TGH06 - Hledání nejkratší cesty
|
|
- Roman Veselý
- před 8 lety
- Počet zobrazení:
Transkript
1 TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 31. března 2015
2 Motivační problémy Silniční sít reprezentovaná grafem. Ohodnocené hrany - délky silnic. Najdi nejkratší/nejrychlejší cestu z místa A do místa B. Hledání nejširší cesty (přeprava rozměrných nákladů). Najdi nejrychlejší dopravní spojení (IDOS). Routovaní. Nejkratší cesta pro pakety TCP/IP spojení. AI - pathfinding, pro roboty a boty. Ohodnocení délkou, bezpečností,... AI (problem solving) např. skládání rubikovy kostky,
3 Grafové formulace Vstup: Graf (vrcholu, hrany), orientovaný Ohodnocení hran (nezáporné) Shortest path: Najdi nejkratší cestu z vrcholu A do vrcholu B. Single source shortest path: Najdi nejkratší cesty z vrcholu S do všech vrcholů. V single source úloze je řešením strom nejkratších cest (z každého vrcholu kromě S vede právě jedna hrana směrem k S, tj. N 1 hran). All-to-all shortest path: Najdi nejkratší cestu pro všechny dvojice vrcholů.
4 Modifikace BFS Pro celočíselná ohodnocení bychom mohli hrany rozdělit na podhrany.
5 Modifikace BFS Pro celočíselná ohodnocení bychom mohli hrany rozdělit na podhrany. Spustíme BFS z vrcholu S. Z vrcholu S vypustíme Číňany. Ve vrcholech se budou dělit.
6 Modifikace BFS Pro celočíselná ohodnocení bychom mohli hrany rozdělit na podhrany. Spustíme BFS z vrcholu S. Z vrcholu S vypustíme Číňany. Ve vrcholech se budou dělit. Pro velká ohodnocení budeme opakovaně dávat do fronty vrcholy na stejných makro hranách. Číňané pouze jdou.
7 Modifikace BFS Pro celočíselná ohodnocení bychom mohli hrany rozdělit na podhrany. Spustíme BFS z vrcholu S. Z vrcholu S vypustíme Číňany. Ve vrcholech se budou dělit. Pro velká ohodnocení budeme opakovaně dávat do fronty vrcholy na stejných makro hranách. Číňané pouze jdou. Chceme zjistit, který Čínan první dorazí na nějakou křižovatku. Pro něj provedeme rozdělení.
8 Modifikace BFS Pro celočíselná ohodnocení bychom mohli hrany rozdělit na podhrany. Spustíme BFS z vrcholu S. Z vrcholu S vypustíme Číňany. Ve vrcholech se budou dělit. Pro velká ohodnocení budeme opakovaně dávat do fronty vrcholy na stejných makro hranách. Číňané pouze jdou. Chceme zjistit, který Čínan první dorazí na nějakou křižovatku. Pro něj provedeme rozdělení. Lépe: Na kterou křižovatku dorazí prvně nějaký Číňan. Křižovatek (vrcholů) je méně než skupin Číňanů (hran).
9 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AcessMin, DeleteMin) - vrat prvek s minimálním kĺıčem a odeber ho z fronty Zmenši Kĺıč (DecreaseKey) - zmenši kĺıč daného prvku ve frontě Naplnění fronty - vytvoření fronty z dané množiny prvků, nebo operace přidání prvku Možno implementovat pomocí haldy. Pro binární haldu máme složitost prvních dvou operací O(log n).
10 Dijkstra s algorithm Vstup: vrcholy V a sousednosti Adj[u] = {e E e(u, v)} s ohodnocením w(e), počáteční vrchol s Výstup: vzdálenosti d[i] od s, předci π[i] stromu minimálních vzdáleností for u V do d[u] = ; ; d[s] = 0; π[s] = NULL; Naplň prioritní frontu Q vrcholy V s prioritami d[ ]. while u = OdeberMin(Q) do for e = (u, v) Adj[u] do alt = d[u] + w(e); if alt < d[v] then π[v] = u; d[v] = alt; ZmenšiKĺıč(Q,v);
11 Složitost Dijkstra Obecně: Pro seznam: O( V (čas OdeberMin) + E (čas ZmenšiKĺıč)) O( V O( V ) + E O(1)) = O( V 2 ) Pokud E V 2 je toto optimální, jinak se vyplatí použít: Binární haldu: O(( V + E ) log V ) nebo dokonce Fibonacciho haldu: O( V log V + E )
12 Správnost Dijkstra Theorem Necht R je množina vrcholů mimo prioritní frontu. V průběhu celého algoritmu platí d[v] = δ(v) := δ(s, v) pro všechny vrcholy v R. Důkaz indukcí. Na počátku je R =, tvrzení platí. Pokud platí pro R, platí i po přidání vrcholu v, tj. pro R {v}. Sporem: Existuje cesta P = (s,..., x, y,..., v) kratší než d[v], Necht, (x, y), x R a y / R, je hrana nejbĺıže s (existuje, protože s R a v / R. Vrchol v má nejmenší d[ ] z vrcholů mimo R. Tedy d[v] d[y]. Při přidání x do R jsme prošli i hranu (x, y), je tedy: d[x] + w(x, y) d[y] a zároveň d[x] = δ(x) podle indukčního předpokladu. Dohromady: w(p ) δ(x) + w(x, y) d[v] takže cesta P není kratší.
13 Bottleneck path Problém: Najdi cestu z města A do města B s největší minimální šířku silnice. Modifikace Dijkstra: vrcholy - města hrany - silnice váhy hran - šířky silnic délka cesty - minum z hodnot hran (nejužší místo na cestě) fronta - maximální, d[ ] šířka nejširší cesty while u = OdeberMax(Q) do for e = (u, v) Adj[u] do alt = min(d[u], w(e)); if alt > d[v] then π[v] = u; d[v] = alt; ZvětšKĺıč(Q,v);
14 Hledání nejkratší cesty Hledání nejkratší nebo nejrychlejší cesty na mapě. (Rovinný graf) IDOS. Nejrychlejší dopravní spojení. (DAG) Hledání spojení s maximální propustností. (bottleneck path) Path density. Importance of people in social networks.
15 Path density
16 Bellman-Ford pro záporné váhy for u V do d[u] = ; ; d[s] = 0; π[s] = NULL; for i = 1,..., V 1 do for e = (u, v) E do alt = d[u] + w(e); if alt < d[v] then π[v] = u; d[v] = alt; for e = (u, v) E do u = e.begin; v = e.end; alt = d[u] + w(e); if alt < d[v] then Error: negative cycle.; princip: V kroku i najdu všechny nejkratší cesty délky i. složitost: O( V E )
17 Bellman-Ford aplikace Hrany jsou akce, ohodnocení jejich cena (kladná - placená práce, záporná - jiné aktivity), cílem je dosáhnout daného cíle a maximalizovat náklady. Hrany jsou chemické reakce, ohodnocení uvolněné teplo. Kurzová arbitráž. Hrany jsou možné konverze mezi měnami. Cílem je najít negativní cyklus a na něm se obohatit. Zjednodušené verze některých NP-úplných problémů (lineární programování). Řešení soustavy rozdílových nerovnic: x i x j w ij Vrcholy jsou proměnné, hrany jsou nerovnice, přidán startovní vrchol s nulovými hranami do ostatních.
18 Floyd Warshall - všechny nejkratší cesty Počáteční hodnota d[i][j] je hodnota příslušné hrany, nebo nekonečno pokud hrana neexistuje. middle[ ][ ] = NULL for k = 1,..., V do for i = 1,..., V do for j = 1,..., V do if d[i][k] + d[k][j] < d[i][j] then d[i][j] = d[i][k] + d[k][j]; middle[i][j] = k; Pro každé k se aktualizuje d[i][j], což je nejkratší cesta z i do j s použitím vrcholů 1,..., k. middle[i][j] udává mezivrchol s nejvyšším indexem na nejkratší cestě z i do j. Libovolnou nejkratší cestu i j je možno rekurzivně rekonstruovat jako: i middle[i][j], middle[i][j] j. Při přítomnosti záporných cyklů jsou na diagonále matice d záporná čísla.
19 Princip optimality Pokud X Z Y je nejkratší cesta z X do Y, pak X Z a Z Y jsou také nejkratší cesty. Důsledek:
20 Dynamické programování
21 A algorithm Dijkstrův algoritmus + heuristika vzdálenosti do cíle c. Přípustná (admisible) heuristika h(v): pro každý vrchol v máme navíc spodní odhad nejkratší vzdálenosti, t.j. monotóní heuristika δ(v, c) h(v) h(x) δ(x, y) + h(y) V Dijkstrově algoritmu pak modifikujeme ceny hran na: FINISH d (u, v) = d(u, v) h(u) + h(v)
22
23
24 A* algorithm, monotonni for u V do d[u] = ; ; d[s] = 0; π[s] = NULL; Naplň prioritní frontu Q vrcholy V s prioritami d[ ]. while u = OdeberMin(Q) do for e = (u, v) Adj[u] do alt = d[u] + w(e) h[u] + h[v]; if alt < d[v] then π[v] = u; d[v] = alt; ZmenšiKĺıč(Q,v); Stačí modifikovat ohodnocení hran. Díky monotonii nevznikaji zaporné hrany a každý vrchol se do fronty dostane maximálně jednou.
25 A* algorithm, monotonni for u V do d[u] = ; ; d[s] = 0; π[s] = NULL; Naplň prioritní frontu Q vrcholy V s prioritami d[ ]. while u = OdeberMin(Q) do for e = (u, v) Adj[u] do alt = d[u] + w(e); if alt < d[v] then π[v] = u; d[v] = alt; ZmenšiKĺıč(Q,v, d[v] + h[v]); Ohodnocení i hodnoty d[:] jsou jako v Dijkstrovi, ale priority ve frontě jsou modifikované. Pro monoténní heuristiku je to ekvivalentní předchozímu přístupu. Jinak se vrcholy mohou do fronty vracet. Jakou to pak má složitost??
26 Dálniční hierarchie
TGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 26. března 2013 Motivační problémy Silniční sít reprezentovaná grafem. Najdi nejkratší/nejrychlejší cestu z místa A do místa
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
TGH08 - Optimální kostry
TGH08 - Optimální kostry Jan Březina Technical University of Liberec 14. dubna 2015 Problém profesora Borůvky řešil elektrifikaci Moravy Jak propojit N obcí vedením s minimální celkovou délkou. Vedení
TGH05 - aplikace DFS, průchod do šířky
TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 28. března 2017 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující
TGH05 - aplikace DFS, průchod do šířky
TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 31. března 2015 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující
Algoritmy na ohodnoceném grafu
Algoritmy na ohodnoceném grafu Dvě základní optimalizační úlohy: Jak najít nejkratší cestu mezi dvěma vrcholy? Dijkstrův algoritmus s t Jak najít minimální kostru grafu? Jarníkův a Kruskalův algoritmus
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
Vzdálenost uzlů v neorientovaném grafu
Vzdálenosti a grafy Vzdálenost uzlů v neorientovaném grafu Je dán neorientovaný neohodnocený graf G = (V,E,I) vzdálenost uzlů u a v v neorientovaném souvislém grafu G je délka nejkratší cesty spojující
opakování reprezentace grafů, dijkstra, bellman-ford, johnson
opakování reprezentace grafů, dijkstra, bellman-ford, johnson Petr Ryšavý 19. září 2016 Katedra počítačů, FEL, ČVUT opakování reprezentace grafů Graf Definice (Graf) Graf G je uspořádaná dvojice G = (V,
NEJKRATŠÍ CESTY I. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
NEJKRATŠÍ CESTY I Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 7 Evropský sociální fond Praha & EU: Investujeme do vaší
Jan Březina. 7. března 2017
TGH03 - stromy, ukládání grafů Jan Březina Technical University of Liberec 7. března 2017 Kružnice - C n V = {1, 2,..., n} E = {{1, 2}, {2, 3},..., {i, i + 1},..., {n 1, n}, {n, 1}} Cesta - P n V = {1,
Použití dalších heuristik
Použití dalších heuristik zkracování cesty při FIND-SET UNION podle hodností Datové struktury... p[x] - předchůdce uzlu x MAKE-SET(x) p[x] := x hod[x] := 0 hod[x] - hodnost (aprox. výšky) UNION(x,y) LINK(FIND-SET(x),
Paralelní grafové algoritmy
Paralelní grafové algoritmy Značení Minimální kostra grafu Nejkratší cesta z jednoho uzlu Nejkratší cesta mezi všemi dvojicemi uzlů Použité značení Definition Bud G = (V, E) graf. Pro libovolný uzel u
TGH07 - Chytré stromové datové struktury
TGH07 - Chytré stromové datové struktury Jan Březina Technical University of Liberec 1. dubna 2014 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AccessMin, DeleteMin) - vrat prvek s minimálním
opakování reprezentace grafů, dijkstra, bellman-ford, johnson
opakování reprezentace grafů, dijkstra, bellman-ford, johnson Petr Ryšavý 18. září 2017 Katedra počítačů, FEL, ČVUT opakování reprezentace grafů Graf Definice (Graf) Graf G je uspořádaná dvojice G = (V,
Algoritmus pro hledání nejkratší cesty orientovaným grafem
1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval
TGH07 - Chytré stromové datové struktury
TGH07 - Chytré stromové datové struktury Jan Březina Technical University of Liberec 5. dubna 2017 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AccessMin, DeleteMin) - vrat prvek s minimálním
TGH09 - Barvení grafů
TGH09 - Barvení grafů Jan Březina Technical University of Liberec 15. dubna 2013 Problém: Najít obarvení států na mapě tak, aby žádné sousední státy neměli stejnou barvu. Motivační problém Problém: Najít
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento
TGH10 - Maximální toky
TGH10 - Maximální toky Jan Březina Technical University of Liberec 23. dubna 2013 - motivace Elektrická sít : Elektrická sít, jednotlivé vodiče mají různou kapacitu (max. proud). Jaký maximální proud může
TGH05 - Problém za milion dolarů.
TGH05 - Problém za milion dolarů. Jan Březina Technical University of Liberec 20. března 2012 Časová složitost algoritmu Závislost doby běhu programu T na velikosti vstupních dat n. O(n) notace, standardní
Základní datové struktury III: Stromy, haldy
Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní
Dijkstrův algoritmus
Dijkstrův algoritmus Hledání nejkratší cesty v nezáporně hranově ohodnoceném grafu Necht je dán orientovaný graf G = (V, H) a funkce, která každé hraně h = (u, v) H přiřadí nezáporné reálné číslo označované
Dynamické programování
ALG 0 Dynamické programování zkratka: DP Zdroje, přehledy, ukázky viz https://cw.fel.cvut.cz/wiki/courses/a4balg/literatura_odkazy 0 Dynamické programování Charakteristika Neřeší jeden konkrétní typ úlohy,
Dijkstrův algoritmus (připomenutí)
Dijkstrův algoritmus (připomenutí) Základní předpoklad w : H R + (nezáporné délky hran) Upravený algoritmus prohledávání do šířky Dijkstra(G,s,w) 1 InitPaths(G,s) 2 S:= ; InitQueue(Q) 3 for každý uzel
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 20. září 2016 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
Binární vyhledávací stromy pokročilé partie
Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald
TGH04 - procházky po grafech
TGH04 - procházky po grafech Jan Březina Technical University of Liberec 24. března 2015 Theseus v labyrintu Theseus chce v labyrintu najít Mínotaura. K dispozici má Ariadninu nit a křídu. Jak má postupovat?
Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů
Kapitola 11 Vzdálenost v grafech V každém grafu lze přirozeným způsobem definovat vzdálenost libovolné dvojice vrcholů. Hlavním výsledkem této kapitoly je překvapivé tvrzení, podle kterého lze vzdálenosti
Stromy, haldy, prioritní fronty
Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík
Jan Březina. Technical University of Liberec. 21. dubna 2015
TGH11 - Maximální párování a související problémy Jan Březina Technical University of Liberec 21. dubna 2015 Bipartitní grafy Bipartitní graf - je obarvitelný dvěma barvami. Tj. V lze rozělit na disjunktní
07 Základní pojmy teorie grafů
07 Základní pojmy teorie grafů (definice grafu, vlastnosti grafu, charakteristiky uzlů, ohodnocené grafy) Definice grafu množina objektů, mezi kterými existují určité vazby spojující tyto objekty. Uspořádaná
Jan Březina. Technical University of Liberec. 30. dubna 2013
TGH11 - Maximální párování a související problémy Jan Březina Technical University of Liberec 30. dubna 2013 Bipartitní grafy Bipartitní graf - je obarvitelný dvěma barvami. Tj. V lze rozělit na disjunktní
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 19. září 2017 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
Hranová konzistence. Arc consistency AC. Nejprve se zabýváme binárními CSP. podmínka odpovídá hraně v grafu podmínek
Hranová konzistence Arc consistency AC Nejprve se zabýváme binárními CSP podmínka odpovídá hraně v grafu podmínek Hrana (V i, V j ) je hranově konzistentní, právě když pro každou hodnotu x z aktuální domény
Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.
1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste
Graf. Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd.
Graf 2 0 3 1 4 5 Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd. Běžné reprezentace grafu Uzly = indexy Stupně uzlů
Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest
Obsah prezentace Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest 1 Základní pojmy Vrchol grafu: {množina V} Je to styčná vazba v grafu, nazývá se též uzlem, prvkem
Amortizovaná složitost. Prioritní fronty, haldy (binární, d- regulární, binomiální, Fibonacciho), operace nad nimi a jejich složitost
Amortizovaná složitost. Prioritní fronty, haldy binární, d- regulární, binomiální, Fibonacciho), operace nad nimi a jejich složitost 1. Asymptotické odhady Asymptotická složitost je deklarována na základě
Drsná matematika III 10. demonstrovaná cvičení Kostry grafů
Drsná matematika III 10. demonstrovaná cvičení Kostry grafů Martin Panák Masarykova univerzita Fakulta informatiky 21.11. 2006 1 Domácí úlohy z minulého týdne Příklad 1 Příklad 2 Příklad 3 2 Borůvkův algoritmus
Jarníkův algoritmus. Obsah. Popis
1 z 6 28/05/2015 11:44 Jarníkův algoritmus Z Wikipedie, otevřené encyklopedie Jarníkův algoritmus (v zahraničí známý jako Primův algoritmus) je v teorii grafů algoritmus hledající minimální kostru ohodnoceného
Úvod do teorie grafů
Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí
Matice sousednosti NG
Matice sousednosti NG V = [ v ij ] celočíselná čtvercová matice řádu U v ij = ρ -1 ( [u i, u j ] )... tedy počet hran mezi u i a u j?jaké vlastnosti má matice sousednosti?? Smyčky, rovnoběžné hrany? V
TEORIE GRAFŮ TEORIE GRAFŮ 1
TEORIE GRAFŮ 1 TEORIE GRAFŮ Přednášející: RNDr. Jiří Taufer, CSc. Fakulta dopravní ČVUT v Praze, letní semestr 1998/99 Zpracoval: Radim Perkner, tamtéž, v květnu 1999 ZÁKLADNÍ POJMY Říkáme, že je dán prostý
Grafové algoritmy. Aktualizováno: 29. listopadu / 228
Grafové algoritmy Zbyněk Křivka, Tomáš Masopust Aktualizováno: 29. listopadu 2017 1 / 228 Obsah Úvod Grafy Reprezentace grafů Prohledávání do šířky Prohledávání do hloubky Topologické uspořádání Silně
Často potřebujeme hledat mezi dvěma vrcholy grafu cestu, která je v nějakém
1. Nejkrat¹í cesty Často potřebujeme hledat mezi dvěma vrcholy grafu cestu, která je v nějakém smyslu optimální typicky nejkratší možná. Už víme, že prohledávání do šířky najde cestu s nejmenším počtem
Ohodnocené orientované grafy
Ohodnocené orientované grafy Definice Buď G graf Funkce w : H( G) (, ) se nazývá (hranové) ohodnocení grafu G; graf se zadaným ohodnocením se nazývá ohodnocený graf Definice Nechť G je orientovaný graf
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 204 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
TGH12 - Problém za milion dolarů
TGH12 - Problém za milion dolarů Jan Březina Technical University of Liberec 7. května 2013 Složitost problému Co je to problém? Složitost problému Co je to problém? K daným vstupním datům (velkému binárnímu
V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2
Euklidův algoritmus Doprovodný materiál pro cvičení Programování I. NPRM044 Autor: Markéta Popelová Datum: 31.10.2010 Euklidův algoritmus verze 1.0 Zadání: Určete největšího společného dělitele dvou zadaných
dag a dp v něm, bellman-ford, floyd-warshall
dag a dp v něm, bellman-ford, floyd-warshall Petr Ryšavý 24. září 2018 Katedra počítačů, FEL, ČVUT topologické očíslování Topologické očíslování Definice (Topologické očíslování) Topologické očíslování
Nejkratší cesta v grafu
Kapitola 1 Nejkratší cesta v grafu Motivace: Silniční síť si můžeme znázornit grafem. Křižovatky odpovídají vrcholům grafu a silnice mezi nimi hranám. Každý úsek silnice odpovídající hraně má svojí délku.
Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová
Základy informatiky Teorie grafů Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Obsah přednášky Barvení mapy Teorie grafů Definice Uzly a hrany Typy grafů Cesty, cykly, souvislost grafů Barvení mapy
Přijímací zkouška - matematika
Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,
Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT
PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová
10. Složitost a výkon
Jiří Vokřínek, 2016 B6B36ZAL - Přednáška 10 1 Základy algoritmizace 10. Složitost a výkon doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Jiří
STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta
STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach vlož do fronty kořen opakuj, dokud není fronta prázdná 1. vyber uzel z fronty a zpracuj jej 2. vlož do fronty levého následníka
Metody analýzy dat I (Data Analysis I) Rozsáhlé struktury a vlastnosti sítí (Large-scale Structures and Properties of Networks) - pokračování
Metody analýzy dat I (Data Analysis I) Rozsáhlé struktury a vlastnosti sítí (Large-scale Structures and Properties of Networks) - pokračování Základní (strukturální) vlastnosti sítí Stupně vrcholů a jejich
Prioritní fronta, halda
Prioritní fronta, halda Priority queue, heap Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2018 1 / 26 Prioritní fronta Halda Heap sort 2 / 26 Prioritní fronta (priority queue) Podporuje
Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.
Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?
4EK311 Operační výzkum. 5. Teorie grafů
4EK311 Operační výzkum 5. Teorie grafů 5. Teorie grafů definice grafu Graf G = uspořádaná dvojice (V, E), kde V označuje množinu n uzlů u 1, u 2,, u n (u i, i = 1, 2,, n) a E označuje množinu hran h ij,
ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ
ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2/2, Lekce Evropský sociální fond Praha & EU: Investujeme
6. Tahy / Kostry / Nejkratší cesty
6. Tahy / Kostry / Nejkratší cesty BI-EP2 Efektivní programování 2 LS 2017/2018 Ing. Martin Kačer, Ph.D. 2011-18 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké
"Agent Hledač" (3. přednáška)
"Agent Hledač" (3. přednáška) Přehled 3. přednášky v této přednášce se budeme zabývat "goal-based" agenty Přehled 3. přednášky v této přednášce se budeme zabývat "goal-based" agenty připomeňme, že "goal-based"
Stromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy
Stromy úvod Stromy Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Neorientovaný strom Orientovaný strom Kořenový orientovaný
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška desátá Miroslav Kolařík Zpracováno dle R. Bělohlávek, V. Vychodil: Diskrétní matematika 2, http://phoenix.inf.upol.cz/esf/ucebni/dm2.pdf P. Martinek: Základy teoretické informatiky,
Pokročilá algoritmizace amortizovaná složitost, Fibonacciho halda, počítačová aritmetika
amortizovaná složitost, Fibonacciho halda, počítačová aritmetika Jiří Vyskočil, Marko Genyg-Berezovskyj 2009 Amortizovaná složitost Asymptotická složitost často dostatečně nevypovídá o složitosti algoritmů,
4EK201 Matematické modelování. 2. Lineární programování
4EK201 Matematické modelování 2. Lineární programování 2.1 Podstata operačního výzkumu Operační výzkum (výzkum operací) Operational research, operations research, management science Soubor disciplín zaměřených
Hledání v textu algoritmem Boyer Moore
Zápočtová práce z Algoritmů a Datových Struktur II (NTIN061) Hledání v textu algoritmem Boyer Moore David Pěgřímek http://davpe.net Algoritmus Boyer Moore[1] slouží k vyhledání vzoru V v zadaném textu
ALGORITMY A DATOVÉ STRUKTURY
Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu
Často potřebujeme hledat mezi dvěma vrcholy grafu cestu, která je v nějakém
. Nejkrat¹í cesty Často potřebujeme hledat mezi dvěma vrcholy grafu cestu, která je v nějakém smyslu optimální typicky nejkratší možná. Už víme, že prohledávání do šířky najde cestu s nejmenším počtem
Hledáme efektivní řešení úloh na grafu
Hledáme efektivní řešení úloh na grafu Mějme dán graf následující úlohy: G = ( V, E), chceme algoritmicky vyřešit Je daný vrchol t dosažitelný z vrcholu s? Pokud ano, jaká nejkratší cesta tyto vrcholy
5 Orientované grafy, Toky v sítích
Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost
Teorie grafů BR Solutions - Orličky Píta (Orličky 2010) Teorie grafů / 66
Teorie grafů Petr Hanuš (Píta) BR Solutions - Orličky 2010 23.2. 27.2.2010 Píta (Orličky 2010) Teorie grafů 23.2. 27.2.2010 1 / 66 Pojem grafu Graf je abstraktní pojem matematiky a informatiky užitečný
zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry.
Kapitola Ohodnocené grafy V praktických aplikacích teorie grafů zpravidla graf slouží jako nástroj k popisu nějaké struktury. Jednotlivé prvky této struktury mají často přiřazeny nějaké hodnoty (může jít
Dynamické programování
Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)
Lineární programování
Lineární programování Petr Tichý 19. prosince 2012 1 Outline 1 Lineární programování 2 Optimalita a dualita 3 Geometrie úlohy 4 Simplexová metoda 2 Lineární programování Lineární program (1) min f(x) za
= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez
Síť Síť je čtveřice N = ( G, s, t, c) kde G ( V, A) = je prostý orientovaný graf a každé orientované hraně ( u, v) je přiřazeno nezáporné číslo, které se nazývá kapacita hrany ( u, v), formálně c ( u,
Principy indukce a rekursivní algoritmy
Principy indukce a rekursivní algoritmy Jiří Velebil: A7B01MCS 19. září 2011: Indukce 1/20 Příklad Místností rozměru n budeme rozumět šachovnici rozměru 2 n 2 n, ze které je jedno (libovolné) pole vyjmuto.
Úloha ve stavovém prostoru SP je <s 0, C>, kde s 0 je počáteční stav C je množina požadovaných cílových stavů
Stavový prostor a jeho prohledávání SP = formalismus k obecnějšímu uchopení a vymezení problému, který spočívá v nalezení posloupnosti akcí vedoucích od počátečního stavu úlohy (zadání) k požadovanému
Test prvočíselnosti. Úkol: otestovat dané číslo N, zda je prvočíslem
Test prvočíselnosti Úkol: otestovat dané číslo N, zda je prvočíslem 1. zkusit všechny dělitele od 2 do N-1 časová složitost O(N) cca N testů 2. stačí zkoušet všechny dělitele od 2 do N/2 (větší dělitel
CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 36 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Určete iracionální číslo, které je vyjádřeno číselným výrazem (6 2 π 4
Základy informatiky. 07 Teorie grafů. Kačmařík/Szturcová/Děrgel/Rapant
Základy informatiky 07 Teorie grafů Kačmařík/Szturcová/Děrgel/Rapant Obsah přednášky barvení mapy teorie grafů definice uzly a hrany typy grafů cesty, cykly, souvislost grafů Barvení mapy Kolik barev je
fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.
Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
B3B33ALP - Algoritmy a programování - Zkouška z předmětu B3B33ALP. Marek Boháč bohacm11
333LP - lgoritmy a programování - Zkouška z předmětu 333LP Jméno Příjmení Už. jméno Marek oháč bohacm11 Zkouškový test Otázka 1 Jaká je hodnota proměnné count po vykonání následujícího kódu: data=[4,4,5,5,6,6,6,7,7,7,7,8,8]
Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,
[161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p
Operační výzkum. Síťová analýza. Metoda CPM.
Operační výzkum Síťová analýza. Metoda CPM. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
NPRG030 Programování I, 2018/19 1 / :03:07
NPRG030 Programování I, 2018/19 1 / 20 3. 12. 2018 09:03:07 Vnitřní třídění Zadání: Uspořádejte pole délky N podle hodnot prvků Měřítko efektivity: * počet porovnání * počet přesunů NPRG030 Programování
ADT prioritní fronta. Haldy. Další operace nad haldou. Binární halda. Binomické stromy. Časová složitost jednotlivých operací.
ADT prioritní fronta Haldy množina M operace Přidej(M,x) přidá prvek x do množiny M Odeber(M) odeber z množiny M prvek, který je na řadě Zásobník (LIFO), Fronta (FIFO) Prioritní fronta: Přidej(M,x) přidá
TGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 31. března 2015 Počátek teorie grafů Leonard Euler (1707 1783) 1735 pobyt v Královci (Prusko), dnes Kaliningrad (Rusko)
Dynamické datové struktury IV.
Dynamické datové struktury IV. Prioritní fronta. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra
Cílem seminární práce je aplikace teoretických znalostí z přednášky na konkrétní úlohy. Podstatu algoritmu totiž
Zadání příkladů pro semestrální práci 9 Cílem seminární práce je aplikace teoretických znalostí z přednášky na konkrétní úlohy. Podstatu algoritmu totiž člověk nejlépe pochopí až pokud jej sám implementuje,
Stromové rozklady. Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom,
Stromové rozklady Zdeněk Dvořák 25. října 2017 Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom, β je funkce přiřazující každému vrcholu T podmnožinu vrcholů v G, pro každé
LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25
Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10
Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV INFORMATIKY FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF INFORMATICS GRAFY A ALGORITMY PRO HLEDÁNÍ NEJKRATŠÍCH
TGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 5. března 2013 Počátek teorie grafů Leonard Euler (1707 1783) 1735 pobyt v Královci (Prusko), dnes Kaliningrad (Rusko) Úloha:
TGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 28. února 2017 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms)
Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)