní vyhledávání (přímý přístup, zřetězené a otevřené rozptylování, rozptylovací funkce). Asociativní vyhledávání (sekvenční, binárním půlením, interpolační, binární vyhledávací
V případě jazyka Java bychom abstraktní datový typ Time reprezentující čas mohli definovat pomocí třídy takto:
20. Programovací techniky: Abstraktní datový typ, jeho specifikace a implementace. Datový typ zásobník, fronta, tabulka, strom, seznam. Základní algoritmy řazení a vyhledávání. Složitost algoritmů. Abstraktní
10. Složitost a výkon
Jiří Vokřínek, 2016 B6B36ZAL - Přednáška 10 1 Základy algoritmizace 10. Složitost a výkon doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Jiří
prioritu a vždy je třeba začít pracovat na úkolu, který ma v daný okamžik
1. Binární halda Uvažme následující problém ze života: jsme velmi vytíženým manažerem, kterému se plánovací diář stále plní obrovským množstvím úkolů. Každý úkol má předepsanou prioritu a vždy je třeba
Fronta (Queue) Úvod do programování. Fronta implementace. Fronta implementace pomocí pole 1/4. Fronta implementace pomocí pole 3/4
Fronta (Queue) Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 Fronta uplatňuje mechanismus přístupu FIFO first
ABSTRAKTNÍ DATOVÉ TYPY (ADT)
ABSTRAKTNÍ DATOVÉ TYPY (ADT) hierarchie abstrakcí: nejvyšší úroveň ZOO DruhZvirat celá čísla, řetězce nejnižší úroveň bity Abstrahujeme od - reprezentace (implementace) dat - realizace (implementace) operací
Dynamické datové struktury I.
Dynamické datové struktury I. Seznam. Fronta. Zásobník. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz
Co když chceme najít i druhý nejmenší prvek? Nebo co když chceme najít k
Kapitola Halda. Halda Halda je často používaná datová struktura, která slouží k rychlému hledání minima. Dostaneme n prvků a chceme najít nejmenší z nich, tedy jejich minimum. Pokud hledáme jen jeden nejmenší
Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.
1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste
1. Binomiální haldy. 1.1. Zavedení binomiální haldy
1. Binomiální haldy V této kapitole popíšeme datovou strukturu zvanou binomiální halda. Základní funkcionalita binomiální haldy je podobná binární haldě, nicméně jí dosahuje jinými metodami a navíc podporuje
Programování v C++ 1, 16. cvičení
Programování v C++ 1, 16. cvičení binární vyhledávací strom 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled 1 2 Shrnutí minule procvičené
Radek Mařík
2012-03-20 Radek Mařík 1. Pravá rotace v uzlu U a) v podstromu s kořenem U přemístí pravého syna U.R uzlu U do kořene. Přitom se uzel U stane levým synem uzlu U.R a levý podstrom uzlu U.R se stane pravým
Algoritmy a datové struktury
Algoritmy a datové struktury Stromy 1 / 32 Obsah přednášky Pole a seznamy Stromy Procházení stromů Binární stromy Procházení BS Binární vyhledávací stromy 2 / 32 Pole Hledání v poli metodou půlení intervalu
Datové struktury 1: Základní datové struktury
Datové struktury 1: Základní datové struktury prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Datové struktury Daniela Szturcová
Michal Krátký. Úvod do programovacích jazyků (Java), 2006/2007
Úvod do programovacích jazyků (Java) Michal Krátký Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programovacích jazyků (Java), 2006/2007 c 2006 Michal Krátký Úvod do programovacích jazyků
Šablony, kontejnery a iterátory
11. března 2015, Brno Připravil: David Procházka Šablony, kontejnery a iterátory Programovací jazyk C++ Šablony Strana 2 / 31 Obsah přednášky 1 Šablony 2 Abstraktní datové struktury 3 Iterátory 4 Array
Spojová implementace lineárních datových struktur
Spojová implementace lineárních datových struktur doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB
5 Rekurze a zásobník. Rekurzivní volání metody
5 Rekurze a zásobník Při volání metody z metody main() se do zásobníku uloží aktivační záznam obsahující - parametry - návratovou adresu, tedy adresu, kde bude program pokračovat v metodě main () po skončení
Skip list dokumentace
Skip list dokumentace Václav Brodec Úvod Skip list je pravděpodobnostní datová struktura dosahující s vysokou pravděpodobností logaritmické složitosti pro běžné operace (přidání prvku, odebrání, nalezení
Složitosti základních operací B + stromu
Složitosti základních operací B + stromu Radim Bača VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra informatiky ŠKOMAM 2010-1- 28/1/2010 Složitosti základních operací B +
PRAKTICKÁ EFEKTIVITA KONTEJNERŮ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS PRAKTICKÁ EFEKTIVITA
Stromové struktury v relační databázi
Stromové struktury v relační databázi Stromové struktury a relační databáze Zboží Procesory Paměti Intel AMD DDR DIMM Pentium IV Celeron Duron Athlon http://interval.cz/clanky/metody-ukladani-stromovych-dat-v-relacnich-databazich/
Algoritmizace. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010
Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Úvod stránky předmětu: https://cw.felk.cvut.cz/doku.php/courses/a4b33alg/start cíle předmětu Cílem je schopnost samostatné implementace různých variant základních
Abstraktní datové typy FRONTA
Abstraktní datové typy FRONTA Fronta je lineární datová struktura tzn., že ke každému prvku s výjimkou posledního náleží jeden následník a ke každému prvku s výjimkou prvního náleží jeden předchůdce. Do
NEJKRATŠÍ CESTY I. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
NEJKRATŠÍ CESTY I Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 7 Evropský sociální fond Praha & EU: Investujeme do vaší
Pole a kolekce. v C#, Javě a C++
Pole a kolekce v C#, Javě a C++ C# Deklarace pole typ_prvku_pole[] jmeno_pole; Vytvoření pole jmeno_pole = new typ_prvku_pole[pocet_prvku_pole]; Inicializace pole double[] poled = 4.8, 8.2, 7.3, 8.0; Java
B3B33ALP - Algoritmy a programování - Zkouška z předmětu B3B33ALP. Marek Boháč bohacm11
Jméno Příjmení Už. jméno Marek oháč bohacm11 Zkouškový test Otázka 1 Jaká je hodnota proměnné count po vykonání následujícího kódu: data=[4,4,5,5,6,6,6,7,7,7,7,8,8] count=0 for i in range(1,len(data)):
Časová a prostorová složitost algoritmů
.. Časová a prostorová složitost algoritmů Programovací techniky doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Hodnocení algoritmů Programovací techniky Časová a prostorová
3 Algoritmy řazení. prvku a 1 je rovněž seřazená.
Specifikace problému řazení (třídění): A... neprázdná množina prvků Posl(A)... množina všech posloupností prvků z A ... prvky množiny Posl(A) q... délka posloupnosti Posl(A), přičemž Delka()
Dynamické programování. Optimální binární vyhledávací strom
The complexity of different algorithms varies: O(n), Ω(n ), Θ(n log (n)), Dynamické programování Optimální binární vyhledávací strom Různé algoritmy mají různou složitost: O(n), Ω(n ), Θ(n log (n)), The
Maturitní témata. IKT, školní rok 2017/18. 1 Struktura osobního počítače. 2 Operační systém. 3 Uživatelský software.
Maturitní témata IKT, školní rok 2017/18 1 Struktura osobního počítače Von Neumannova architektura: zakreslete, vysvětlete její smysl a popište, jakým způsobem se od ní běžné počítače odchylují. Osobní
ADT STROM Lukáš Foldýna
ADT STROM Lukáš Foldýna 26. 05. 2006 Stromy mají široké uplatnění jako datové struktury pro různé algoritmy. Jsou to matematické abstrakce množin, kterou v běžném životě používáme velice často. Příkladem
1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10
Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10
Programování v C++, 2. cvičení
Programování v C++, 2. cvičení 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled 1 Operátory new a delete 2 3 Operátory new a delete minule
SQL tříhodnotová logika
SQL tříhodnotová logika Jmeno Prijmeni Student Jaroslav Novák true Josef Novotný false Jiří Brabenec SELECT * FROM OSOBA WHERE Student!= true Jaký bude výsledek? SQL tříhodnotová logika Jmeno Prijmeni
Časová složitost algoritmů
Časová složitost algoritmů Důležitou vlastností algoritmu je časová náročnost výpočtů provedené podle daného algoritmu Ta se nezískává měřením doby výpočtu pro různá data, ale analýzou algoritmu, jejímž
Základy algoritmizace a programování
Základy algoritmizace a programování Složitost algoritmů. Třídění Přednáška 8 16. listopadu 2009 Který algoritmus je "lepší"? Různé algoritmy, které řeší stejnou úlohu zbytek = p % i; zbytek = p - p/i*i;
8. Geometrie vrací úder (sepsal Pavel Klavík)
8. Geometrie vrací úder (sepsal Pavel Klavík) Když s geometrickými problémy pořádně nezametete, ony vám to vrátí! Ale když užzametat,takurčitěnepodkoberecamístosmetákupoužijtepřímku.vtéto přednášce nás
Padovan heaps Vladan Majerech
Padovan heaps Vladan Majerech Základní princip velmi drahé porovnávání Porovnáváme jen když musíme (v podstatě veškerou práci dělá FindMin) Výsledky porovnávání nezahazujeme Nesmíme organizací porovnávání
a) b) c) Radek Mařík
2012-03-20 Radek Mařík 1. Čísla ze zadané posloupnosti postupně vkládejte do prázdného binárního vyhledávacího stromu (BVS), který nevyvažujte. Jak bude vypadat takto vytvořený BVS? Poté postupně odstraňte
Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz
Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz (2 + 5) * (13-4) * + - 2 5 13 4 - listy stromu obsahují operandy (čísla) - vnitřní uzly obsahují operátory (znaménka)
Stromy. Jan Hnilica Počítačové modelování 14
Stromy Jan Hnilica Počítačové modelování 14 1 Základní pojmy strom = dynamická datová struktura, složená z vrcholů (uzlů, prvků) propojených hranami hrany chápeme jako orientované, tzn. vedou z uzlu A
6. Tahy / Kostry / Nejkratší cesty
6. Tahy / Kostry / Nejkratší cesty BI-EP2 Efektivní programování 2 LS 2017/2018 Ing. Martin Kačer, Ph.D. 2011-18 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké
Základy algoritmizace c2007 Michal Krátký, Jiří Dvorský 1/57
Základy algoritmizace Michal Krátký 1, Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Základy algoritmizace, 2006/2007 Základy algoritmizace c2007 Michal Krátký, Jiří Dvorský 1/57
Základy algoritmizace. Hašování
Základy algoritmizace Hašování Problematika hašování Hašování - nástroj na jednoduchý způsob "zakódování vstupních dat. Vstupní data jsou zpracována hašovací funkcí jsou jistým způsobem komprimována. Relativně
Semestrální práce 2 znakový strom
Semestrální práce 2 znakový strom Ondřej Petržilka Datový model BlockFileRecord Bázová abstraktní třída pro záznam ukládaný do blokového souboru RhymeRecord Konkrétní třída záznamu ukládaného do blokového
Datové struktury I NTIN066
Datové struktury I NTIN066 Jirka Fink https://ktiml.mff.cuni.cz/ fink/ Katedra teoretické informatiky a matematické logiky Matematicko-fyzikální fakulta Univerzita Karlova v Praze Zimní semestr 2016/17
Algoritmy I, složitost
A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??
DobSort. Úvod do programování. DobSort Implementace 1/3. DobSort Implementace 2/3. DobSort - Příklad. DobSort Implementace 3/3
DobSort Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 V roce 1980 navrhl Dobosiewicz variantu (tzv. DobSort),
B3B33ALP - Algoritmy a programování - Zkouška z předmětu B3B33ALP. Marek Boháč bohacm11
333LP - lgoritmy a programování - Zkouška z předmětu 333LP Jméno Příjmení Už. jméno Marek oháč bohacm11 Zkouškový test Otázka 1 Jaká je hodnota proměnné count po vykonání následujícího kódu: data=[4,4,5,5,6,6,6,7,7,7,7,8,8]
Datové struktury 2: Rozptylovací tabulky
Datové struktury 2: Rozptylovací tabulky prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy
Návrh designu: Radek Mařík
Návrh designu: Radek Mařík 1. Hashovací (=rozptylovací) funkce a) převádí adresu daného prvku na jemu příslušný klíč b) vrací pro každý klíč jedinečnou hodnotu c) pro daný klíč vypočte adresu d) vrací
Programování v C++ 1, 17. cvičení
Programování v C++ 1, 17. cvičení výjimky 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled 1 2 Shrnutí minule procvičené látky Binární vyhledávací
A4B33ALG 2010/05 ALG 07. Selection sort (Select sort) Insertion sort (Insert sort) Bubble sort deprecated. Quicksort.
A4B33ALG 2010/05 ALG 07 Selection sort (Select sort) Insertion sort (Insert sort) Bubble sort deprecated Quicksort Stabilita řazení 1 Selection sort Neseřazeno Seřazeno Start T O U B J R M A K D Z E min
1 Test 1 naivní vs standardní
. DÚ Nafukovací pole Datové Struktury I Studentus Maximus Takto jsou zobrazeny poznámky cvičících k tomu, co a jak je tu napsáno, skutečný text je mimo oranžové rámečky. Počítač, na kterém byly provedeny
Druhá skupina zadání projektů do předmětu Algoritmy II, letní semestr 2014/2015
Druhá skupina zadání projektů do předmětu Algoritmy II, letní semestr 2014/2015 doc. Mgr. Jiří Dvorský, Ph.D. 6. dubna 2015 Verze zadání 6. dubna 2015 První verze 1 1 Sledování elektroměrů V panelovém
IB108 Sada 1, Příklad 1 Vypracovali: Tomáš Krajča (255676), Martin Milata (256615)
IB108 Sada 1, Příklad 1 ( ) Složitost třídícího algoritmu 1/-Sort je v O n log O (n.71 ). Necht n = j i (velikost pole, které je vstupním parametrem funkce 1/-Sort). Lehce spočítáme, že velikost pole předávaná
Red Black strom (Red Black Tree) Úvod do programování. Rotace. Red Black strom. Rotace. Rotace
Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 Red Black strom je binární strom s jedním dvouhodnotovým příznakem