Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech.

Rozměr: px
Začít zobrazení ze stránky:

Download "Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech."

Transkript

1 Statistics ToolBox Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. [manual ST] 1. PROBABILITY DISTRIBUTIONS Statistics toolbox podporuje 20 rozdělení pravděpodobnosti diskrétní a spojité náhodné veličiny. Pro každé rozdělení má 5 asociovaných funkcí, jsou to: - pravděpodobnostní funkce (pdf) - distribuční funkce (cdf) - inverzní distribuční funkce - generátor náhodných čísel - střední hodnotu a rozptyl jako funkci parametru 2. DESCRIPTIVE STATISTICS - stanovení statistických charakteristik souborů 3. LINEAR MODELS - lineární regresní analýza, ANOVA 4. NONLINEAR MODELS funkce pro interaktivní predikci a vizualizaci pro vícerozměrné data 5. HYPOTHESIS TESTS - testování statistických hypotéz, t-test, Z-test aj. 6. MULTIVARIATE STATISTICS metody pro statistickou analýzu víceproměnných dat 7. STATISTICAL PLOTS statistické grafy např. boxplot, histogram aj. 8. DEMOS - demonstrační výukové úlohy 9. DATA - demonstrační datové soubory Ve statistickém toolboxu MATLABu jsou implementovány funkce pro práci s následujícími 6-ti druhy rozdělení diskrétní náhodné veličiny: - Binomické - Geometrické - Hypergeometrické - Negativní binomické - Poissonovo - Rovnoměrné diskrétní a funkce pro práci s následujícími 14-ti druhy rozdělení spojité náhodné veličiny: - Beta 1

2 - Pearsonovo chí-kvadrát - Exponenciální - Fischerovo F - Gama - Gaussovo normální - Studentovo t - Rovnoměrné spojité - Weibullovo - Lognormal - Rayleigh - Noncentral Chí-kvadrát - Noncentral F - Noncentral t Pro každý implementovaný typ rozdělení je možno zobrazit distribuční funkci a funkci rozložení hustoty pravděpodobnosti, provádět s nimi výpočty popř. vypočítat jejich charakteristiky. Je rovněž možno používat inverzní distribuční funkci, která stanoví hodnoty určitého rozdělení podle zadaných pravděpodobností. Prostředky MATLABu se dají také zobrazit velmi jednoduše rozdíly jednotlivých typů rozdělení. K použití se rovněž nabízejí generátory náhodných čísel pro každý typ rozdělení. V demonstračním bloku DEMOS je uvedena speciální funkce distool, která umožňuje grafickou demonstraci jednotlivých typů rozdělení. Je možno volit alternativně zobrazení distribuční funkce nebo funkce rozdělení hustoty všech typů implementovaných rozdělení.. Je možno interaktivně měnit parametry studovaného rozdělení a zjišťovat jeho funkční hodnoty pro různé hodnoty nezávisle proměnné. Ve statistickém toolboxu MATLABu jsou přímo k dispozici funkce, vypočítávající následující charakteristiky polohy: aritmetický průměr, geometrický průměr, harmonický průměr, medián, kvantily a aritmetický průměr bez extrémních hodnot a dále charakteristiky rozptýlení: rozptyl, směrodatnou odchylku, průměrnou odchylku, variační rozpětí a interkvartilové rozpětí aj. Prakticky velmi důležité jsou možnosti grafické prezentace výsledků zpracování statistického souboru. Tak lze znázornit histogramy absolutních četností, absolutních kumulovaných četností, krabicový graf (prezentace polohy 1. kvartilu, mediánu a 3. kvartilu), přilehlé hodnoty, vrubový krabicový graf (s prezentací konfidenčního intervalu aritmetického průměru). Pro zjištění, zda výběrový soubor pochází ze základního souboru s normálním rozložením hustoty pravděpodobnosti, slouží graf normálního rozložení. K dispozici je funkce, umožňující zjistit, zda mají dva výběrové soubory stejné rozdělení (kvantil-kvantilový graf). Plnou čarou jsou spojeny 1. a 3. kvartily (dolní 2

3 a horní kvartil). Výběry mají pravděpodobně stejné rozdělení, je-li závislost na první pohled lineární. Jako demonstrační funkce pro generování náhodných hodnot s různými typy rozdělení a vykreslování histogramů četnosti je v demonstračním bloku DEMOS připravena funkce randtool. Při studiu daného rozdělení je možno interaktivně měnit parametry rozdělení a rozsah souboru, ukládat data do výstupních souborů aj. Funkce MATLABu umožňují dále provádět analýzu lineárních regresních modelů. K dispozici jsou především funkce pro analýzu rozptylu (ANOVA - Analysis of Variance). Je možno je použít buď jako postup pro zjištění zdrojů variability u lineárních modelů, nebo jako samostatných technik. Ze statistického hlediska je možno tyto funkce chápat jako speciální případ regresní analýzy, kdy vysvětlující proměnné mají pouze binární charakter a mohou nabývat pouze hodnot 0 nebo 1. Při analýze zdrojů variability máme možnost vyšetřovat výběrový soubor při uvážení jednoho vlivu (faktoru) pomocí funkce pro jednofaktorovou (one-way) analýzu rozptylu, dvoufaktorová (two-way) analýza rozptylu umožňuje zkoumání vlivů dvou faktorů. Pro zkoumání vlivu faktorů na variabilitu se provádějí testy hypotéz o jejich významnosti. Funkce umožňují rovněž porovnávání dvou či více výběrů. Pro zobrazení výsledku analýzy je pak např. k dispozici okno se skupinou odpovídajících krabicových (vrubových krabicových) grafů, které umožňují evidentní posouzení shodnosti resp. diference středních hodnot jednotlivých výběrů. Funkce pro vícenásobnou lineární regresi umožňuje získat regresní závislost pro predikční účely. K dispozici je graf, znázorňující 95% konfidenční intervaly residuí. Jako demonstrační funkce pro interaktivní polynomiální aproximaci souboru s možností predikce jeho hodnot je v bloku DEMOS k dispozici funkce polytool. Tato funkce vytváří interaktivní grafické prostředí pro křivkovou aproximaci polynomy různého stupně. Významné jsou dále funkce, umožňující testování statistických hypotéz. Je možno provádět testy hypotéz o rozptylu (F-test), testy hypotéz o střední hodnotě (t-test), testy významnosti rozdílu párových hodnot a testy dobré shody. Přehled základních a nejpoužívanějších funkcí Statistics Toolboxu Není v možnostech těchto skript popsat veškeré funkce Statistics Toolboxu. Zaměříme se jen na ty hlavní a na ty, které se používají při výuce v tomto předmětu. Je zde uveden popis funkce včetně jednoduchého příkladu 3

4 použití. Výpis všech funkcí obsažených ve Statistics Toolboxu je uveden v souboru Contents.m v adresari \Toolbox\Stats. Bližší popis těchto funkcí je možno získat pomocí nápovědy (HELP) přímo v Matlabu, nebo z manuálu k Statistics toolboxu [manuál]. Odhady parametrů NORMFIT Odhad parametru a interval spolehlivosti pro data s normálním rozložením. [MUHAT,SIGMAHAT] = NORMFIT(X) vrací odhad parametru pro data s normálním rozdělením. MUHAT je odhad střední hodnoty, SIGMAHAT je odhad směrodatné odchylky. [MUHAT,SIGMAHAT,MUCI,SIGMACI] = NORMFIT(X) vrací 95% interval spolehlivosti pro odhad parametru. [MUHAT,SIGMAHAT,MUCI,SIGMACI] = NORMFIT(X,ALPHA) vrací 100(1-ALPHA) procentní interval spolehlivosti pro odhad parametru. Data jsou dána 2 sloupcovou maticí s normálním rozložením. Oba sloupce mají µ = 10 a σ = 2. data = normrnd(10,2,100,2); [mu,sigma,muci,sigmaci] = normfit(data) mu = sigma = muci = sigmaci = Funkce rozložení hustoty pravděpodobnosti (pdf) NORMPDF Funkce hustoty pravděpodobnosti pro normální rozdělení (pdf). Y = NORMPDF(X,MU,SIGMA) vrací pdf normálního rozdělení se střední hodnotou MU a směrodatnou odchylkou SIGMA. Defaultní hodnoty pro MU a SIGMA jsou 0 a 1. 4

5 mu = [0:0.1:2]; [y i] = max(normpdf(1.5,mu,1)); MLE = mu(i) MLE = UNIFPDF Funkce hustoty pravděpodobnosti spojitého rovnoměrného rozdělení (pdf). Y = UNIFPDF(X,A,B) vrací pdf na intervalu [A,B] hodnot X. Defaultně je A=0 a B=1. x = 0.1:0.1:0.6; y = unifpdf(x) y = Kumulativní distribuční funkce (cdf) NORMCDF Kumulativní distribuční funkce normálního rozdělení (cdf). P = NORMCDF(X,MU,SIGMA) vrací cdf normálního rozdělení se střední hodnotou MU a směrodatnou odchylkou SIGMA, vypočtené pro hodnoty X. Defaultní hodnoty pro MU a SIGMA jsou 0 a 1 Jaká je pravděpodobnost, že hodnota výběru dat ze standardního normálního rozdělení bude v intervalu [-1 1]? p = normcdf([-1 1]); p(2)-p(1) ans = UNIFCDF - Kumulativní distribuční funkce spojitého rovnoměrného rozdělení (cdf). P = UNIFCDF(X,A,B) vrací cdf pro rovnoměrné rozdělení na intervalu [A,B] pro hodnoty X. Defaultně je A=0 a B=1. 5

6 Jaká je pravděpodobnost, že hodnota výběru dat z rovnoměrného rozdělení s intervalem [-1;1] bude menší než 0,75? probability = unifcdf(0.75,-1,1) probability = Statistika NORMSTAT Střední hodnota a rozptyl pro normální rozdělení. [M,V]=NORMSTAT(MU,SIGMA) vrací střední hodnotu a rozptyl normálního rozdělení se střední hodnotou MU a směrodatnou odchylkou SIGMA. n = 1:5; [m,v] = normstat(n'*n,n'*n) m = v = UNIFSTAT - Střední hodnota a rozptyl pro rovnoměrné rozdělení. [M,V]=UNIFSTAT(A,B) vrací střední hodnotu a rozptyl rovnoměrného rozdělení na intervalu [A,B]. a = 1:6; b = 2.*a; [m,v] = unifstat(a,b) 6

7 m = v = Popisná statistika MAD Střední hodnota/median absolutní odchylky. Y = MAD(X) vrací střední hodnotu absolutní odchylky hodnot v X. x = normrnd(0,1,100,100); s = std(x); s_mad = 1.3 * mad(x); efficiency = (norm(s - 1)./norm(s_MAD - 1)).^2 efficiency = MEAN - Průměr nebo střední hodnota. Pro vektory, MEAN(X) je střední hodnota hodnot v X. Pro matice, MEAN(X) je řádkový vektor obsahující střední hodnotu každého sloupce. A = [1 2 3; 3 3 6; 4 6 8; 4 7 7]; mean(a) ans = mean(a,2) ans = MEDIAN - Hodnota mediánu. Pro vektory, MEDIAN(X) je hodnota mediánu prvků v X. MEDIAN(X) je řádkový vektor obsahující medián každého sloupce. Pro matice, 7

8 A = [ ; ; ; ]; median(a) ans = median(a,2) ans = STD - Směrodatná odchylka Pro vektory, Y = STD(X) vrací směrodatnou odchylku. Pro matice, Y je řádkový vektor obsahující směrodatnou odchylku každého řádku. Pro matici X: X = s = std(x,0,1) s = s = std(x,0,2) s = VAR - Rozptyl. Pro vektory, Y = VAR(X) vrací rozptyl pro hodnoty v X. Pro matice, Y je řádkový vektor obsahující rozptyl každého sloupce z X. Pro X = [ ] 8

9 Je rozptyl: var(x,0,1) ans = var(x,0,2) ans = 9 4 Testování hypotéz TTEST [h,p,ci]=ttest(x,m,alpha) provádí test střední hodnoty souboru, určuje, zda soubor s normálním rozložením může mít na hladině významnosti α střední hodnotu m, přičemž standardní odchylka je neznámá. Pokud h=0, nemůžeme zamítnout nulovou hypotézu, pokud je h=1, zamítáme nulovou hypotézu. Nasimulujeme 100 náhodných vzorků z normálního rozdělení, které má střední hodnotu 0 a rozptyl 1. x = normrnd(0.1,1,1,100); Testujeme nulovou hypotézu, že vzorky pocházejí z normálního rozdělení se střední hodnotou 0. [h,p,ci] = ttest(x,0) h = 0 p = ci = Vidíme, že h=0, tudíž přijímáme nulovou hypotézu. 9

10 TTEST2 [h,p,ci]=ttest2(x,y,alpha) provádí test rozdílu středních hodnot dvou souborů jejichž směrodatnou odchylku neznáme. ZTEST [h,p,ci]=ztest(x,m,sigma) provádí test hypotézy o střední hodnotě souboru se známým rozptylem. Statistické grafy BOXPLOT - Zobrazuje krabicový graf výběrového souboru. BOXPLOT(X) - zobrazí krabicový graf s jedním boxem pro každý sloupec vektoru X. Boxy obsahují čáry, které reprezentují spodní kvartil, medián a vrchní kvartil. Následující příkaz vytvoří boxplot nákladů na kilometr jízdy autem v jednotlivých zemích load carsmal; boxplot(mpg,origin); HIST - Histogram. N=HIST(Y) rozdělí prvky Y do 10 stejně velikých sloupců a vrátí hodnotu prvku v každém sloupci Vytvoří Bellovu křivku histogramu z Gaussovských dat. 10

11 x = -2.9:0.1:2.9; y = randn(10000,1); hist(y,x) HIST3 Trojrozměrný histogram dvourozměrných dat. Použijte soubor carbig k vytvoření histogramu 7x7 sloupců. load carbig X = [MPG,Weight]; hist3(x,[7 7]); xlabel('mpg'); ylabel('weight'); %Vytvoří histogram s poloprůhlednými sloupci hist3(x,[7 7],'FaceAlpha',.65); xlabel('mpg'); ylabel('weight'); set(gcf,'renderer','opengl'); 11

12 NORMPLOT Zobrazuje křivku normálního rozdělení (grafický test normality souboru) H=NORMPLOT(X) vytvoří křivku normálního rozdělení z dat X. Pro matice X, NORMPLOT zobrazuje křivku pro každý sloupec. x = normrnd(10,1,25,1); normplot(x) Demonstrační úlohy Disttool demonstruje funkce rozdělení hustoty pravděpodobnosti (pdf) nebo distribuční funkce (cdf) pro veškeré typy rozdělení. Polytool demonstruje experimentální polynomiální aproximace s možnosti výpočtu predikovaných hodnot. 12

13 Randtool interaktivní generování náhodných čísel se zvoleným rozdělením a znázorněním pomocí histogramu Robustdemo interaktivní regrese pomocí robustních metod 13

14 Tato kapitola, ve které jsou popsány základní funkce Statistics Toolboxu v žádném případě nenahrazuje návody k použití jejich statistických procedur. Jejím cílem je seznámení studentů s nabídkou podobných programových balíků, s objemem a formami příkazů pro plnění jednotlivých statistických funkcí. Tato část bude užitečná zvláště pro taková pracoviště, která již používají nebo chystají použití MATLABu jako standardního prostředí pro výuku nebo řešení vědecko-technických či inženýrsko-projekčních úloh. 14

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a

Více

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

Analýza dat na PC I.

Analýza dat na PC I. CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství 1 PŘÍLOHA KE KAPITOLE 11 2 Seznam příloh ke kapitole 11 Podkapitola 11.2. Přilité tyče: Graf 1 Graf 2 Graf 3 Graf 4 Graf 5 Graf 6 Graf 7 Graf 8 Graf 9 Graf 1 Graf 11 Rychlost šíření ultrazvuku vs. pořadí

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica

POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica Program Statistica I Statistica je velmi podobná Excelu. Na základní úrovni je to klikací program určený ke statistickému zpracování dat.

Více

Náhodná veličina a rozdělení pravděpodobnosti

Náhodná veličina a rozdělení pravděpodobnosti 3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

Pracovní adresář. Nápověda. Instalování a načtení nového balíčku. Importování datového souboru. Práce s datovým souborem

Pracovní adresář. Nápověda. Instalování a načtení nového balíčku. Importování datového souboru. Práce s datovým souborem Pracovní adresář getwd() # výpis pracovního adresáře setwd("c:/moje/pracovni") # nastavení pracovního adresáře setwd("c:\\moje\\pracovni") # nastavení pracovního adresáře Nápověda?funkce # nápověda pro

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

Návrh a vyhodnocení experimentu

Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav

Více

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní

Více

Lineární regrese. Komentované řešení pomocí MS Excel

Lineární regrese. Komentované řešení pomocí MS Excel Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu

Více

Metodologie pro ISK II

Metodologie pro ISK II Metodologie pro ISK II Všechny hodnoty z daného intervalu Zjišťujeme: Centrální míry Variabilitu Šikmost, špičatost Percentily (decily, kvantily ) Zobrazení: histogram MODUS je hodnota, která se v datech

Více

TECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání

TECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření školní zadání Skupina: 51 Vypracovaly: Pavlína Horná, Nikola Loumová, Petra Mikešová,

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability

Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability I Přednáška Statistika Diskrétní data Spojitá data Charakteristiky polohy Charakteristiky variability Statistika deskriptivní statistika ˆ induktivní statistika populace (základní soubor) ˆ výběr parametry

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

Základní statistické metody v rizikovém inženýrství

Základní statistické metody v rizikovém inženýrství Základní statistické metody v rizikovém inženýrství Petr Misák Ústav stavebního zkušebnictví Fakulta stavební, VUT v Brně misak.p@fce.vutbr.cz Základní pojmy Jev souhrn skutečností zobrazujících ucelenou

Více

Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží

Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží Zdeněk Karpíšek Jsou tři druhy lží: lži, odsouzeníhodné lži a statistiky. Statistika je logická a přesná metoda, jak nepřesně

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA)

PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA) PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA) Reprezentativní náhodný výběr: 1. Prvky výběru x i jsou vzájemně nezávislé. 2. Výběr je homogenní, tj. všechna x i jsou ze stejného

Více

Co je to statistika? Úvod statistické myšlení. Základy statistického hodnocení výsledků zkoušek. Petr Misák

Co je to statistika? Úvod statistické myšlení. Základy statistického hodnocení výsledků zkoušek. Petr Misák Základy statistického hodnocení výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Co je to statistika? Statistika je jako bikiny. Odhalí téměř vše, ale to nejdůležitější nám zůstane skryto. (autor neznámý)

Více

Návrhy dalších možností statistického zpracování aktualizovaných dat

Návrhy dalších možností statistického zpracování aktualizovaných dat Návrhy dalších možností statistického zpracování aktualizovaných dat Při zjišťování disparit ve fyzické dostupnosti bydlení navrhuji použití těchto statistických metod: Bag plot; Krabicové grafy a jejich

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Popisná statistika. Komentované řešení pomocí MS Excel

Popisná statistika. Komentované řešení pomocí MS Excel Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipa.cz Pravděpodobnost a matematická statistika 2010 1.týden 20.09.-24.09. Data, tp dat, variabilita, frekvenční analýza histogram,

Více

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické

Více

RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.

RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 3 Jak a kdy použít parametrické a

Více

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35 Obsah 1 Popisná statistika 4 1.1 bas stat........................................ 5 1.2 mean.......................................... 6 1.3 meansq........................................ 7 1.4 sumsq.........................................

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2009/2010 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

Statgraphics v. 5.0 STATISTICKÁ INDUKCE PRO JEDNOROZMĚRNÁ DATA. Martina Litschmannová 1. Typ proměnné. Požadovaný typ analýzy

Statgraphics v. 5.0 STATISTICKÁ INDUKCE PRO JEDNOROZMĚRNÁ DATA. Martina Litschmannová 1. Typ proměnné. Požadovaný typ analýzy Dichotomická proměnná (0-1) Spojitá proměnná STATISTICKÁ INDUKCE PRO JEDNOROZMĚRNÁ DATA Typ proměnné Požadovaný typ analýzy Ověření variability Předpoklady Testy, resp. intervalové odhad Test o rozptylu

Více

2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat

2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat 2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi,

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato

Více

Návrh a vyhodnocení experimentu

Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie. Nám. Čs. Legií 565, Pardubice. Semestrální práce ANOVA 2015

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie. Nám. Čs. Legií 565, Pardubice. Semestrální práce ANOVA 2015 UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 15. licenční studium INTERAKTIVNÍ STATISTICKÁ ANALÝZA DAT Semestrální práce ANOVA 2015

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové

Více

MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATICKÁ STATISTIKA.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel

Více

VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ KATEDRA KONTROLY A ŘÍZENÍ JAKOSTI

VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ KATEDRA KONTROLY A ŘÍZENÍ JAKOSTI VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ KATEDRA KONTROLY A ŘÍZENÍ JAKOSTI Elektronická sbírka příkladů k předmětům zaměřeným na aplikovanou statistiku

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Vzorová prezentace do předmětu Statistika

Vzorová prezentace do předmětu Statistika Vzorová prezentace do předmětu Statistika Popis situace: U 3 náhodně vybraných osob byly zjišťovány hodnoty těchto proměnných: SEX - muž, žena PUVOD Skandinávie, Středomoří, 3 západní Evropa IQ hodnota

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

T E O R I E C H Y B A V Y R O V N Á V A C Í P O

T E O R I E C H Y B A V Y R O V N Á V A C Í P O ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu T E O R I E C H Y B A V Y R O V N Á V A C Í P O Č E T 2 č. úlohy 6 název úlohy T

Více

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan 1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce

Více

pravděpodobnosti, popisné statistiky

pravděpodobnosti, popisné statistiky 8. Modelová rozdělení pravděpodobnosti, popisné statistiky Rozdělení pravděpodobnosti Normální rozdělení jako statistický model Přehled a aplikace modelových rozdělení Popisné statistiky Anotace Klasickým

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

5. Závislost dvou náhodných veličin různých typů (kategoriální a metrická veličina)

5. Závislost dvou náhodných veličin různých typů (kategoriální a metrická veličina) 5. Závislost dvou náhodných veličin různých typů (kategoriální a metrická veličina) Cílem tématu je správné posouzení a výběr vhodného testu v závislosti na povaze metrické a kategoriální veličiny. V následující

Více

S E M E S T R Á L N Í

S E M E S T R Á L N Í Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie S E M E S T R Á L N Í P R Á C E Licenční studium Statistické zpracování dat při managementu jakosti Předmět ANOVA analýza rozptylu

Více

LINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica

LINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica LINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce STATISTICKÁ

Více

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. SEMINÁRNÍ PRÁCE Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2010/2011 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal! Testování statistických hypotéz kvalitativní odezva kvantitativní chí-kvadrát test homogenity,

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Opakování: Nominální proměnná více hodnotová odpověď.

Opakování: Nominální proměnná více hodnotová odpověď. Analýza dat z dotazníkových šetření Cvičení 4. - Zobecňování výběru na populaci Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/37771/ - Seznamte se s dotazníkem a strukturou otázek,

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo

Více

DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica

DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica Úloha A) koncentrace glukózy v krvi V této části posoudíme pomocí párového testu, zda nový lék prokazatelně snižuje koncentraci

Více

Ústav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze

Ústav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze Komentované řešení pomocí programu R Ústav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze Popis vstupních dat Vstupní data pro úlohu (A) se nacházejí v souboru "glukoza.csv".

Více

Statistické testování hypotéz II

Statistické testování hypotéz II PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení

Více

Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:

Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy: Úloha č. 1 - Kvantily a typická hodnota (bodově tříděná data): Určete typickou hodnotu, 40% a 80% kvantil. Tabulka hodnot: Varianta Četnost 0 4 1 14 2 17 3 37 4 20 5 14 6 7 7 11 8 20 Typická hodnota je

Více

Charakterizace rozdělení

Charakterizace rozdělení Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou

Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky SMAD

VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky SMAD VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: SMAD Cvičení Ostrava, AR 2016/2017 Popis datového souboru Pro dlouhodobý

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Cvičení 12: Binární logistická regrese

Cvičení 12: Binární logistická regrese Cvičení 12: Binární logistická regrese Příklad: V roce 2014 konalo státní závěrečné zkoušky bakalářského studia na jisté fakultě 167 studentů. U každého studenta bylo zaznamenáno jeho pohlaví (0 žena,

Více