NÁVRH A REALIZACE TRADING STRATEGIÍ NA BÁZI STROJOVÉHO UČENÍ S POMOCÍ MATLABU
|
|
- Petr Netrval
- před 9 lety
- Počet zobrazení:
Transkript
1 NÁVRH A REALIZACE TRADING STRATEGIÍ NA BÁZI STROJOVÉHO UČENÍ S POMOCÍ MATLABU RNDr. Miroslav Pavelka, PhD m.pavelka@sh.cvut.cz Ing. Jan Hovad jan@hovad.cz
2 OBSAH Obchodování a strojové učení Specifika prediktivního modelování u burzovních časových řad Redefinice targetu pro účely obchodování Přehled použitých modelů, výhody a nevýhody Návrh systému v Matlabu Několik poznámek o Matlabu ve vztahu implementaci trading strategií Závěr Literatura a odkazy
3 OBCHODOVÁNÍ A STROJOVÉ UČENÍ
4 OBCHODOVÁNÍ Vstup Délka trvání obchodu Výstupní podmínky cena Výstu p Profit Dva vzájemně spojené definující body Vstup (ve spojitém čase) //Vstupní podmínky (Různě) dlouhá doba trvání obchodu Vstupní podmínky Stoplos Jak formalizovat? Výstup (ve spojitém čase) //Výstupní podmínky Velká flexibilita, přímé uplatnění TA Nelze převést na úlohu prediktivního modelování Optimal stopping theory Úloha sekretářky
5 SPECIFIKA PREDIKTIVNÍHO MODELOVÁNÍ U BURZOVNÍCH ČASOVÝCH ŘAD Správná definice targetu je základ (pokud se nejedá o akademickou studii bez vazby na praxi) Mezi proměnnými je časová vazba, nutná mrtvá oblast mezi trénovacími a validačními daty Data nejsou stacionární, nutné inkrementální učení nebo časté přeučování Koncept drift je problém, Ensamble modelů s různě dlouhou trénovací množinou Odměna za uhodnutí targetu a pokuta za chybu se významně liší i v rámci jedné skupiny targetů Snadná tvorba korelovaných multidimenzionálních dat (zvláště pokud použijeme Hankelovy matice), obtížná selekce proměnných Nutno několik úrovní testování
6 REDEFINICE TARGETU PRO ÚČELY OBCHODOVÁNÍ Statická varianta Vstup? Stoploss short Predikce deterministického scénáře dynamická varianta Generování proměnnýc h Stoploss long Maximální doba trvání obchodu
7 TYPY TARGETU A TVORBA PROMĚNNÝCH Zatím 4 typy targetu: Onecandle Somecandle Forwardcandle Weekdaycandle Target vždy ternární Stoploss je součástí targetu TA Indikátory (některé) -> proměnné Nelze stavět na vizualizaci grafů (stroje nevidí, zatím ) Je třeba normalizovat Rozsah -1;1 Dělení směrodatnou odchylkou Využít TA indikátorů s předdefinovaným rozsahem (RSI) Nevizuální vícedimenzionální reprezentace (pro metodu nejbližšího souseda) Spojení indikátorů z více časových pásem Tvorba proměnných z více instrumentů
8 TYPY TARGETŮ ONECANDLE SOMECANDLE
9 PŘEHLED POUŽITÝCH MODELŮ Testovala se: SVM Treebagger Linearní diskriminant Nearest-neighbor Distance Metric Learning Regrese (akcie), ne v Matlabu Osvědčilo se Treebagger Nearest-neighbor
10 NÁVRH SYSTÉMU V MATLABU Mechanismus Event-Listener Načítání dat Tvorba časových řad o různé periodicitě Tvorba časových řad o různé periodicitě Tvorba proměnných Tvorba proměnných Konsolidace data a tvorba dalších proměnných Timer Tvorba časových řad o různé periodicitě Tvorba proměnných Tvorba modelů, učení Zdroj dat (broker ) Exekuce, risk management
11 NÁVRH SYSTÉMU V MATLABU Použití Matlabu v celém procesu. Data se předávají mechanismem Event-Listener. JE: Chybí Výhody: Načítání dat Tvorba řad o různé periodicitě Tvorba proměnných (indikátorů) z dané časové řady Integrace řad, tvorba dodatečných proměnných založených od více instrumentů současně Učení modelu, evaluace modelu Evaluace modelů online, test strategií online Napojení na brokera Risk management Jednotlivé kroky úlohy jsou oddělené Nevýhody: Špatně se ladí chyby Kopírování velkých objemů dat mezi objekty Pomalé učení Velké nároky na paměť Velká pracnost
12 NĚKOLIK POZNÁMEK O MATLABU VE VZTAHU IMPLEMENTACI TRADING STRATEGIÍ Několik ukázek na webu Mathworks Není pro ultrarychlé obchodování, použitelný na několikasekundových timeframech a vyšších Otázka rychlosti a robustnosti prediktivních modelů Problematická spolupráce s některými proprietární programy (není to chyba Matlabu!) Výborná spolupráce s Javou API na Interactive Brokers (ActiveX, Java)
13 ZÁVĚR Za pozitiva považujeme Definice targetu Implementace prediktivních modelů Transformace dat a tvorba proměnných Nedpooručujeme Používat mechanismus Event-Listener pro tento typ workflov Dodělat je potřeba: Risk management, napojení na brokera, on-line testování
14 LITERATURA A ODKAZY Api Backtesting Kvantitativní obchodování Hutné čtivo (strojové učení, statistika) (Cosma Shalizi)) A samozřejmě
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
POZNÁMKY K PŘEDMĚTU PROJEKT
POZNÁMKY K PŘEDMĚTU PROJEKT Ing. Ivo Bukovský, Ph.D. http://www.fsid.cvut.cz/~bukovsk/ Obsah KOMENTÁŘE K MODELOVÁNÍ A ANALÝZE SYSTÉMŮ...2 ZADÁNÍ...5 1 Bio...5 1.1 Teoretická část (umělá data)...5 1.2 Praktická
Strojové učení Marta Vomlelová
Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura 1.T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer
Mobilní aplikace pro WinSignals Online
Mobilní aplikace pro WinSignals Online Jak WinSignals fungují? WinSignals nejsou robot (AOS), využívají zkušeností reálných obchodníků pracujících se živými účty. Na základě aktuálního sledování trhu a
MBI - technologická realizace modelu
MBI - technologická realizace modelu 22.1.2015 MBI, Management byznys informatiky Snímek 1 Agenda Technická realizace portálu MBI. Cíle a principy technického řešení. 1.Obsah portálu - objekty v hierarchiích,
Neuronové časové řady (ANN-TS)
Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci
Modelování a simulace Lukáš Otte
Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast
Pro tvorbu samostatně spustitelných aplikací je k dispozici Matlab library.
1.1 Matlab Matlab je interaktivní systém pro vědecké a technické výpočty založený na maticovém kalkulu. Umožňuje řešit velkou oblast numerických problémů, aniž byste museli programovat vlastní program.
Mobilní aplikace pro WinSignals Online
Mobilní aplikace pro WinSignals Online Jak WinSignals fungují? WinSignals nejsou robot (AOS), využívají zkušeností reálných obchodníků pracujících se živými účty. Na základě aktuálního sledování trhu a
Technická analýza a AOS Prezentace pro Českou asociaci treasury, Praha, 27.4.2010
Technická analýza a AOS Prezentace pro Českou asociaci treasury, Praha, 27.4.2010 Štěpán Pírko, Asset Management Colosseum, a.s. pirko@colosseum.cz Obsah 1. Co je a co není TA? 2. Charting 3. Indikátory
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Obsah. Předmluva 13. O autorovi 15. Poděkování 16. O odborných korektorech 17. Úvod 19
Předmluva 13 O autorovi 15 Poděkování 16 O odborných korektorech 17 Úvod 19 Co kniha popisuje 19 Co budete potřebovat 20 Komu je kniha určena 20 Styly 21 Zpětná vazba od čtenářů 22 Errata 22 KAPITOLA 1
Pokročilé neparametrické metody. Klára Kubošová
Pokročilé neparametrické metody Klára Kubošová Pokročilé neparametrické metody Výuka 13 přednášek doplněných o praktické cvičení v SW Úvod do neparametrických metod + princip rozhodovacích stromů Klasifikační
HIGH-FREQUENCY TRADING
HIGH-FREQUENCY TRADING Představení Vysokofrekvenční obchodování je alternativním způsobem správy kapitálu na globálních finančních trzích. Je tu pro investory, kteří hledají možnosti diverzifikace pro
Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma
Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky
Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence
APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY
PROGRAMOVÁNÍ. Cílem předmětu Programování je seznámit posluchače se způsoby, jak algoritmizovat základní programátorské techniky.
Cílem předmětu Programování je seznámit posluchače se způsoby, jak algoritmizovat základní programátorské techniky. V průběhu budou vysvětlena následující témata: 1. Dynamicky alokovaná paměť 2. Jednoduché
Použití technik UI v algoritmickém obchodování II
Použití technik UI v algoritmickém obchodování II Matematicko-fyzikální fakulta Univerzity Karlovy v Praze 7. dubna 2014 Anotace Anotace Anotace Anotace Obchodování připomenutí problému Anotace Anotace
Využijte své obchodování na maximum! Marek Vašíček
Využijte své obchodování na maximum! Marek Vašíček Disclaimer Dovolujeme si Vás upozornit na to, že rozdílové smlouvy (Contracts for Differences, dále jen CFDs ) jsou finančními produkty spojenými se silným
PLATFORMA SEASONALGO. bezkonkurenční nástroj pro obchodování komodit a futures spreadů na bázi sezónnosti
PLATFORMA SEASONALGO bezkonkurenční nástroj pro obchodování komodit a futures spreadů na bázi sezónnosti Romana Křížová CEO, TradeandFinance.eu, s.r.o. 1 SeasonAlgo www.seasonalgo.com Unikátní nástroj
v praxi Rizika a přínosy zavádění BI jako nástroje pro řízení podnikání
Podpora rozhodování v praxi Rizika a přínosy zavádění BI jako nástroje pro řízení podnikání HanušRais Business DevelopmentManager SAS Institute ČR s.r.o. Agenda Úvod - Profil SAS Institute Pojem Business
Cvičení 11. Klasifikace. Jan Přikryl. 14. března 2018 ČVUT FD
Cvičení 11 Klasifikace Jan Přikryl ČVUT FD 14. března 2018 Příklad 1 Data z akciového trhu Nejprve prozkoumáme data z akciových trhů, konkrétně denní vývoj indexu S&P v letech 2001 2005. Načteme a zobrazíme
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
CPM/BI a jeho návaznost na podnikové informační systémy. Martin Závodný
CPM/BI a jeho návaznost na podnikové informační systémy Martin Závodný Agenda Význam CPM/BI Aplikace CPM/BI Projekty CPM/BI Kritické body CPM/BI projektů Trendy v oblasti CPM/BI Diskuse Manažerské rozhodování
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 7 Jak hodnotit vztah spojitých proměnných
Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost
Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen společnost) stanoví k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen osvědčení) následující
Měření závislosti statistických dat
5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě
TRADESTATION A ÚSPĚŠNÝ ALGORITMICKÝ TRADING. Ing. Petr Tmej www.aostrading.cz petr.tmej@aostrading.cz
TRADESTATION A ÚSPĚŠNÝ ALGORITMICKÝ TRADING Ing. Petr Tmej www.aostrading.cz petr.tmej@aostrading.cz Poučení o riziku Důrazně upozorňujeme, že veškeré informace a poznatky uveřejněné na AOStrading.cz jsou
Příprava dat v softwaru Statistica
Příprava dat v softwaru Statistica Software Statistica obsahuje pokročilé nástroje pro přípravu dat a tvorbu nových proměnných. Tyto funkcionality přinášejí značnou úsporu času při přípravě datového souboru,
Energetický ústav Odbor termomechaniky a techniky prostředí. Možnosti implementace vlastního kódu pro použití v simulačním software TRNSYS
Možnosti implementace vlastního kódu pro použití v simulačním software TRNSYS Lubomír KLIMEŠ Energetický ústav Odbor termomechaniky a techniky prostředí Fakulta strojního inženýrství Vysoké učení technické
Témata diplomových prací 2017/2018
Katedra marketingu, obchodu a služeb Témata diplomových prací 2017/2018 Předpokládaná kapacita diplomových prací zadávaných KMO v rámci navazujícího magisterského studijního oboru Podniková ekonomika a
AKCIÍ COLOSSEUM, A.S. RYZE ČESKÁ SPOLEČNOST JIŽ 17 LET NA TRHU BROKER ROKU 2014, 2013, 2012, 2011 BEST FUTURES BROKER 2015
COLOSSEUM, A.S. RYZE ČESKÁ SPOLEČNOST JIŽ 17 LET NA TRHU BROKER ROKU 2014, 2013, 2012, 2011 BEST FUTURES BROKER 2015 BEST ASSET MANAGEMENT COMPANY 2015 ŠIROKÉ PORTFOLIO PRODUKTŮ AKCIE, ETF, CERTIFIKÁTY
Přednáška 13 Redukce dimenzionality
Vytěžování Dat Přednáška 13 Redukce dimenzionality Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL) Redukce dimenzionality 1 /
PowerOPTI Řízení účinnosti tepelného cyklu
PowerOPTI Řízení účinnosti tepelného cyklu VIZE Zvýšit konkurenceschopnost provozovatelů elektráren a tepláren. Základní funkce: Spolehlivé hodnocení a řízení účinnosti tepelného cyklu, včasná diagnostika
4EK212 Kvantitativní management. 1. Úvod do kvantitativního managementu a LP
4EK212 Kvantitativní management 1. Úvod do kvantitativního managementu a LP Mgr. Jana SEKNIČKOVÁ, Ph.D. Nová budova, místnost 433 Konzultační hodiny InSIS E-mail: jana.seknickova@vse.cz Web: jana.seknicka.eu/vyuka
Úvod do modelování a simulace. Ing. Michal Dorda, Ph.D.
Úvod do modelování a simulace systémů Ing. Michal Dorda, Ph.D. 1 Základní pojmy Systém systémem rozumíme množinu prvků (příznaků) a vazeb (relací) mezi nimi, která jako celek má určité vlastnosti. Množinu
Pokročilé metody geostatistiky v R-projektu
ČVUT V PRAZE, Fakulta stavební, Geoinformatika Pokročilé metody geostatistiky v R-projektu Autoři: Vedoucí projektu: RNDr. Dr. Nosková Jana Studentská grantová soutěž ČVUT 2011 Praha, 2011 Geostatistika
KOMODITNÍ SPREADY. diskréční obchodování s komoditami jinak a profitabilně. Romana Křížová CEO, TradeandFinance.eu, s.r.o.
KOMODITNÍ SPREADY diskréční obchodování s komoditami jinak a profitabilně Romana Křížová CEO, TradeandFinance.eu, s.r.o. Co je to spread? Často používaný termín Spread = cenové rozpětí = rozdíl mezi dvěma
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 1. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská
3.5.2 Členění a klasifikace kontrolních procesů 3.5.3 Kritéria hodnocení používaná v kontrolní činnosti 3.5.4 Specifika strategické kontroly 3.
1. ZÁKLADY MANAGEMENTU V MAJETKOVÉ STRUKTUŘE 1.1 Vymezení pojmu a předmětu správy majetku a správy společností 1.1.1 Pojem správy majetku a správy společností 1.1.2 Předmět správy majetku a správy společností
Obchodujeme systém. RSIcross. Martin Kysela
Obchodujeme systém RSIcross Martin Kysela kysela@linuxzone.cz UPOZORNĚNÍ Tento dokument představuje základní principy obchodování systému RSIcross pro účely intradenních spekulací na komoditních burzách.
Seminář na téma Agentura pro odstraňování sociálního vyloučení v romských lokalitách. Praha 25.- 26. 7. 2007 Lichtenštejnský palác
při Úřadu vlády Agentura pro odstraňování sociálního vyloučení v romských lokalitách Praha 25.- 26. 7. 2007 Lichtenštejnský palác Důvody pro vznik Agentury Absence komplexních a dlouhodobých nástrojů Prohlubující
Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely )
Úloha M608 Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Zadání : Při kvantitativní analýze lidského krevního séra ovlivňují hodnotu obsahu vysokohustotního
Návrhy témat kvalifikačních prací (KPG)
Návrhy témat kvalifikačních prací (KPG) Témata kvalifikačních prací si studenti volí po dohodě s konkrétními vyučujícími dle vlastního zájmu či profesního zaměření. Následně uvedená témata jsou pouze návrhem
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group
Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme
Výzva k předkládání žádostí o podporu
Výzva k předkládání žádostí o podporu Ministerstvo práce a sociálních věcí, odbor realizace projektů ESF sociální začleňování vyhlašuje výzvu k předkládání žádostí o podporu v rámci Operačního programu
Diplomová práce Prostředí pro programování pohybu manipulátorů
Diplomová práce Prostředí pro programování pohybu manipulátorů Štěpán Ulman 1 Úvod Motivace: Potřeba plánovače prostorové trajektorie pro výukové účely - TeachRobot Vstup: Zadávání geometrických a kinematických
Korelace. Komentované řešení pomocí MS Excel
Korelace Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A2:B84 (viz. obrázek) Prvotní představu o tvaru a síle závislosti docházky a počtu bodů nám poskytne
Statistická analýza dat
Statistická analýza dat Jméno: Podpis: Cvičení Zkouška (písemná + ústní) 25 Celkem 50 Známka Pokyny k vypracování: doba řešení je 120min, jasně zodpovězte pokud možno všechny otázky ze zadání, pracujte
VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI
VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové
4EK311 Operační výzkum. 1. Úvod do operačního výzkumu
4EK311 Operační výzkum 1. Úvod do operačního výzkumu Mgr. Jana SEKNIČKOVÁ, Ph.D. Nová budova, místnost 433 Konzultační hodiny InSIS E-mail: jana.seknickova@vse.cz Web: jana.seknicka.eu/vyuka Garant kurzu:
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do
Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách
Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky
ATYF. Vysokofrekvenční obchodování High-frequency trading
Vysokofrekvenční obchodování High-frequency trading Představení Vysokofrekvenční obchodování je alternativním způsobem správy kapitálu na globálních finančních trzích. Je tu pro investory, kteří hledají
ALGORITMICKÉ OBCHODOVÁNÍ NA BURZE S VYU- ŽITÍM UMĚLÝCH NEURONOVÝCH SÍTÍ ALGORITHMIC TRADING USING ARTIFICIAL NEURAL NETWORKS
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER GRAPHICS AND
Cílem kapitoly je seznámit studenta se seznamem a stromem. Jejich konstrukci, užití a základní vlastnosti.
Seznamy a stromy Cílem kapitoly je seznámit studenta se seznamem a stromem. Jejich konstrukci, užití a základní vlastnosti. Klíčové pojmy: Seznam, spojový seznam, lineární seznam, strom, list, uzel. Úvod
TM1 vs Planning & Reporting
R TM1 vs Planning & Reporting AUDITOVATELNOST? ZABEZPEČENÍ? SDÍLENÍ? KONSOLIDACE? PROPOJITELNOST???? TM1?? COGNOS PLANNING IBM COGNOS 8 PLANNING Cognos Planning Podpora plánovacího cyklu Jednoduchá tvorba
MBI portál pro podporu řízení podnikové informatiky. mbi.vse.cz
MBI, Management Byznys Informatiky MBI portál pro podporu řízení podnikové informatiky mbi.vse.cz J. Pour Katedra IT VŠE pour@vse.cz MBI, Management byznys informatiky Snímek 1 Agenda 1. Vznik a rozvoj
Statistické metody v digitálním zpracování obrazu. Jindřich Soukup 3. února 2012
Statistické metody v digitálním zpracování obrazu Jindřich Soukup 3. února 2012 Osnova Úvod (Neparametrické) odhady hustoty pravděpodobnosti Bootstrap Použití logistické regresi při klasifikaci Odhady
ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ
ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz 5. LETNÍ ŠKOLA MATEMATICKÉ BIOLOGIE ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM
Základy ekonometrie. XI. Vektorové autoregresní modely. Základy ekonometrie (ZAEK) XI. VAR modely Podzim / 28
Základy ekonometrie XI. Vektorové autoregresní modely Základy ekonometrie (ZAEK) XI. VAR modely Podzim 2015 1 / 28 Obsah tématu 1 Prognózování s VAR modely 2 Vektorové modely korekce chyb (VECM) 3 Impulzní
Simulace pohybu chodců pomocí celulárních modelů
Simulace pohybu chodců pomocí celulárních modelů Marek Bukáček výzkumná skupina GAMS při KM KIPL FJFI ČVUT v Praze 8. červen 2011 Obsah Úvod Celulární modely úprava Floor field modelu Proč modelovat Akademický
Kulturní a institucionální změna jako nástroj prosazování genderové rovnosti v organizacích
Kulturní a institucionální změna jako nástroj prosazování genderové rovnosti v organizacích Marcela Linková Sociologický ústav AV ČR 1 Systémový přístup Kulturní a institucionální změna / Strukturální
Získávání znalostí z dat
Získávání znalostí z dat Informační a komunikační technologie ve zdravotnictví Získávání znalostí z dat Definice: proces netriviálního získávání implicitní, dříve neznámé a potencionálně užitečné informace
Korelační a regresní analýza
Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná
STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7
Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru
Správa paměti. doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 /
Správa paměti doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 / 597 324 213 http://www.cs.vsb.cz/benes Miroslav.Benes@vsb.cz Obsah přednášky Motivace Úrovně správy paměti. Manuální
Softwarová podpora v procesním řízení
Softwarová podpora v procesním řízení Zkušenosti z praxe využití software ATTIS Ostrava, 7. října 2010 www.attis.cz ATTN Consulting s.r.o. 1 Obsah Koncepce řízení výkonnosti Koncepce řízení výkonnosti
Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu odhaduje, jak se svět může vyvíjet.
Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Dnešní program Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu
2 Životní cyklus programového díla
2 Životní cyklus programového díla Typické etapy: 1. Specifikace požadavků - specifikace problému - analýza požadavků 2. Vývoj programu - návrh - kódování (programování) 3. Verifikace a validace 4. Provoz
Numerické metody optimalizace - úvod
Numerické metody optimalizace - úvod Petr Tichý 16. února 2015 1 Organizace přednášek a cvičení 13 přednášek a cvičení. Zápočet: úloha programování a testování úloh v Matlabu. Další informace na blogu
Zkušenosti s použitím metod Counterfactual Impact Evaluation při evaluaci ESF v České republice. Jan Brůha IREAS
Zkušenosti s použitím metod Counterfactual Impact Evaluation při evaluaci ESF v České republice Jan Brůha IREAS Pilotní projekt použití CIE pro hodnocení ESF OPLZZ V současné době byly použity tři metody
Programování LEGO MINDSTORMS s použitím nástroje MATLAB a Simulink
26.1.2018 Praha Programování LEGO MINDSTORMS s použitím nástroje MATLAB a Simulink Jaroslav Jirkovský jirkovsky@humusoft.cz www.humusoft.cz info@humusoft.cz www.mathworks.com Co je MATLAB a Simulink 2
PŘEDMLUVA 11 FORMÁLNÍ UJEDNÁNÍ 13
OBSAH PŘEDMLUVA 11 FORMÁLNÍ UJEDNÁNÍ 13 1 ÚVOD, Z. Raida 15 1.1 Mikrovlnné kmitočtové pásmo 15 1.2 Diferenciální formulace Maxwellových rovnic 16 1.3 Integrální formulace Maxwellových rovnic 18 1.4 Obecný
Intradenní obchodování - úvod
Intradenní obchodování - úvod Datum: 8.3.2018 Lektor: Lukáš Koťátko Kontakt: l.kotatko@lynxbroker.cz Webináře LYNX slouží pouze k informačním a vzdělávacím účelům. Informace uvedené v prezentaci, které
Řízení a optimalizace Stavové modely a model-prediktivní řízení
Řízení a optimalizace Stavové modely a model-prediktivní řízení Matematické metody pro ITS (11MAMY) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 2. přednáška 11MAMY středa 22.
Struktura e-learningových výukových programù a možnosti jejího využití
Struktura e-learningových výukových programù a možnosti jejího využití Jana Šarmanová Klíčová slova: e-learning, programovaná výuka, režimy učení Abstrakt: Autorská tvorba výukových studijních opor je
U Úvod do modelování a simulace systémů
U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení
5. Umělé neuronové sítě. Neuronové sítě
Neuronové sítě Přesný algoritmus práce přírodních neuronových systémů není doposud znám. Přesto experimentální výsledky na modelech těchto systémů dávají dnes velmi slibné výsledky. Tyto systémy, včetně
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 11 METODY VERIFIKACE SYSTÉMŮ NA ČIPU Hana Kubátov vá doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta 1 informačních
Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou
Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................
01 Teoretické disciplíny systémové vědy
01 Teoretické disciplíny systémové vědy (systémový přístup, obecná teorie systému, systémová statika a dynamika, úlohy na statických a dynamických systémech, kybernetika) Systémová věda je vědní disciplínou
Lineární regrese. Komentované řešení pomocí MS Excel
Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních
Algoritmy a struktury neuropočítačů ASN - P10. Aplikace UNS v biomedicíně
Aplikace UNS v biomedicíně aplikace v medicíně postup při zpracování úloh Aplikace UNS v medicíně Důvod: nalezení exaktnějších, levnějších a snadnějších metod určování diagnóz pro lékaře nalezení šetrnějších
Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace
Optimalizace systémů tlakových kanalizací pomocí matematického modelování jejich provozních stavů Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace Ing.
1. Data mining. Strojové učení. Základní úlohy.
1... Základní úlohy. Učení s učitelem a bez učitele. Petr Pošík Katedra kybernetiky ČVUT FEL P. Pošík c 2010 Aplikace umělé inteligence 1 / 36 Obsah P. Pošík c 2010 Aplikace umělé inteligence 2 / 36 Co
Řízení a optimalizace Stavové modely a model-prediktivní řízení
Řízení a optimalizace Stavové modely a model-prediktivní řízení Modelování systémů a procesů (11MSP) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 2. přednáška 11MAMY středa 23.
REGRESNÍ ANALÝZA V PROSTŘEDÍ MATLAB
62 REGRESNÍ ANALÝZA V PROSTŘEDÍ MATLAB BEZOUŠKA VLADISLAV Abstrakt: Text se zabývá jednoduchým řešením metody nejmenších čtverců v prostředí Matlab pro obecné víceparametrové aproximační funkce. Celý postup
Moderní nástroje pro vývoj elektronických řídicích jednotek
Moderní nástroje pro vývoj elektronických řídicích jednotek Jiří Sehnal Humusoft spol. s r.o. sehnal@humusoft.com EVV 2008 Automobilová elektronika Brno, 17. - 18. 6. 2008 Jiří Sehnal, Humusoft spol. s
Instance based learning
Učení založené na instancích Instance based learning Charakteristika IBL (nejbližších sousedů) Tyto metody nepředpokládají určitý model nejsou strukturované a typicky nejsou příliš užitečné pro porozumění
SYSTÉMY ŘÍZENÍ PODNIKU OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU MPH_SYRP V magisterském studiu
SYSTÉMY ŘÍZENÍ PODNIKU OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU MPH_SYRP V magisterském studiu 20010-2011 1. Historické příčiny vzniku systémového přístupu k zobrazování a analýze reálných objektů. Podstata
Prediktivní regulace pro energetiku
Prediktivní regulace pro energetiku Energetická a ekonomická efektivita výroby a distribuce tepla v CZT: pomůže pokročilá regulace? Dny teplárenství a energetiky 2017 Ing. Jiří Cigler, Ph.D., Feramat Cybernetics
Cvičná bakalářská zkouška, 1. varianta
jméno: studijní obor: PřF BIMAT počet listů(včetně tohoto): 1 2 3 4 5 celkem Cvičná bakalářská zkouška, 1. varianta 1. Matematická analýza Najdětelokálníextrémyfunkce f(x,y)=e 4(x y) x2 y 2. 2. Lineární
Ing. Michael Rost, Ph.D.
Statistika úvodní přednáška Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Cíle základního kurzu: seznámit posluchače se základy počtu pravděpodobnosti, seznámit posluchače s aspekty
MARKET PROFIT PACK. Ke správnému fungování této metody zobrazení pohybu trhu je několik předpokladů:
MARKET PROFIT PACK Market Profit Pack je výkonný, snadno použitelný nástroj vycházející z předpokladu, že ziskový trader by měl mít maximálně přesný pohled na trh se všemi důležitými daty. Většina obchodníků
2011 (datový soubor life expectancy CR.txt). Budeme predikovat vývoj očekávané doby dožití pomocí
Příklady užití časových řad k predikci rizikových jevů 1 Očekávaná doba dožití v ČR Máme k dispozici časovou řadu udávající očekávanou dobu dožití v České republice od roku 1960 do roku 2011 (datový soubor
Ostatní finanční zprostředkovatelé a subjekty působící na finančním trhu. Ing. Miroslav Sponer, Ph.D. - Základy financí 1
Ostatní finanční zprostředkovatelé a subjekty působící na finančním trhu Ing. Miroslav Sponer, Ph.D. - Základy financí 1 Subjekty kolektivního investování Kolektivní investování podnikání, jehož předmětem
Kybernetika a umělá inteligence, cvičení 10/11
Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu