Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech.
|
|
- Ladislava Renata Pokorná
- před 9 lety
- Počet zobrazení:
Transkript
1 Statistics ToolBox Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. [manual ST] 1. PROBABILITY DISTRIBUTIONS Statistics toolbox podporuje 20 rozdělení pravděpodobnosti diskrétní a spojité náhodné veličiny. Pro každé rozdělení má 5 asociovaných funkcí, jsou to: - pravděpodobnostní funkce (pdf) - distribuční funkce (cdf) - inverzní distribuční funkce - generátor náhodných čísel - střední hodnotu a rozptyl jako funkci parametru 2. DESCRIPTIVE STATISTICS - stanovení statistických charakteristik souborů 3. LINEAR MODELS - lineární regresní analýza, ANOVA 4. NONLINEAR MODELS funkce pro interaktivní predikci a vizualizaci pro vícerozměrné data 5. HYPOTHESIS TESTS - testování statistických hypotéz, t-test, Z-test aj. 6. MULTIVARIATE STATISTICS metody pro statistickou analýzu víceproměnných dat 7. STATISTICAL PLOTS statistické grafy např. boxplot, histogram aj. 8. DEMOS - demonstrační výukové úlohy 9. DATA - demonstrační datové soubory Ve statistickém toolboxu MATLABu jsou implementovány funkce pro práci s následujícími 6-ti druhy rozdělení diskrétní náhodné veličiny: - Binomické - Geometrické - Hypergeometrické - Negativní binomické - Poissonovo - Rovnoměrné diskrétní a funkce pro práci s následujícími 14-ti druhy rozdělení spojité náhodné veličiny: - Beta 1
2 - Pearsonovo chí-kvadrát - Exponenciální - Fischerovo F - Gama - Gaussovo normální - Studentovo t - Rovnoměrné spojité - Weibullovo - Lognormal - Rayleigh - Noncentral Chí-kvadrát - Noncentral F - Noncentral t Pro každý implementovaný typ rozdělení je možno zobrazit distribuční funkci a funkci rozložení hustoty pravděpodobnosti, provádět s nimi výpočty popř. vypočítat jejich charakteristiky. Je rovněž možno používat inverzní distribuční funkci, která stanoví hodnoty určitého rozdělení podle zadaných pravděpodobností. Prostředky MATLABu se dají také zobrazit velmi jednoduše rozdíly jednotlivých typů rozdělení. K použití se rovněž nabízejí generátory náhodných čísel pro každý typ rozdělení. V demonstračním bloku DEMOS je uvedena speciální funkce distool, která umožňuje grafickou demonstraci jednotlivých typů rozdělení. Je možno volit alternativně zobrazení distribuční funkce nebo funkce rozdělení hustoty všech typů implementovaných rozdělení.. Je možno interaktivně měnit parametry studovaného rozdělení a zjišťovat jeho funkční hodnoty pro různé hodnoty nezávisle proměnné. Ve statistickém toolboxu MATLABu jsou přímo k dispozici funkce, vypočítávající následující charakteristiky polohy: aritmetický průměr, geometrický průměr, harmonický průměr, medián, kvantily a aritmetický průměr bez extrémních hodnot a dále charakteristiky rozptýlení: rozptyl, směrodatnou odchylku, průměrnou odchylku, variační rozpětí a interkvartilové rozpětí aj. Prakticky velmi důležité jsou možnosti grafické prezentace výsledků zpracování statistického souboru. Tak lze znázornit histogramy absolutních četností, absolutních kumulovaných četností, krabicový graf (prezentace polohy 1. kvartilu, mediánu a 3. kvartilu), přilehlé hodnoty, vrubový krabicový graf (s prezentací konfidenčního intervalu aritmetického průměru). Pro zjištění, zda výběrový soubor pochází ze základního souboru s normálním rozložením hustoty pravděpodobnosti, slouží graf normálního rozložení. K dispozici je funkce, umožňující zjistit, zda mají dva výběrové soubory stejné rozdělení (kvantil-kvantilový graf). Plnou čarou jsou spojeny 1. a 3. kvartily (dolní 2
3 a horní kvartil). Výběry mají pravděpodobně stejné rozdělení, je-li závislost na první pohled lineární. Jako demonstrační funkce pro generování náhodných hodnot s různými typy rozdělení a vykreslování histogramů četnosti je v demonstračním bloku DEMOS připravena funkce randtool. Při studiu daného rozdělení je možno interaktivně měnit parametry rozdělení a rozsah souboru, ukládat data do výstupních souborů aj. Funkce MATLABu umožňují dále provádět analýzu lineárních regresních modelů. K dispozici jsou především funkce pro analýzu rozptylu (ANOVA - Analysis of Variance). Je možno je použít buď jako postup pro zjištění zdrojů variability u lineárních modelů, nebo jako samostatných technik. Ze statistického hlediska je možno tyto funkce chápat jako speciální případ regresní analýzy, kdy vysvětlující proměnné mají pouze binární charakter a mohou nabývat pouze hodnot 0 nebo 1. Při analýze zdrojů variability máme možnost vyšetřovat výběrový soubor při uvážení jednoho vlivu (faktoru) pomocí funkce pro jednofaktorovou (one-way) analýzu rozptylu, dvoufaktorová (two-way) analýza rozptylu umožňuje zkoumání vlivů dvou faktorů. Pro zkoumání vlivu faktorů na variabilitu se provádějí testy hypotéz o jejich významnosti. Funkce umožňují rovněž porovnávání dvou či více výběrů. Pro zobrazení výsledku analýzy je pak např. k dispozici okno se skupinou odpovídajících krabicových (vrubových krabicových) grafů, které umožňují evidentní posouzení shodnosti resp. diference středních hodnot jednotlivých výběrů. Funkce pro vícenásobnou lineární regresi umožňuje získat regresní závislost pro predikční účely. K dispozici je graf, znázorňující 95% konfidenční intervaly residuí. Jako demonstrační funkce pro interaktivní polynomiální aproximaci souboru s možností predikce jeho hodnot je v bloku DEMOS k dispozici funkce polytool. Tato funkce vytváří interaktivní grafické prostředí pro křivkovou aproximaci polynomy různého stupně. Významné jsou dále funkce, umožňující testování statistických hypotéz. Je možno provádět testy hypotéz o rozptylu (F-test), testy hypotéz o střední hodnotě (t-test), testy významnosti rozdílu párových hodnot a testy dobré shody. Přehled základních a nejpoužívanějších funkcí Statistics Toolboxu Není v možnostech těchto skript popsat veškeré funkce Statistics Toolboxu. Zaměříme se jen na ty hlavní a na ty, které se používají při výuce v tomto předmětu. Je zde uveden popis funkce včetně jednoduchého příkladu 3
4 použití. Výpis všech funkcí obsažených ve Statistics Toolboxu je uveden v souboru Contents.m v adresari \Toolbox\Stats. Bližší popis těchto funkcí je možno získat pomocí nápovědy (HELP) přímo v Matlabu, nebo z manuálu k Statistics toolboxu [manuál]. Odhady parametrů NORMFIT Odhad parametru a interval spolehlivosti pro data s normálním rozložením. [MUHAT,SIGMAHAT] = NORMFIT(X) vrací odhad parametru pro data s normálním rozdělením. MUHAT je odhad střední hodnoty, SIGMAHAT je odhad směrodatné odchylky. [MUHAT,SIGMAHAT,MUCI,SIGMACI] = NORMFIT(X) vrací 95% interval spolehlivosti pro odhad parametru. [MUHAT,SIGMAHAT,MUCI,SIGMACI] = NORMFIT(X,ALPHA) vrací 100(1-ALPHA) procentní interval spolehlivosti pro odhad parametru. Data jsou dána 2 sloupcovou maticí s normálním rozložením. Oba sloupce mají µ = 10 a σ = 2. data = normrnd(10,2,100,2); [mu,sigma,muci,sigmaci] = normfit(data) mu = sigma = muci = sigmaci = Funkce rozložení hustoty pravděpodobnosti (pdf) NORMPDF Funkce hustoty pravděpodobnosti pro normální rozdělení (pdf). Y = NORMPDF(X,MU,SIGMA) vrací pdf normálního rozdělení se střední hodnotou MU a směrodatnou odchylkou SIGMA. Defaultní hodnoty pro MU a SIGMA jsou 0 a 1. 4
5 mu = [0:0.1:2]; [y i] = max(normpdf(1.5,mu,1)); MLE = mu(i) MLE = UNIFPDF Funkce hustoty pravděpodobnosti spojitého rovnoměrného rozdělení (pdf). Y = UNIFPDF(X,A,B) vrací pdf na intervalu [A,B] hodnot X. Defaultně je A=0 a B=1. x = 0.1:0.1:0.6; y = unifpdf(x) y = Kumulativní distribuční funkce (cdf) NORMCDF Kumulativní distribuční funkce normálního rozdělení (cdf). P = NORMCDF(X,MU,SIGMA) vrací cdf normálního rozdělení se střední hodnotou MU a směrodatnou odchylkou SIGMA, vypočtené pro hodnoty X. Defaultní hodnoty pro MU a SIGMA jsou 0 a 1 Jaká je pravděpodobnost, že hodnota výběru dat ze standardního normálního rozdělení bude v intervalu [-1 1]? p = normcdf([-1 1]); p(2)-p(1) ans = UNIFCDF - Kumulativní distribuční funkce spojitého rovnoměrného rozdělení (cdf). P = UNIFCDF(X,A,B) vrací cdf pro rovnoměrné rozdělení na intervalu [A,B] pro hodnoty X. Defaultně je A=0 a B=1. 5
6 Jaká je pravděpodobnost, že hodnota výběru dat z rovnoměrného rozdělení s intervalem [-1;1] bude menší než 0,75? probability = unifcdf(0.75,-1,1) probability = Statistika NORMSTAT Střední hodnota a rozptyl pro normální rozdělení. [M,V]=NORMSTAT(MU,SIGMA) vrací střední hodnotu a rozptyl normálního rozdělení se střední hodnotou MU a směrodatnou odchylkou SIGMA. n = 1:5; [m,v] = normstat(n'*n,n'*n) m = v = UNIFSTAT - Střední hodnota a rozptyl pro rovnoměrné rozdělení. [M,V]=UNIFSTAT(A,B) vrací střední hodnotu a rozptyl rovnoměrného rozdělení na intervalu [A,B]. a = 1:6; b = 2.*a; [m,v] = unifstat(a,b) 6
7 m = v = Popisná statistika MAD Střední hodnota/median absolutní odchylky. Y = MAD(X) vrací střední hodnotu absolutní odchylky hodnot v X. x = normrnd(0,1,100,100); s = std(x); s_mad = 1.3 * mad(x); efficiency = (norm(s - 1)./norm(s_MAD - 1)).^2 efficiency = MEAN - Průměr nebo střední hodnota. Pro vektory, MEAN(X) je střední hodnota hodnot v X. Pro matice, MEAN(X) je řádkový vektor obsahující střední hodnotu každého sloupce. A = [1 2 3; 3 3 6; 4 6 8; 4 7 7]; mean(a) ans = mean(a,2) ans = MEDIAN - Hodnota mediánu. Pro vektory, MEDIAN(X) je hodnota mediánu prvků v X. MEDIAN(X) je řádkový vektor obsahující medián každého sloupce. Pro matice, 7
8 A = [ ; ; ; ]; median(a) ans = median(a,2) ans = STD - Směrodatná odchylka Pro vektory, Y = STD(X) vrací směrodatnou odchylku. Pro matice, Y je řádkový vektor obsahující směrodatnou odchylku každého řádku. Pro matici X: X = s = std(x,0,1) s = s = std(x,0,2) s = VAR - Rozptyl. Pro vektory, Y = VAR(X) vrací rozptyl pro hodnoty v X. Pro matice, Y je řádkový vektor obsahující rozptyl každého sloupce z X. Pro X = [ ] 8
9 Je rozptyl: var(x,0,1) ans = var(x,0,2) ans = 9 4 Testování hypotéz TTEST [h,p,ci]=ttest(x,m,alpha) provádí test střední hodnoty souboru, určuje, zda soubor s normálním rozložením může mít na hladině významnosti α střední hodnotu m, přičemž standardní odchylka je neznámá. Pokud h=0, nemůžeme zamítnout nulovou hypotézu, pokud je h=1, zamítáme nulovou hypotézu. Nasimulujeme 100 náhodných vzorků z normálního rozdělení, které má střední hodnotu 0 a rozptyl 1. x = normrnd(0.1,1,1,100); Testujeme nulovou hypotézu, že vzorky pocházejí z normálního rozdělení se střední hodnotou 0. [h,p,ci] = ttest(x,0) h = 0 p = ci = Vidíme, že h=0, tudíž přijímáme nulovou hypotézu. 9
10 TTEST2 [h,p,ci]=ttest2(x,y,alpha) provádí test rozdílu středních hodnot dvou souborů jejichž směrodatnou odchylku neznáme. ZTEST [h,p,ci]=ztest(x,m,sigma) provádí test hypotézy o střední hodnotě souboru se známým rozptylem. Statistické grafy BOXPLOT - Zobrazuje krabicový graf výběrového souboru. BOXPLOT(X) - zobrazí krabicový graf s jedním boxem pro každý sloupec vektoru X. Boxy obsahují čáry, které reprezentují spodní kvartil, medián a vrchní kvartil. Následující příkaz vytvoří boxplot nákladů na kilometr jízdy autem v jednotlivých zemích load carsmal; boxplot(mpg,origin); HIST - Histogram. N=HIST(Y) rozdělí prvky Y do 10 stejně velikých sloupců a vrátí hodnotu prvku v každém sloupci Vytvoří Bellovu křivku histogramu z Gaussovských dat. 10
11 x = -2.9:0.1:2.9; y = randn(10000,1); hist(y,x) HIST3 Trojrozměrný histogram dvourozměrných dat. Použijte soubor carbig k vytvoření histogramu 7x7 sloupců. load carbig X = [MPG,Weight]; hist3(x,[7 7]); xlabel('mpg'); ylabel('weight'); %Vytvoří histogram s poloprůhlednými sloupci hist3(x,[7 7],'FaceAlpha',.65); xlabel('mpg'); ylabel('weight'); set(gcf,'renderer','opengl'); 11
12 NORMPLOT Zobrazuje křivku normálního rozdělení (grafický test normality souboru) H=NORMPLOT(X) vytvoří křivku normálního rozdělení z dat X. Pro matice X, NORMPLOT zobrazuje křivku pro každý sloupec. x = normrnd(10,1,25,1); normplot(x) Demonstrační úlohy Disttool demonstruje funkce rozdělení hustoty pravděpodobnosti (pdf) nebo distribuční funkce (cdf) pro veškeré typy rozdělení. Polytool demonstruje experimentální polynomiální aproximace s možnosti výpočtu predikovaných hodnot. 12
13 Randtool interaktivní generování náhodných čísel se zvoleným rozdělením a znázorněním pomocí histogramu Robustdemo interaktivní regrese pomocí robustních metod 13
14 Tato kapitola, ve které jsou popsány základní funkce Statistics Toolboxu v žádném případě nenahrazuje návody k použití jejich statistických procedur. Jejím cílem je seznámení studentů s nabídkou podobných programových balíků, s objemem a formami příkazů pro plnění jednotlivých statistických funkcí. Tato část bude užitečná zvláště pro taková pracoviště, která již používají nebo chystají použití MATLABu jako standardního prostředí pro výuku nebo řešení vědecko-technických či inženýrsko-projekčních úloh. 14
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
VíceUNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
VíceSTATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
VíceVYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI
VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
VíceZápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
VíceAnalýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
VíceStatistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství
1 PŘÍLOHA KE KAPITOLE 11 2 Seznam příloh ke kapitole 11 Podkapitola 11.2. Přilité tyče: Graf 1 Graf 2 Graf 3 Graf 4 Graf 5 Graf 6 Graf 7 Graf 8 Graf 9 Graf 1 Graf 11 Rychlost šíření ultrazvuku vs. pořadí
VíceStručný úvod do vybraných zredukovaných základů statistické analýzy dat
Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní
VícePOPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica Program Statistica I Statistica je velmi podobná Excelu. Na základní úrovni je to klikací program určený ke statistickému zpracování dat.
VíceNáhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Více31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty
VícePrůzkumová analýza dat
Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se
VícePracovní adresář. Nápověda. Instalování a načtení nového balíčku. Importování datového souboru. Práce s datovým souborem
Pracovní adresář getwd() # výpis pracovního adresáře setwd("c:/moje/pracovni") # nastavení pracovního adresáře setwd("c:\\moje\\pracovni") # nastavení pracovního adresáře Nápověda?funkce # nápověda pro
VíceZpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní
VíceSTATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7
Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru
VíceNávrh a vyhodnocení experimentu
Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav
VíceANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní
VíceLineární regrese. Komentované řešení pomocí MS Excel
Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních
VícePorovnání dvou výběrů
Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů
VíceJEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
VíceMetodologie pro ISK II
Metodologie pro ISK II Všechny hodnoty z daného intervalu Zjišťujeme: Centrální míry Variabilitu Šikmost, špičatost Percentily (decily, kvantily ) Zobrazení: histogram MODUS je hodnota, která se v datech
VíceTECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření školní zadání Skupina: 51 Vypracovaly: Pavlína Horná, Nikola Loumová, Petra Mikešová,
VíceTomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
VícePředpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2
Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik
Více676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
VíceStatistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability
I Přednáška Statistika Diskrétní data Spojitá data Charakteristiky polohy Charakteristiky variability Statistika deskriptivní statistika ˆ induktivní statistika populace (základní soubor) ˆ výběr parametry
VícePraktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
VíceZákladní statistické metody v rizikovém inženýrství
Základní statistické metody v rizikovém inženýrství Petr Misák Ústav stavebního zkušebnictví Fakulta stavební, VUT v Brně misak.p@fce.vutbr.cz Základní pojmy Jev souhrn skutečností zobrazujících ucelenou
VíceStatistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží Zdeněk Karpíšek Jsou tři druhy lží: lži, odsouzeníhodné lži a statistiky. Statistika je logická a přesná metoda, jak nepřesně
VíceRegresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
VícePRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA)
PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA) Reprezentativní náhodný výběr: 1. Prvky výběru x i jsou vzájemně nezávislé. 2. Výběr je homogenní, tj. všechna x i jsou ze stejného
VíceCo je to statistika? Úvod statistické myšlení. Základy statistického hodnocení výsledků zkoušek. Petr Misák
Základy statistického hodnocení výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Co je to statistika? Statistika je jako bikiny. Odhalí téměř vše, ale to nejdůležitější nám zůstane skryto. (autor neznámý)
VíceNávrhy dalších možností statistického zpracování aktualizovaných dat
Návrhy dalších možností statistického zpracování aktualizovaných dat Při zjišťování disparit ve fyzické dostupnosti bydlení navrhuji použití těchto statistických metod: Bag plot; Krabicové grafy a jejich
VícePravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
VíceNárodníinformačnístředisko pro podporu jakosti
Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov
VícePopisná statistika. Komentované řešení pomocí MS Excel
Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipa.cz Pravděpodobnost a matematická statistika 2010 1.týden 20.09.-24.09. Data, tp dat, variabilita, frekvenční analýza histogram,
VíceZáklady biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
VíceRNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 3 Jak a kdy použít parametrické a
VíceObsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35
Obsah 1 Popisná statistika 4 1.1 bas stat........................................ 5 1.2 mean.......................................... 6 1.3 meansq........................................ 7 1.4 sumsq.........................................
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
VíceÚvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
VíceZáklady teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie
Více5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně
VíceTématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2009/2010 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
VíceStatgraphics v. 5.0 STATISTICKÁ INDUKCE PRO JEDNOROZMĚRNÁ DATA. Martina Litschmannová 1. Typ proměnné. Požadovaný typ analýzy
Dichotomická proměnná (0-1) Spojitá proměnná STATISTICKÁ INDUKCE PRO JEDNOROZMĚRNÁ DATA Typ proměnné Požadovaný typ analýzy Ověření variability Předpoklady Testy, resp. intervalové odhad Test o rozptylu
Více2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi,
VíceJednofaktorová analýza rozptylu
Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato
VíceNávrh a vyhodnocení experimentu
Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav
VíceUNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie. Nám. Čs. Legií 565, Pardubice. Semestrální práce ANOVA 2015
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 15. licenční studium INTERAKTIVNÍ STATISTICKÁ ANALÝZA DAT Semestrální práce ANOVA 2015
VíceTématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
Vícemarek.pomp@vsb.cz http://homel.vsb.cz/~pom68
Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové
VíceMATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
VíceUniverzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel
VíceVYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ KATEDRA KONTROLY A ŘÍZENÍ JAKOSTI
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ KATEDRA KONTROLY A ŘÍZENÍ JAKOSTI Elektronická sbírka příkladů k předmětům zaměřeným na aplikovanou statistiku
Více4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
VíceVzorová prezentace do předmětu Statistika
Vzorová prezentace do předmětu Statistika Popis situace: U 3 náhodně vybraných osob byly zjišťovány hodnoty těchto proměnných: SEX - muž, žena PUVOD Skandinávie, Středomoří, 3 západní Evropa IQ hodnota
VíceVybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
VíceT E O R I E C H Y B A V Y R O V N Á V A C Í P O
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu T E O R I E C H Y B A V Y R O V N Á V A C Í P O Č E T 2 č. úlohy 6 název úlohy T
VíceGrafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan
1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce
Vícepravděpodobnosti, popisné statistiky
8. Modelová rozdělení pravděpodobnosti, popisné statistiky Rozdělení pravděpodobnosti Normální rozdělení jako statistický model Přehled a aplikace modelových rozdělení Popisné statistiky Anotace Klasickým
VíceStatistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Více5. Závislost dvou náhodných veličin různých typů (kategoriální a metrická veličina)
5. Závislost dvou náhodných veličin různých typů (kategoriální a metrická veličina) Cílem tématu je správné posouzení a výběr vhodného testu v závislosti na povaze metrické a kategoriální veličiny. V následující
VíceS E M E S T R Á L N Í
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie S E M E S T R Á L N Í P R Á C E Licenční studium Statistické zpracování dat při managementu jakosti Předmět ANOVA analýza rozptylu
VíceLINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica
LINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná
Víceveličin, deskriptivní statistika Ing. Michael Rost, Ph.D.
Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího
VíceUNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce STATISTICKÁ
VíceZpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.
SEMINÁRNÍ PRÁCE Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné
VíceTématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2010/2011 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
VíceII. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal
Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal! Testování statistických hypotéz kvalitativní odezva kvantitativní chí-kvadrát test homogenity,
VíceSimulace. Simulace dat. Parametry
Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,
VíceOpakování: Nominální proměnná více hodnotová odpověď.
Analýza dat z dotazníkových šetření Cvičení 4. - Zobecňování výběru na populaci Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/37771/ - Seznamte se s dotazníkem a strukturou otázek,
VícePravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1
Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu
VíceRegresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
VíceTomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo
VíceDVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica Úloha A) koncentrace glukózy v krvi V této části posoudíme pomocí párového testu, zda nový lék prokazatelně snižuje koncentraci
VíceÚstav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze
Komentované řešení pomocí programu R Ústav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze Popis vstupních dat Vstupní data pro úlohu (A) se nacházejí v souboru "glukoza.csv".
VíceStatistické testování hypotéz II
PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení
VíceÚloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:
Úloha č. 1 - Kvantily a typická hodnota (bodově tříděná data): Určete typickou hodnotu, 40% a 80% kvantil. Tabulka hodnot: Varianta Četnost 0 4 1 14 2 17 3 37 4 20 5 14 6 7 7 11 8 20 Typická hodnota je
VíceCharakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
VíceCvičení ze statistiky - 9. Filip Děchtěrenko
Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz
VíceTomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
VíceObsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou
Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................
VíceRegresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
VíceTestování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času
Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek
VíceVŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky SMAD
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: SMAD Cvičení Ostrava, AR 2016/2017 Popis datového souboru Pro dlouhodobý
Více7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
VíceSTATISTICKÉ TESTY VÝZNAMNOSTI
STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená
VíceVysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky
Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného
VíceCvičení 12: Binární logistická regrese
Cvičení 12: Binární logistická regrese Příklad: V roce 2014 konalo státní závěrečné zkoušky bakalářského studia na jisté fakultě 167 studentů. U každého studenta bylo zaznamenáno jeho pohlaví (0 žena,
Více