PDD Vlastní téma
|
|
- Vlastimil Pospíšil
- před 6 lety
- Počet zobrazení:
Transkript
1 PDD Semestrální úlohy Vlastní téma Předzpracování dat z různých zdrojů (obrázek, text, web, signál, řeč ) Kvalitní rešerše dostupných metod Výběr vhodných metod Ukázka na reálných datech Porovnání úspěšnosti (korelace nebo společná informace s výstupem, případně úspěšnost modelů na testovacích datech) Doporučení: vyhněte se implementaci, snažte se použít dostupné simulátory (GPL kód)
2 Soutěže KDD, Netflix Většinou hlavně o vhodném předzpracování dat Google: data mining competitions Soutěž FS (výběr příznaků) metod Netflix recommending movies PC_BellKor.pdf PC_BigChaos.pdf PC_PragmaticTheory.pdf Neurochirurgie Motol Snímán tlak v hlavě po úrazu (otok mozku) Jak tlak závisí na dalších snímaných ukazatelích? Vhodné předzpracování zápisu manipulace s pacientem
3 Neurologie v Hradci Králové Electrophysiological Laboratory Charles University in Prague Faculty of Medicine in Hradec Králové Hradec - Spánková data
4 Vývoj programu pro hodnocení časových řad Zpracování extrahovaných dat Ohodnocování charakteru časových řad obecně MIT spánková data - naimportovat, vyextrahovat příznaky Matlab! Hradec - Evokované potenciály
5 EEG Recording positions The original figure illustrating the international - systém Jasper HH (958): Report of the Committee on Methods of Clinical Examination in Electroencephalography. Electroenceph. Clin. Neurophysiol. : 7-. Evokované potenciály poškození očních nervů
6 GEOFOND Sesuvy DP Petr Zelenka ( Databáze sesuvů je třeba prozkoumat závislosti v datech Proč si vybrat tuto práci? - zajímavá data: - zkuste určit, na jakém parametru závisí aktivita sesuvu - najděte zajímavé vazby mezi jednotlivými parametry - najděte parametry metod tak, aby výsledky byly co nejlepší - data jsou již připravena pro experimenty v YALE - můžete se tak zaměřit výhradně na experimentování s daty - neřešíte, jak data do nějakého programu vůbec dostat Vrty Preprocessing dat Geofond sesuvy v YALE DP Petr Zelenka (
7 Evoluční kódování DP Petr Zelenka, Michal Záborec ( Cílem práce je otestovat náš nový plugin do Yale na různých datech Africké myši MotherAg e AdMal es AdFemal es BreedFemal es PostPart um stat us littersi ze FemalesJUV MalesJ UV specie s Season vysvetlivky: mame spoustu akvarii (promenna "box"), ve kterych jsou skupiny mysi, ktere se mnozi, takze v kazdem akvariu je ruzny pocet jedincu ruzneho stari a pohlavi. zajima nas, jestli samice rodej v nejaky situaci vice synu nebo naopak treba vice dcer. data maji binomicke rozdeleni s pouzitim logit link function. zkoumana je teda promenna "samci", coz je pocet samcu ve vrhu, ktery se narodi jedne matce. data jsou hierarchicky strukturovana : "matka" is nested in "box". "box" a "matka" jsou faktory s nahodnym efektem. zajima me vliv ostatnich faktoru, ktere jsou ve sloupcich D, G - P, R. potom je tam jeste sloupec Q "species", coz jsou ruzny druhy tech mysi (mysleno biologicky druhy). takze pak jsme nakonec koukali na to, jestli se ty druhy mezi sebou nejak lisi nebo ne.
8 Stock market trading Integrace časových řad různých akcií Extrakce příznaků z burzovních dat Multi-time frame přístup Analýza tiskových zpráv a jejich vlivu na vývoj akcií společností Analýza zpráv na sociálních sítích FAKE GAME projekt - Nové jednotky - Učicí algoritmy - Stopping criteria - Podpora pro predikci časových řad - Srovnání s KM - Srovnání s matlabem (NN toolbox) - Experimenty s nastavením (výpočty na serverech) - Fully Automated Knowledge Extraction -reportovaní pomocí JasperReports, -tutoriály použití na různých datech -srovnání s Wekou -různé předzpracování - sourceforge.net/projects/fakegame
9 IBM SPSS zadání Vliv vážení dat na přesnost, stabilitu a přínosy modelu binární logistické regrese Na základě vzorce pro konfidenční intervaly regresních koeficientů porovnejte chování modelů vytvořených nad váženými a neváženými daty. Vážením zde rozumíme buď duplikaci případů s méněčetnou kategorií cílové proměnné, nebo prostý náhodný výběr případů s vícečetnou kategorií cílové proměnné. Obě varianty vážení posuzujte odděleně. Ohodnoťte vliv vážení při učení modelu na přesnost predikcí, stabilitu rozdělení regresního skóre a na průběh ROI evaluační křivky. Teoretické závěry porovnejte s praktickou simulací. Zaměřte se především na hodně nevyvážená rozdělení cílové proměnné. Metody výběru proměnných při modelování logistickou regresí nad datovou maticí s mnoha proměnnými Vypracujte přehled variant, jak postupovat při výběru proměnných pro model binární logistické regrese pro situace, kdy datová matice obsahuje velké množství korelovaných vstupních proměnných. Doporučte vhodný postup pro takové situace a uveďte, čeho bychom se měli vyvarovat. Doporučené postupy a zjištěná rizika ilustrujte na praktické simulaci. spam pre-filter Analýza záhlaví zpráv, metainformací a jejich souvislost se spamovostí zpráv Popis poli, ktera jsem ziskal zatim ze seznamu. ip_addr - adresa odesilatele countrycode - rozeznany country code pomoci geoip hdr_from - from adresa z MAIL FROM z SMTP protokolu rcpt - prijemce u rcpts - pocet prijemcu v celem mailu mailsize - velikost mailu v bytech szn-spam-score - spam score :) user-id - idcko prijemce(interni informace) ebox-id - idcko storage serveru(interni informace) za poslednich 5 min (paralelne i zasebou): ce-connections - pocet konexi ce-bad-rcpt-to - pocet spatnych RCPT TO v SMTP protokolu ce-bad-mail-from - pocet spatnych MAIL FROM v SMTP protokolu ce-bad-commands - pocet spatnych prikazu v SMTP protokolu c -sent - pocet odeslanych mailu ce-bytes-sent - pocet odeslanych byte ce-bad-auth - pocet spatnych autorizaci na SMTP relay header:* obsah odpovidajicich hlavicek presne v takovem case, jako jsou v mailech TO_CO_JE_VELKYMA - odpovidajici testy z spamassassinu
10 Honeywell Prague Laboratory Data z budov Energie Logy z karet Center for chemical genetics Data mining procesů při buněčném dělení
11 Nové opensource předzpracovací metody Prostuduj seznam implementovaných předzpracovacích metod Nastuduj a implementuj novou metodu Srovnej s dostupnými metodami na několika různých datových souborech Automatické předzpracování Otestovat na různých datech Konzistence výběru předzpracovacích metod Automatické předzpracování signálů
12 Preprocessing methods implemented in FAKE GAME Methods to impute missing values MissingData.ConstantMissingDataImputer MissingData.MedianMissingDataImputer MissingData.NearestNeighbourMissingDataImputer MissingData.RemoveMissingData MissingData.AnotherInstanceValueDataImputer
13 Methods to normalize data Normalization.LinearNormalizer Normalization.SoftmaxNormalizer Normalization.MeanNormalizer Normalization.ZscoreNormalizer Methods to reduce data DataReduction.RandomReduce DataReduction.RemoveOutlayers DataReduction.LeaveOutNeighbours DataReduction.KMeansDataReplacer DataReduction.PCA DataReduction.KDTreeReplacer DataReduction.HartCondensingReduce DataReduction.HartCondensingReduce DataReduction.IBReduce DataReduction.KubatMatwinReduce DataReduction.DropReduce DataReduction.ChangReduce DataReduction.WilsonsEditingReduce DataReduction.ChenCondensingReduce DataReduction.RSPCondensingReduce DataReduction.SpecialCondensingReduce DataReduction.AllKNNEditingSchemeAlgorithm DataReduction.RNNCondensingReduce
14 Other methods Discretization.EqualSizeBinning DataEnrichement.Smote Nominal data encoding from N Color red green Size small large Encoding into single attribute red large Red color Green color Small size Large size Color... Size..9.9 or Color.6..6 Size..6.6 Our experiments with automated encoding of nominal attributes Correlation Probability density % improvement on Golf data Relative accuracy Relative accuracy Relative accuracy Probability density Relative accuracy Relative accuracy Relative accuracy Diploma thesis Michal Zaborec, Minh Duc Do, CTU Prague, 9 Linear regression
15 Putting (preprocessing methods) all together For each feature, optimal sequence of preprocessing methods is evolved by GA Raw data Genetic Algorithm evolving preprocessing sequences Preprocessing Sequences Selected representative data subset Error of models, fitness function GAME Ensemble of models Automated data preprocessing Evolving preprocessing sequences
Předzpracování dat. Pavel Kordík. Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague
Pavel Kordík(ČVUT FIT) Předzpracování dat MI-PDD, 2012, Cvičení 4 1/29 Předzpracování dat Pavel Kordík Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague
Algoritmy a struktury neuropočítačů ASN - P10. Aplikace UNS v biomedicíně
Aplikace UNS v biomedicíně aplikace v medicíně postup při zpracování úloh Aplikace UNS v medicíně Důvod: nalezení exaktnějších, levnějších a snadnějších metod určování diagnóz pro lékaře nalezení šetrnějších
Úloha: Verifikace osoby pomocí dynamického podpisu
Cvičení z předmětu Biometrie Úloha: Verifikace osoby pomocí dynamického podpisu Jiří Wild, Jakub Schneider kontaktní email: schnejak@fel.cvut.cz 5. října 2015 1 Úvod Úloha má za cíl seznámit vás s metodami
Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1
Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu
Pokročilé neparametrické metody. Klára Kubošová
Pokročilé neparametrické metody Klára Kubošová Pokročilé neparametrické metody Výuka 13 přednášek doplněných o praktické cvičení v SW Úvod do neparametrických metod + princip rozhodovacích stromů Klasifikační
NÁVRH A REALIZACE TRADING STRATEGIÍ NA BÁZI STROJOVÉHO UČENÍ S POMOCÍ MATLABU
NÁVRH A REALIZACE TRADING STRATEGIÍ NA BÁZI STROJOVÉHO UČENÍ S POMOCÍ MATLABU RNDr. Miroslav Pavelka, PhD m.pavelka@sh.cvut.cz Ing. Jan Hovad jan@hovad.cz OBSAH Obchodování a strojové učení Specifika prediktivního
Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma
Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky
8. PŘEDNÁŠKA 20. dubna 2017
8. PŘEDNÁŠKA 20. dubna 2017 EEG systém rozložení elektrod 10/20 základní typy zapojení požadavky na EEG přístroj analýza EEG a způsoby zobrazení ontogeneze normální EEG úvod ke cvičení montáž, filtrace,
API pro volání služby kurzovního lístku KB
OBSAH API pro volání služby Kurzovní lístek KB... 2 Poskytované informace... 2 Informace pro volání resource exchange-rates... 3 Příklady request / response z volání služby kurzovního lístku... 5 Způsoby
Feature Ranking a Feature Selection založené na induktivních modelech
Feature Ranking a Feature Selection založené na induktivních modelech 01001110 01100101 01110101 01110010 01101111 01101110 01101111 01110110 01100001 00100000 01110011 01101011 01110101 01110000 01101001
Rozpoznávání v obraze
Rozpoznávání v obraze AdaBoost a detekce objektů IKR, 2013 Roman Juránek www.fit.vutbr.cz/~ijuranek/personal Detekce objektů Úloha - v daném obraze nalézt objekty určitých tříd
NG C Implementace plně rekurentní
NG C Implementace plně rekurentní neuronové sítě v systému Mathematica Zdeněk Buk, Miroslav Šnorek {bukz1 snorek}@fel.cvut.cz Neural Computing Group Department of Computer Science and Engineering, Faculty
Email. email. Email spolupráce více systémů. email. Pro zajištění služby je používáno více aplikačních protokolů, např.: DNS SMTP.
email Email email Email spolupráce více systémů Pro zajištění služby je používáno více aplikačních protokolů, např.: DNS SMTP POP or IMAP MSGFMT (RFC822,...) a MIME Email splitting & relaying 1 relaying
Hodnocení klasifikátoru Test nezávislosti. 14. prosinec Rozvoj aplikačního potenciálu (RAPlus) CZ.1.07/2.4.00/
Čtyřpolní tabulky Čtyřpolní tabulky 14. prosinec 2012 Rozvoj aplikačního potenciálu (RAPlus) CZ.1.07/2.4.00/17.0117 O čem se bude mluvit? Čtyřpolní tabulky Osnova prezentace Čtyřpolní tabulky 1. přístupy
Genetické programování 3. část
1 Portál pre odborné publikovanie ISSN 1338-0087 Genetické programování 3. část Macháček Martin Elektrotechnika 08.04.2011 Jako ukázku použití GP uvedu symbolickou regresi. Regrese je statistická metoda
Vytěžování znalostí z dat
Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 3 1/29 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information
Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou
Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................
Cvičení 12: Binární logistická regrese
Cvičení 12: Binární logistická regrese Příklad: V roce 2014 konalo státní závěrečné zkoušky bakalářského studia na jisté fakultě 167 studentů. U každého studenta bylo zaznamenáno jeho pohlaví (0 žena,
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 7 Jak hodnotit vztah spojitých proměnných
Smíšené regresní modely a možnosti jejich využití. Karel Drápela
Smíšené regresní modely a možnosti jejich využití Karel Drápela Regresní modely Základní úloha regresní analýzy nalezení vhodného modelu studované závislosti vyjádření reálného tvaru závislosti minimalizace
Compression of a Dictionary
Compression of a Dictionary Jan Lánský, Michal Žemlička zizelevak@matfyz.cz michal.zemlicka@mff.cuni.cz Dept. of Software Engineering Faculty of Mathematics and Physics Charles University Synopsis Introduction
Analytické metody v motorsportu
Analytické metody v motorsportu Bronislav Růžička školitel : Doc. Ing. Ivan Mazůrek, CSc. Ústav konstruování Odbor konstruování strojů Fakulta strojního inženýrství Vysoké učení technické v Brně 12.listopadu
Laboratorní úloha č. 8: Elektroencefalogram
Laboratorní úloha č. 8: Elektroencefalogram Cíle úlohy: Rozložení elektrod při snímání EEG signálu Filtrace EEG v časové oblasti o Potlačení nf a vf rušení o Alfa aktivita o Artefakty Spektrální a korelační
Předzpracování dat. Lenka Vysloužilová
Předzpracování dat Lenka Vysloužilová 1 Metodika CRISP-DM (www.crisp-dm.org) Příprava dat Data Preparation příprava dat pro modelování selekce příznaků výběr relevantních příznaků čištění dat získávání
Analytické procedury v systému LISp-Miner
Dobývání znalostí z databází MI-KDD ZS 2011 Přednáška 8 Analytické procedury v systému LISp-Miner Část II. (c) 2011 Ing. M. Šimůnek, Ph.D. KIZI, Fakulta informatiky a statistiky, VŠE Praha Evropský sociální
Strojové učení Marta Vomlelová
Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura 1.T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer
Evoluční algoritmy. Podmínka zastavení počet iterací kvalita nejlepšího jedince v populaci změna kvality nejlepšího jedince mezi iteracemi
Evoluční algoritmy Použítí evoluční principů, založených na metodách optimalizace funkcí a umělé inteligenci, pro hledání řešení nějaké úlohy. Populace množina jedinců, potenciálních řešení Fitness function
Statistické metody v marketingu. Ing. Michael Rost, Ph.D.
Statistické metody v marketingu Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Úvodem Modelování vztahů mezi vysvětlující a vysvětlovanou (závisle) proměnnou patří mezi základní aktivity,
Cvičení 11. Klasifikace. Jan Přikryl. 14. března 2018 ČVUT FD
Cvičení 11 Klasifikace Jan Přikryl ČVUT FD 14. března 2018 Příklad 1 Data z akciového trhu Nejprve prozkoumáme data z akciových trhů, konkrétně denní vývoj indexu S&P v letech 2001 2005. Načteme a zobrazíme
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
Neuronové časové řady (ANN-TS)
Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci
Moderní systémy pro získávání znalostí z informací a dat
Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:
Optimalizace provozních podmínek. Eva Jarošová
Optimalizace provozních podmínek Eva Jarošová 1 Obsah 1. Experimenty pro optimalizaci provozních podmínek 2. EVOP klasický postup využití statistického softwaru 3. Centrální složený návrh model odezvové
SenseLab. z / from CeMaS. Otevřené sledování senzorů, ovládání zařízení, nahrávání a přehrávání ve Vaší laboratoři
CeMaS, Marek Ištvánek, 22.2.2015 SenseLab z / from CeMaS Otevřené sledování senzorů, ovládání zařízení, nahrávání a přehrávání ve Vaší laboratoři Open Sensor Monitoring, Device Control, Recording and Playback
External ROM 128KB For Sinclair ZX Spectrum
External ROM 8KB For Sinclair ZX Spectrum ersion.0 CSS Electronics (c) 07 RESET NMI ERD0RSZ 0n 0K 00n 00n 00n 00u/6 SN7N N8 7C00A GAL68 N369A 680R 56R 680R 8A 8B 7A 6A 5A A 3A 7B 6B 5B B 3B A A 0A 9A 8A
NÁVRH REGULÁTORU PRO VLT TELESKOP POMOCÍ MATLABU 1. Zdeněk Hurák, Michael Šebek
NÁVRH REGULÁTORU PRO VLT TELESKOP POMOCÍ MATLABU 1 Zdeněk Hurák, Michael Šebek Ústav teorie informace a automatizace Akademie věd České republiky, Praha e-mail: hurak@utia.cas.cz, msebek@utia.cas.cz Abstrakt:
5. Umělé neuronové sítě. Neuronové sítě
Neuronové sítě Přesný algoritmus práce přírodních neuronových systémů není doposud znám. Přesto experimentální výsledky na modelech těchto systémů dávají dnes velmi slibné výsledky. Tyto systémy, včetně
IBM SPSS Exact Tests. Přesné analýzy malých datových souborů. Nejdůležitější. IBM SPSS Statistics
IBM Software IBM SPSS Exact Tests Přesné analýzy malých datových souborů Při rozhodování o existenci vztahu mezi proměnnými v kontingenčních tabulkách a při používání neparametrických ů analytici zpravidla
K možnostem krátkodobé předpovědi úrovně znečištění ovzduší statistickými metodami. Josef Keder
K možnostem krátkodobé předpovědi úrovně znečištění ovzduší statistickými metodami Josef Keder Motivace Předpověď budoucí úrovně znečištění ovzduší s předstihem v řádu alespoň několika hodin má význam
v Praze mezi kanály EEG Ondřej Drbal 5. ročník, stud. sk. 9
České vysoké učení technické v Praze Algoritmy pro měření zpoždění mezi kanály EEG Ondřej Drbal 5. ročník, stud. sk. 9 31. března 23 Obsah 1 Zadání 1 2 Uvedení do problematiky měření zpoždění signálů 1
Emergence chování robotických agentů: neuroevoluce
Emergence chování robotických agentů: neuroevoluce Petra Vidnerová, Stanislav Slušný, Roman Neruda Ústav Informatiky, AV ČR Kognice a umělý život VIII Praha 28. 5. 2008 Evoluční robotika: EA & neuronové
Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech.
Statistics ToolBox Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. [manual ST] 1. PROBABILITY DISTRIBUTIONS Statistics
Lukáš Brodský www.gisat.cz. Praha 2008. Osnova. Objektový přístup Verze 4, 5, 6 / 7 Developer7 -funkčnost, nové vlastnosti HW
Nové možnosti objektověorientované klasifikace v Definiens Lukáš Brodský www.gisat.cz GISAT Praha 2008 Osnova Objektový přístup Verze 4, 5, 6 / 7 Developer7 -funkčnost, nové vlastnosti HW Objektový přístup
Strojové učení se zaměřením na vliv vstupních dat
Strojové učení se zaměřením na vliv vstupních dat Irina Perfilieva, Petr Hurtík, Marek Vajgl Centre of excellence IT4Innovations Division of the University of Ostrava Institute for Research and Applications
Design Experimentu a Statistika - AGA46E
Design Experimentu a Statistika - AGA46E Czech University of Life Sciences in Prague Department of Genetics and Breeding Summer Term 2015 Matúš Maciak (@ A 211) Office Hours: T 9:00 10:30 or by appointment
Vytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 1 1/29 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
Správa linuxového serveru: Úvod do poštovního serveru
Home» Články» Praxe» Správa linuxového serveru» Správa linuxového serveru: Úvod do... Předchozí kapitola Zpět na obsah Následující kapitola Správa linuxového serveru: Úvod do poštovního serveru Tímto dílem
Matematika v programovacích
Matematika v programovacích jazycích Pavla Kabelíková am.vsb.cz/kabelikova pavla.kabelikova@vsb.cz Úvodní diskuze Otázky: Jaké programovací jazyky znáte? S jakými programovacími jazyky jste již pracovali?
Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011
Automatická detekce anomálií při geofyzikálním průzkumu Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Cíle doktorandské práce Seminář 10. 11. 2010 Najít, implementovat, ověřit a do praxe
Aplikovaná statistika v R - cvičení 2
Aplikovaná statistika v R - cvičení 2 Filip Děchtěrenko Matematicko-fyzikální fakulta filip.dechterenko@gmail.com 5.6.2014 Filip Děchtěrenko (MFF UK) Aplikovaná statistika v R 5.6.2014 1 / 18 Přehled Rkových
Schéma e-pošty. UA (User Agent) rozhraní pro uživatele MTA (Message Transfer Agent) zajišťuje dopravu dopisů. disk. odesilatel. fronta dopisů SMTP
Elektronická pošta Schéma e-pošty odesilatel UA disk SMTP fronta dopisů disk MTA SMTP MTA adresát UA disk POP IMAP poštovní schránka disk MTA SMTP UA (User Agent) rozhraní pro uživatele MTA (Message Transfer
Analýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
GRR. získávání znalostí v geografických datech Autoři. Knowledge Discovery Group Faculty of Informatics Masaryk Univerzity Brno, Czech Republic
GRR získávání znalostí v geografických datech Autoři Knowledge Discovery Group Faculty of Informatics Masaryk Univerzity Brno, Czech Republic GRR cílet 2 GRR - Popis systému - cíle systém pro dolování
DETEKCE ANOMÁLNÍHO CHOVÁNÍ UŽIVATELŮ KATASTRÁLNÍCH MAPOVÝCH SLUŽEB
DETEKCE ANOMÁLNÍHO CHOVÁNÍ UŽIVATELŮ KATASTRÁLNÍCH MAPOVÝCH SLUŽEB VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA Hornicko-geologická fakulta Institut geoinformatiky Ostrava 2014 Autorka: Bc. Radka
MATLAB: Vývoj a nasazení finančních aplikací
7. 6. 2016 Master Class MATLAB: Vývoj a nasazení finančních aplikací Jan Studnička studnicka@humusoft.cz info@humusoft.cz www.humusoft.cz www.mathworks.com Obsah Nároky na finanční modelování Příklady
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz PŘEHLED TESTŮ rozdělení normální spojité alternativní / diskrétní
Vícerozměrné metody. PSY117/454 Statistická analýza dat v psychologii Přednáška 12. Schematický úvod
PSY117/454 Statistická analýza dat v psychologii Přednáška 12 Vícerozměrné metody Schematický úvod Co je na slově statistika tak divného, že jeho vyslovení tak často způsobuje napjaté ticho? William Kruskal
Počítačové sítě Internetový systém elektronické pošty
Výměna elektronických zpráv mezi uživateli ukládání do schránek (mailboxes) Princip store and forward, využití MX záznamů v DNS Zpráva v původní verzi pouze text, v rozšířené verzi (specifikace MIME Multipurpose
Nový bakalářský studijní obor Biomedicínská informatika na Fakultě biomedicínského inženýrství v Kladně
Fakulta biomedicínského inženýrství České vysoké učení technické v Praze Nový bakalářský studijní obor Biomedicínská informatika na Fakultě biomedicínského inženýrství v Kladně Zoltán Szabó Katedra biomedicínské
Karta předmětu prezenční studium
Karta předmětu prezenční studium Název předmětu: Číslo předmětu: 545-0250 Garantující institut: Garant předmětu: Ekonomická statistika Institut ekonomiky a systémů řízení RNDr. Radmila Sousedíková, Ph.D.
vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291
Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených
VZOROVÝ STIPENDIJNÍ TEST Z INFORMAČNÍCH TECHNOLOGIÍ
VZOROVÝ STIPENDIJNÍ TEST Z INFORMAČNÍCH TECHNOLOGIÍ 1. Dědičnost v OOP umožňuje: a) dědit vlastnosti od jiných tříd a dále je rozšiřovat b) dědit vlastnosti od jiných tříd, rozšiřovat lze jen atributy
Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D.
OPTIMALIZACE BRAMOVÉHO PLYNULÉHO ODLÉVÁNÍ OCELI ZA POMOCI NUMERICKÉHO MODELU TEPLOTNÍHO POLE Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D. Fakulta strojního inženýrství
CASE. Jaroslav Žáček
CASE Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Co znamená CASE? Definice dle SEI A CASE tool is a computer-based product aimed at supporting one or more software engineering activities
Strategie ACE využívající virtuální elektrody v kochleárních implantátech Nucleus 24
Strategie ACE využívající virtuální elektrody v kochleárních implantátech Nucleus 24 Martin Vondrášek České vysoké učení v Praze, Fakulta elektrotechnická vondram3@fel.cvut.cz Abstrakt: Kochleární implantát
A2B31SMS 11. PŘEDNÁŠKA 4. prosince 2014
A2B31SMS 11. PŘEDNÁŠKA 4. prosince 214 Číslicové audio efekty Hřebenové filtry Fázovací filtry Dozvuky Konvoluční reverb Schroederův algoritmus modelování dozvuku Číslicové audio efekty Filtrace - DP,
Zadání Máme data hdp.wf1, která najdete zde: Bodová předpověď: Intervalová předpověď:
Predikce Text o predikci pro upřesnění pro ty, které zajímá, kde se v EViews všechna ta čísla berou. Ruční výpočty u průběžného testu nebudou potřeba. Co bude v závěrečném testu, to nevím. Ale přečíst
Asociační i jiná. Pravidla. (Ch )
Asociační i jiná Pravidla (Ch. 14 +...) Učení bez učitele Nemáme cílovou třídu Y, G; máme N pozorování což jsou p-dimenzionální vektory se sdruženou pravděpodobností chceme odvozovat vlastnosti. Pro málo
ZX510 Pokročilé statistické metody geografického výzkumu
ZX510 Pokročilé statistické metody geografického výzkumu Téma: Explorační faktorová analýza (analýza hlavních komponent) Smysl a princip faktorové analýzy v explorační verzi není faktorová analýza určena
Manuální kroková regrese Newsletter Statistica ACADEMY
Manuální kroková regrese Newsletter Statistica ACADEMY Téma: Logistická regrese Typ článku: Novinka verze 12, návody Dnes si popíšeme funkcionalitu, která Vám pomůže při tvorbě regresního modelu (v našem
Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence
APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY
prázdninách Praha
Bezpečně na silnicích nejen o prázdninách 21.6.2011 Praha OBJEKTIVNÍ METODY POSUZOVÁNÍ ÚNAVY ŘIDIČE ZA VOLANTEM Petr Bouchner, Stanislav Novotný, Ondřej Sýkora bouchner@lss.fd.cvut.cz ČVUT v Praze, Fakulta
Regresní analýza. Eva Jarošová
Regresní analýza Eva Jarošová 1 Obsah 1. Regresní přímka 2. Možnosti zlepšení modelu 3. Testy v regresním modelu 4. Regresní diagnostika 5. Speciální využití Lineární model 2 1. Regresní přímka 3 nosnost
Architektury počítačů
Architektury počítačů skupina Identifyingvýzkumná the Interesting Points in Geometrical Figures of Certain Class Vysoké učení technické v Brně, Fakulta informačních technologií, Božetěchova 2, 612 66 Brno
Příprava dat a) Kontrola dat
Příprava dat a) Kontrola dat 2 Sběr data? Příprava dat Předpoklady o datech Software obsahuje nástroje pro: Detekci chybějících dat a dat mimo stanovených rozsah Detekci odlehlých a extrémních hodnot Překodování
Institut teoretické informatiky (ITI) na FI MU
Institut teoretické informatiky (ITI) na FI MU Antonín Kučera (vedoucí) Petr Hliněný, Jan Obdržálek, Vojtěch Řehák Fakulta informatiky, Masarykova Univerzita, Brno Brno, 28. dubna 2011 J. Obdržálek (FI
Dobývání znalostí z webu web mining
Dobývání znalostí z webu web mining Web Mining is is the application of data mining techniques to discover patterns from the Web (Wikipedia) Tři oblasti: Web content mining (web jako kolekce dokumentů)
ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ
ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ Ročník LIII 12 Číslo 3, 2005 Vybrané aspekty modelování devizového kurzu
Strukturální regresní modely. určitý nadhled nad rozličnými typy modelů
Strukturální regresní modely určitý nadhled nad rozličnými typy modelů Jde zlepšit odhad k-nn? Odhad k-nn konverguje pro slušné k očekávané hodnotě. ALE POMALU! Jiné přístupy přidají předpoklad o funkci
Matematický ústav v Opavě. Studijní text k předmětu. Softwarová podpora matematických metod v ekonomice
Matematický ústav v Opavě Studijní text k předmětu Softwarová podpora matematických metod v ekonomice Zpracoval: Ing. Josef Vícha Opava 2008 Úvod: V rámci realizace projektu FRVŠ 2008 byl zaveden do výuky
Biomedicínské inženýrství na ČVUT FEL
Biomedicínské inženýrství na ČVUT FEL Přehled pracovišť katedra fyziky elektrotechnologie elektromagnetického pole teorie obvodů kybernetiky mikroelektroniky počítačů měření témata fyzikální metody v medicíně
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 8 Jak analyzovat přežití pacientů.
Vliv přesnosti kalibrační křivky na výsledek verifikace plánů EBT3 filmem
Vliv přesnosti kalibrační křivky na výsledek verifikace plánů EBT3 filmem TEREZA HANUŠOVÁ, FJFI ČVUT A T HOMAYEROVA NEMOCNICE SIMONA BURYŠKOVÁ, GYMNÁZIUM MATYÁŠE L ERCHA BRNO 14.04.2016 KONFERENCE RADIOLOGICKÉ
Doňar B., Zaplatílek K.: MATLAB - tvorba uživatelských aplikací, BEN - technická literatura, Praha, (ISBN:
http://portal.zcu.cz > Portál ZČU > Courseware (sem lze i přímo: http://courseware.zcu.cz) > Předměty po fakultách > Fakulta elektrotechnická > Katedra teoretické elektrotechniky > PPEL Doňar B., Zaplatílek
{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků
Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a
FoxStat. Change the Net.Work. Nástroj pro záznam a analýzu datového provozu
FoxStat Nástroj pro záznam a analýzu datového provozu Problémy síťového administrátora Zátěž linky 2/45 Problémy síťového administrátora Zátěž linky Obsah a debug komunikace až na úroveň paketů 3/45 Problémy
Fakulta elektrotechniky a komunikačních technologií Ústav radioelektroniky. prof. Ing. Stanislav Hanus, CSc v Brně
Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií Ústav radioelektroniky Autor práce: Vedoucí práce: prof. Ing. Stanislav Hanus, CSc. 3. 6. 22 v Brně Obsah Úvod Motivace
SEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík
SEMESTRÁLNÍ PRÁCE Leptání plasmou Ing. Pavel Bouchalík 1. ÚVOD Tato semestrální práce obsahuje písemné vypracování řešení příkladu Leptání plasmou. Jde o praktickou zkoušku znalostí získaných při přednáškách
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Whale detection Brainstorming session. Jiří Dutkevič Lenka Kovářová Milan Le
Whale detection Brainstorming session Jiří Dutkevič Lenka Kovářová Milan Le Signal processing, Sampling theorem Spojitý signál může být nahrazen diskrétní posloupností vzorků, aniž by došlo ke ztrátě informace,
Matematické modely spontánní aktivity mozku
Matematické modely spontánní aktivity mozku Jaroslav Hlinka Ústav informatiky, Akademie věd ČR Oddělení nelineární dynamiky a složitých systémů http://ndw.cs.cas.cz/ FJFI ČVUT, Seminář současné matematiky,
Národní informační středisko pro podporu jakosti
Národní informační středisko pro podporu jakosti STATISTICKÉ METODY V LABORATOŘÍCH Ing. Vratislav Horálek, DrSc. Ing. Jan Král 2 A.Základní a terminologické normy 1 ČSN 01 0115:1996 Mezinárodní slovník
STRUČNÝ PRŮVODCE ANALYTICKÝM PROCESEM
SPOLEČNOST ACREA Váš dlouholetý partner v oblasti analýzy dat - od dodání softwaru, přes řešení analytických úkolů, až po výuku statistických a dataminingových metod. STRUČNÝ PRŮVODCE ANALYTICKÝM PROCESEM
2. Modelovací jazyk UML 2.1 Struktura UML 2.1.1 Diagram tříd 2.1.1.1 Asociace 2.1.2 OCL. 3. Smalltalk 3.1 Jazyk 3.1.1 Pojmenování
1. Teoretické základy modelování na počítačích 1.1 Lambda-kalkul 1.1.1 Formální zápis, beta-redukce, alfa-konverze 1.1.2 Lambda-výraz jako data 1.1.3 Příklad alfa-konverze 1.1.4 Eta-redukce 1.2 Základy
Využití a zneužití statistických metod v medicíně
Využití a zneužití statistických metod v medicíně Martin Hynek Gennet, Centre for Fetal Medicine, Prague EuroMISE Centre, First Faculty of Medicine of Charles University in Prague Statistika Existují tři
Miroslav Čepek. Fakulta Elektrotechnická, ČVUT. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování Dat Přednáška 12 Kombinování modelů Miroslav Čepek Pavel Kordík a Jan Černý (FIT) Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL)
Parametrická studie změny napětí v pánevní kosti po implantaci cerkvikokapitální endoprotézy
Parametrická studie změny napětí v pánevní kosti po implantaci cerkvikokapitální endoprotézy Daniel Kytýř, Jitka Jírová, Michal Micka Ústav teoretické a aplikované mechaniky Akademie věd České republiky
Využití neuronové sítě pro identifikaci realného systému
1 Portál pre odborné publikovanie ISSN 1338-0087 Využití neuronové sítě pro identifikaci realného systému Pišan Radim Elektrotechnika 20.06.2011 Identifikace systémů je proces, kdy z naměřených dat můžeme
SOFTWARE PRO ANALÝZU LABORATORNÍCH MĚŘENÍ Z FYZIKY
SOFTWARE PRO ANALÝZU LABORATORNÍCH MĚŘENÍ Z FYZIKY P. Novák, J. Novák, A. Mikš Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V rámci přechodu na model strukturovaného