VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta elektrotechniky a komunikačních technologií BAKALÁŘSKÁ PRÁCE

Rozměr: px
Začít zobrazení ze stránky:

Download "VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta elektrotechniky a komunikačních technologií BAKALÁŘSKÁ PRÁCE"

Transkript

1 VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta elektrotechniky a komunikačních technologií BAKALÁŘSKÁ PRÁCE Brno, 2017 Petr Foldyna

2 VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION ÚSTAV TELEKOMUNIKACÍ DEPARTMENT OF TELECOMMUNICATIONS OPTICKÉ PŘEPÍNÁNÍ A SDRUŽOVÁNÍ PROVOZŮ OPTICAL SWITCHING AND TRAFFIC GROOMING BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS AUTOR PRÁCE AUTHOR Petr Foldyna VEDOUCÍ PRÁCE SUPERVISOR Ing. Tomáš Horváth BRNO 2017

3 Bakalářská práce bakalářský studijní obor Teleinformatika Ústav telekomunikací Student: Petr Foldyna ID: Ročník: 3 Akademický rok: 2016/17 NÁZEV TÉMATU: Optické přepínání a sdružování provozů POKYNY PRO VYPRACOVÁNÍ: V rámci bakalářské práce se student seznámí se základními principy optického přepínání v návaznosti na traffic grooming a s dostupnými aplikacemi pro matematický popis optických sítí (a to zejména v celočíselném programování ILP). V praktické části bude proveden soubor simulací pro sítě malého a velkého rozsahu (s traffic groomingem) ve vybrané aplikaci (např. GLPK, CPLEX aj.). Student bude diskutovat výsledky a celkovou náročnost výpočtu daných návrhů. DOPORUČENÁ LITERATURA: [1] RUDRA DUTTA, Ahmed E. Kamal. Traffic grooming for optical networks: foundations, techniques, and frontiers. New York: Springer, ISBN [2] EL-BAWAB, T. S. Optical switching. London: Springer. ISBN Termín zadání: Termín odevzdání: Vedoucí práce: Konzultant: Ing. Tomáš Horváth doc. Ing. Jiří Mišurec, CSc. předseda oborové rady UPOZORNĚNÍ: Autor bakalářské práce nesmí při vytváření bakalářské práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb. Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / / Brno

4 ABSTRAKT Bakalářská práce se zabývá problematikou optimalizace využití vlnových délek v optických sítích. V první části jsou teoreticky popsány optické sítě a jejich problematika, přepínání v optických sítích a sdružování provozů. V druhé části jsou popsány matematické modely daných problematik a jsou realizovány simulace za použití GLPK. Z výsledků simulace jsou vyvedeny závěry a je vyzdvihnut reálný přínos použitých metod. KLÍČOVÁ SLOVA lineární programování, optické sítě, optimalizace provozu, programování GLPK, přepínání optických sítí, sdružování provozů, směrování optických sítí, vlnový multiplex ABSTRACT This bachelor thesis is about problematics of optimalization wavelenght usage in optical networks. First part theoreticaly explains optical networks and problems when using them, switching in optical networks and traffic grooming. In second part mathematical equations of given problems are realized and also simulations using GLPK are realized. From results of simulation resolutions are given and usage of methods in real networks is explained. KEYWORDS GLPK programming, linear programming, network optimalization, optical switching, optical networks, optical network routing, traffic grooming, wavelength multiplex FOLDYNA, Petr. Optické přepínání a sdružování provozů. Brno, Rok, 52 s. Bakalářská práce. Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav telekomunikací. Vedoucí práce: Ing. Tomáš Horváth Vysázeno pomocí balíčku thesis verze 2.63;

5 PROHLÁŠENÍ Prohlašuji, že svou bakalářskou práci na téma Optické přepínání a sdružování provozů jsem vypracoval samostatně pod vedením vedoucího bakalářské práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce. Jako autor uvedené bakalářské práce dále prohlašuji, že v souvislosti s vytvořením této bakalářské práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a/nebo majetkových a jsem si plně vědom následků porušení ustanovení S 11 a následujících autorského zákona č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon), ve znění pozdějších předpisů, včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č. 40/2009 Sb. Brno podpis autora

6 PODĚKOVÁNÍ Rád bych poděkoval vedoucímu diplomové práce panu Ing. Tomáši Horváthovi za odborné vedení, konzultace, velkou trpělivost a podnětné návrhy k práci. Dále bych rád poděkoval svým rodičům, za podporu ve studiu a všem svým známým, kteří mi byli oporou. Brno podpis autora

7 Faculty of Electrical Engineering and Communication Brno University of Technology Purkynova 118, CZ Brno Czech Republic PODĚKOVÁNÍ Výzkum popsaný v této bakalářské práci byl realizován v laboratořích podpořených z projektu SIX; registrační číslo CZ.1.05/2.1.00/ , operační program Výzkum a vývoj pro inovace. Brno podpis autora

8 OBSAH 1 Úvod 12 2 Optické sítě obecně Optická vlákna Problematika optických sítí Optické přepínání Přepojování okruhů Přepojování paketů Přepojování dávek Vlnový multiplex WDM Add-drop multiplexer ADM Reconfigurable optical add-drop multiplexer ROADM Optické křížové spínače OXC Směrování v optických sítích RWA Sdružování provozů Statické sdružování Dynamické sdružování Praktická část Lineární programování ILP GLPK Zprovoznění GLPK Základní příkazy MatLab: MatPlan WDM Maximální tok sítí a minimální cena Sestavení ILP modelu maximálního toku Řešení modelu maximálního toku Sestavení ILP modelu minimální ceny Řešení modelu minimální ceny Sdružování provozů Sestavení ILP modelu sdružování provozů Řešení ILP modelu sdružování provozů

9 9 Závěr 36 Literatura 37 Seznam symbolů, veličin a zkratek 39 Seznam příloh 40 A Programy v GLPK 41 A.1 Kód pro výpočet maximálního toku sítí A.2 Kód pro výpočet minimální ceny B Výstupy programů 45 B.1 Výstup programu maximálního toku sítí B.2 Výstup programu minimální ceny C Obsah CD 51

10 SEZNAM OBRÁZKŮ 2.1 Průřez optického kabelu Znázornění vytvořené cesty pomocí přepojování okruhů Znázornění cesty paketů pomocí přepojování paketů Princip fungování multiplexeru a demultiplexeru Obrázek vlevo funkce ADM a v pravo funkce ROADM Ukázka funkce OXC Ukázka směrování Nesdružená síť Sdružená síť Ukázka prostředí MatPlan WDM Topologie pro maximalizaci toku Vstupní data pro maximální tok a minimální cenu Tabulka toků v síti Obecná topologie

11 SEZNAM TABULEK 2.1 Vlnové délky pro pásma Přiřazení nesdružené Přiřazení sdružené Vstupní data sdružování Výsledky sdružování utilizací Výsledky sdružování omezením vlnových délek

12 SEZNAM VÝPISŮ A.1 Výpočet maximálního toku se zadáním maticí.eps A.2 Výpočet minimální ceny zadáno ve formátu DIMACS.eps B.1 Výstup programu maximálního toku sítí B.2 Výstup programu minimální ceny

13 1 ÚVOD Zvyšující se poptávka po rychlejších sítích vede k využití optických sítí, které dokážou uspokojit tuto potřebu. Ovšem dnešní podoba využívání sítí je jak nárazová čili využívání malých objemů dat ve velkém množství tak objemová, kdy rychle potřebujeme přenést velká data. Zde ovšem narážíme na problém. Optické sítě nejsou dobře uzpůsobeny pro přenášení velkého množství malých dat kvůli omezení, které způsobuje omezený počet vlnových délek světla, které přenáší data. V rámci bakalářské práce bude řešena problematika ušetření vlnových délek, snížení prostředků potřebných k realizaci sítě pomocí matematických modelů, lineárního programování a technologií optických sítí jako WDM, RWA, sdružování provozů (traffic groomingu). V simulaci jsou řešeny problémy maximálního toku sítí s obecným ILP modelem, minimální cena sítě, vázaná na maximální tok. Jako poslední je řešeno sdružování provozů pro testovanou síť s porovnáním výsledků pro měnící se sdružovací faktor. Všechny problémy jsou řešeny v rámci matematického modelu za použití ILP a teorie grafů. Modely jsou realizovány v balíčku GLPK, který je uzpůsoben na řešení této oblasti matematiky. 12

14 2 OPTICKÉ SÍTĚ OBECNĚ Pokud je přenos veden výhradně pomocí optických vláken, je poté uvažováno o optických přenosových sítích. V dnešní době rostoucího objemu dat je tato technologie nepostradatelná. Metalické sítě nedokážou pokrýt rychlosti, které dosahují optické sítě a navíc s přidanou rychlostí metalických sítí neadekvátně roste cena takového řešení. Optické sítě byly zpočátku používány na páteřní sítě, ale dnes, když uživatelé mají stále větší nároky na rychlosti přenosu je běžnější, že se dostávají i přímo k uživatelům. Nejen k firmám, ale i domácnostem. Optický přenos spočívá v přenosu světla z vysílače k přijímači ve světlovodu (vidu), který představuje optické vlákno. Přenos je založen na fyzikálním jevu zvaném totální odraz. Výhody optického přenosu jsou nízký šum, nemožnost rušení elektromagnetickým polem, dobrý přenos na velké vzdálenosti a vysoká kapacita přenosu. Nevýhody jsou cena součástek, obtížné obnovení signálu a přenášení dávkových/nárazových signálů, vzhledem k povaze optických sítí (např. omezení vlnových délek). 2.1 Optická vlákna Většinou vyráběné jako skleněná nebo plastová vlákna tvořící svazek. Každé vlákno v optickém kabelu nesmí přenášet více stejných vlnových délek, jinak by došlo k vzájemnému rušení a zničení signálu. Dnešní rychlosti optických kabelů se pohybují v rozmezí Gb/s, avšak mohou dosáhnout rychlostí přes 100 Gb/s, ovšem závisí i na použité modulaci, poté rychlosti mohou být vyšší. Jako zdroje signálů se používají ve většině případů lasery. Nevýhody optických kabelů je jejich křehkost. Při sebemenším poškození může docházet k disperzi vedeného světla nebo nemožnosti odrazu. Kabel se skládá z jádra, pláště a ochrany. Podmínkou pro správnou funkčnost je, aby jádro mělo vyšší index lomu než obal. Tato podmínka musí být splněna, aby došlo k totálnímu odrazu a světlo se mohlo dále šířit vlnovodem. Na indexu lomu závisí rychlost šíření světla ve vlákně, tedy i výsledná rychlost světla přenášejícího signál. Indexy lomu se běžně pohybují pro jádro okolo 1,48 a pro plášť 1,46. Průřez optickým vláknem lze vidět na obrázku 2.1. K dispozici jsou 2 základní typy vláken pro přenos signálu a to jednovidová a mnohovidová. Ty se navzájem liší rychlostí, počtem přenášených signálů a vzdáleností na kterou jsou schopné signál přenést. Jednovidová optická vlákna jsou ideální pro přenos na dlouhé vzdálenosti např. mezi městy, státy. Mají velice tenký průměr 5 10 µm, protože se jím přenáší pouze jeden vid. Díky tenkému jádru se signál šíří rychleji a nejsou tolik postihnuty 13

15 Sekundární ochrana Jádro Plášť Primární ochrana Obr. 2.1: Průřez optického kabelu disperzí, jako mnohovidová vlákna. Disperze je rozklad světla na jeho složky, což způsobuje znehodnocení signálu. Rychlosti jsou v řádech Tb/s na vzdálenosti desítky km. V současnosti například až 26 Tb/s do 50 km. Mnohovidová optická vlákna se používají spíše na kratší vzdálenosti do 2 3 km a jejich rychlosti se pohybují od 10 Mb/s do 10 Gb/s. Z názvu je jasné, že přenášejí více vidů současně, a tak mají širší jádro většinou v rozmezí µm. Rychlost přenosu je závislá na délce vedení, jelikož na větších vzdálenostech dochází k vidové disperzi a znehodnocení signálu. Díky těmto vlastnostem jsou vhodné pro páteřní rozvody v domech a pro tzv. poslední míli. Jsou cenově dostupnější než jednovidová optická vlákna. U optických vláken existují pásma. Tyto pásma označují vlnové délky s nižším útlumem a jsou proto vhodné pro kvalitnější přenos signálu. Ukázku těchto pásem pro jednovidové vlákno nalezneme v tabulce 2.1. Tab. 2.1: Vlnové délky pro pásma Označení Zkratka Rozsah vlnové délky [nm] Originální O Rozšířená E Krátká vlnová délka S Konvenční C Dlouhá vlnová délka L Ultra U < Problematika optických sítí Vzhledem k dnešní povaze datového provozu, přenášení velkého množství malých dat, se setkáváme s omezením, které nám kladou optické sítě. Z technologie optic- 14

16 kých sítích vyplývá omezený počet vlnových délek, které je možno použít na samotný přenos dat. Navíc tyto vlnové délky musí být v celé délce (vysílač přijímač) stejné pro daný přenos (toto nazýváme omezení vlnovou délkou, anglicky wavelength constraint). Nevýhody omezení vlnové délky můžeme řešit pomocí převodníků vlnových délek, které umožňují přijmout jednu vlnovou délku a dále pokračovat v jiné. Přenos velkého množství malých dat z různých zdrojů způsobuje využití velkého množství vlnových délek a nevyužití kapacity optických vláken. Řešením by bylo zavést nové optické kabely, ovšem toto řešení je nákladné a neefektivní. Místo toho se snažíme využít co nejvíce již položených kabelů. Z problematiky metalických kabelů známe různé druhy multiplexování (TDM, PWM, ADM), tyto principy se dají využít i u optických sítí a jsou popsány v kapitole 4. Dalším problémem je vzdálenost mezi uzly. Když se blížíme k mezním hodnotám vzdálenosti je třeba, aby byl signál obnoven, zesílen a poslán dále. U optických sítí se používají opto-elektronické-optické (OEO) obvody, nebo optické zesilovače. OEO součástky přinášejí nevýhody zpoždění, fungují jako úzké hrdlo, a také nepříznivě ovlivňují cenu výsledného řešení. V optických sítích jako takových, čili bez použití elektronických součástek je nemožné použití jakýchkoliv zásobníků (bufferů) a regeneračních jednotek. Proto je použití tohoto převodu ve většině případů nezbytné. Vyjma koncových jednotek, tam je toto užití zcela nezbytné. 15

17 3 OPTICKÉ PŘEPÍNÁNÍ Přepínání je proces, při kterém se data z jednoho portu přeposílají na port jiný, který vede k cíli. Celá síť může obsahovat několik přepínačů a uzlů. Základní výhody přepínání je bezkoliznost, můžou tedy dosáhnout vyšších přenosových rychlostí. Přepínače se chovají více deterministicky, mají tedy dobrou podporu priorit provozu a řízení toku dat. Mezi další výhody se řadí vyšší bezpečnost (nižší možnost odposlechu díky přenášení rámců k uzlu, které jsou pro něj určeny). Přepínání se nejčastěji děje na druhé vrstvě ISO/OSI modelu, tedy datové vrstvě. Existují ale i přepínače které operují na třetí síťové vrstvě a vyšší. Přepínače operující na třetí sítové vrstvě se využívají při přepojováni paketů. Většina optických sítí je v dnešní době stále řízena elektronickými součástkami. To vede k opto-elektrickým převodníky, které zpomalují provoz. Cílem přepínání je předat informaci, mířící k cíli (uzlu), nejlepší možnou cestou. Nejlepší cesta je dána kombinací faktorů jako délka trasy, spolehlivost daných cest a cenou. Cena interpretuje kolik je třeba využít prostředků pro přenos. Běžný způsob jak přepínat signál v optických sítích je detekováním příchozího optického signálu (světla), převedením jej na signál elektrický, následné zpracování a převedení zpět na optický signál, který pokračuje v cestě. O přepínání také v [7]. Největší úsilí je nyní vyvíjeno na to, aby se odstranili veškeré elektronické prvky ze soustavy a zůstaly pouze prvky čistě optické. To má za následek odstranění jakýchkoliv elektrických mezi prvků, čili zvýšení propustnosti odstraněním úzkých hrdel, snížení ceny celkového řešení a zmenšení nutnosti komplexnosti celého řešení. Čistě optické sítě jsou však stále ve vývoji, jelikož je jejich provedení složité. Nejčastěji používaná a nejslibnější metoda je použití soustavy pohyblivých mikro zrcadel zvaných MEMS (micro-electro-mechanical systems). MEMS obsahuje zrcadla o přibližné velikosti lidského vlasu (25 µm), ty jsou umístěny na pohyblivých kloubech a mohou být natočeny do tří směrů. Světlo přivedené na tuto soustavu zrcadel je nasměrováno odrazem na další soustavu zrcadel, která odráží světlo na požadovaný výstup. Další technické podrobnosti o zrcadlech MEMS jsou v [8]. Přepínání založené na WDM je stále častěji využívané. WDM sítě jsou již na vysoké úrovni oproti stále se vyvíjejícím technologiím optického přepínání a jsou využívány u všech typů přepínání. Funkce WDM, spolu s nejčastěji používanými zařízeními je popsáno v sekci 3.4. Stejně jako u klasických sítích i u optických sítích můžeme přepínat pomocí okruhů, nebo paketů. Často se nyní mluví i o přepojování dávek, které je odnoží přepojování paketů a do budoucna představuje slibnou metodu pro přenos dat v optických sítích. 16

18 3.1 Přepojování okruhů Přepojování okruhů je metoda v telekomunikačních sítích ve které musí dva uzly, které spolu chtějí komunikovat nejprve vytvořit spojení (okruh), skrze síť, po kterém bude komunikace přenášena. Okruh zaručuje plnou šířku pásma využívaného kanálu a zůstává po celou dobu trvání spojení. Z toho vyplývá, že vytvořením okruhu se uzly chovají jako by byly spolu spojeny na přímo. Ukázka přepojování okruhů je na obrázku 3.1. Obr. 3.1: Znázornění vytvořené cesty pomocí přepojování okruhů Síť využívající přepojování okruhů má díky pevně danému spojení, také pevně dané zpoždění bitů. Nevýhoda je, že spojení přetrvává i pokud není právě využíváno, tím se síť stává neefektivní kvůli nevyužité kapacity, ale ovšem přináší výhody nemožnosti interference s ostatními uživateli sítě. Speciálním případem přepojování okruhů, je virtuální přepojování okruhů. To se provádí pomocí přepojování paketů, ale před posláním jakýchkoliv paketů je nejprve utvořen okruh. OCS (optical circuit switching) je přepojování okruhů, které probíhá na úrovni vlnových délek pomocí vlnových multiplexerů. Neprobíhá zde žádná konverze optických signálů na eletronické. Díky tomu mají nízkou odezvu. 3.2 Přepojování paketů V digitálních sítích je také využívána metoda přepojování paketů. Tato metoda spočívá v rozdělení odesílaných dat do přiměřeně velkých bloků zvaných pakety. Pakety jsou dále přenášeny komunikačním kanálem, který může být sdílen s jinými přenosy. To zvyšuje celkovou efektivitu sítě. 17

19 Přenos dat v sítích s přepojováním paketů probíhá prvotním alokováním potřebné šířky pásma. Alokování probíhá dynamicky, dle potřeby. Pakety poté putují sítí přes uzly, kde jsou uchovávány (např. ve vyrovnávacích pamětech) a předávány, dle potřeby. Z toho vyplývá, že zpoždění paketů mezi počátečním a koncovým bodem není statické, jako u přepojování okruhů, ale bude se lišit kapacitou vybrané cesty, aktuálním vytížením a řízením v průběhu přenosu. Ukázka přepojování paketů v sítí je na obrázku 3.2. Přepojování paketů je výhodné, protože většina dnešních služeb je poskytována přes internet na bázi protokolu IP. V těchto sítích je provoz nepravidelný a rázovitý. Mezi výhody paketových sítí se řadí možnost rychlého sestavení spojů a lepší možnosti multicastu, než u sítí řízených metodou přepojování okruhů. Obr. 3.2: Znázornění cesty paketů pomocí přepojování paketů V optických sítích se využívá OPS (optical packet switching). Aktuální technologie spoléhá na OEO převodníky, které nepříznivě ovlivňují cenu výsledného řešení. Ideálním řešením pro paketové přepojované sítě je převádět do elektronické podoby pouze pakety určené pro lokální stanici, zbytek řídit pouze v optické rovině. Tímto řešením by se zvýšila propustnost a snížila cena řešení. V této sekci bylo čerpáno z [11]. S OEO převodem probíhá přepojování následně. Příchozí pakety jsou demultiplexovány na individuální vlnové délky a dále přeposlány na vstupní rozhraní. Každý paket kromě všech náležitostí paketů (IP hlavička, data) obsahuje zvlášť optickou hlavičku, která se využívá pro směrování v optických sítích. Kromě jiných funkcí je úkolem vstupního rozhraní extrahování optické hlavičky a předání přepojovací jednotce k dalšímu zpracování. Ta pracuje na principu klasického přepojování paketů popsaného výše a navíc musí zajistit převod na jinou vlnovou délku, je-li třeba 18

20 a vytvoření nové optické hlavičky. Posledním krokem je předání paketu na výstupní rozhraní a odeslán k dalšímu uzlu. 3.3 Přepojování dávek Dávkové přepojování OBS (optical burst switching) je nejnovější z popisovaných metod přepínaní. V základu vychází z přepojování paketů. Je brána jako kompromis k předchozím metodám. OBS funguje na principu zpožděné rezervace, neboli předeslání samostatné řídící informace, pomocí které se včas sestaví cesta pro příchozí data. Umožňuje flexibilnější využití šířky pásma, díky tomu, že nesestavuje celé end-to-end spojení, avšak vyžaduje rychlejší přepínání a řídící technologii. Může být využito pro celo optické komunikace. Oproti přepojování paketů má nižší požadavky na řízení, protože příchozí dávky neobsahují tolik paketů ke zpracování a tudíž se vykoná méně operací. 3.4 Vlnový multiplex WDM Technologie zajišťující multiplexování (sdružování) více optických signálů do jednoho optického vlákna za použití různých vlnových délek. Z anglického wavelengthdivison multiplex. Pomocí WDM je možno rozšířit stávající přenosovou kapacitu, nebo umožnit obousměrnou komunikaci na jednom vlákně. Díky těmto vlastnostem dokáže ušetřit náklady za pokládání nových kabelů, protože lépe využije již stávající. V dnešní době je možné kombinovat až 160 signálů a dosáhnout kapacity kolem 1 Tb/s. Většina WDM pracuje na jednovidových vláknech, díky jejich vlastnostem popsaných v sekci optických vláken 2.1. λ1 λ2 Multiplexer λ1, λ2, λ3, λ4, λ5 Demultiplexer λ1 λ2 λ3 λ3 λ4 λ4 λ5 λ5 Obr. 3.3: Princip fungování multiplexeru a demultiplexeru V sítích s WDM se využívají multiplexery blízko vysílače, aby co nejdříve spojily vysílané signály. Jako opak multiplexerů se používají demultiplexery, které jsou většinou v koncových zařízeních, a naopak signál rozdělují na jednotlivé vlnové délky. Funkci obou zařízení vystihuje obázek 3.3. Je možné také mít zařízení, které kombinuje multiplexer a demultiplexer, jako například ADM popsané v sekci

21 WDM lze rozdělit do tří skupin. Klasické WDM, které používá dvě vlnové délky (1310 a 1550 µm) na jednom vlákně, hrubé (coarse WDM) využívající až 16 kanálů v pásmu s nízkým útlumem u silikonových vláken a poslední husté (dense WDM), využívající pásmo nm s hustěji naskládanými kanály a tím využít 40 a více kanálu, dle odsazení kanálů Add-drop multiplexer ADM Pomocí tohoto zařízení je možné směrovat jeden nebo více kanálů mimo (drop) nebo do (add) WDM kanálu s více vlnovými délkami. Většinou se jedná o jednovidové vlákno. Směrování mimo kanál vede k další cestě, nebo koncovému uzlu, kde jsou signály dále zpracovávány. ADM může být považován za typ křížového spínače popsaného v sekci Z názvu vyplývá, že se jedná o multiplexer, ale to je pouze jedna ze tří částí. Vstupní signál je demultiplexován, dále prochází přes rekonfigurační prvek a poté je zpět multiplexerem poskládán. Rekonfigurační prvek je přepínač, který posílá demultiplexované signály na multiplexer, nebo do portu směřující mimo ADM. Signály z portů směřujících ze sítě do ADM jsou přímo napojeny na multiplexer a s nimi signály, které jsou přepínačem propuštěny na multiplexer. Veškeré demultiplexované a multiplexované signály podléhají OE konverzi. propust drop add D M D M X drop add X X drop add X drop add OE převodníky Obr. 3.4: Obrázek vlevo funkce ADM a v pravo funkce ROADM Reconfigurable optical add-drop multiplexer ROADM Je to forma ADM, která umožňuje vnitřní přepínání na úrovni vlnových délek, tedy veškeré signály jsou ponechávány v čistě optické podobě, bez jakékoliv konverze. Další výhodou oproti klasickým ADM je možnost přesměrování, či přidání jakéhokoliv signálu, kdežto u ADM jsou tyto signály pevně dané, nebo omezené výrobcem. Rozdíly je možno vidět na obrázku 3.4 S tímto zařízením je možné flexibilně řídit optické sítě, snadno přemosťovat chybná spojení s minimálním přerušením služeb. 20

22 3.4.3 Optické křížové spínače OXC Zařízení využívané k přepínání vysokorychlostních signálů v optických sítích. V tomto případě se jedná o čiré (transparent) OXC, jelikož je čistě v optické rovině bez OE konverze. Funguje na principu demultiplexování příchozího signálu, ten je přepnut na dané výstupní vlákno a poté opět multiplexován. Kromě čistě optického křížového spínače se také využívá neprůhledný (opaque), čistě elektronický křížový spínač a kombinace obou průhledný (translucent) křížový spínač. DX M X OXC D X MX Obr. 3.5: Ukázka funkce OXC 21

23 4 SMĚROVÁNÍ V OPTICKÝCH SÍTÍCH Nejčastěji používané sítě jsou sítě používající wavelength division multiplex (zkráceně WDM). WDM je jednoduchý a efektivní způsob jak lépe využít stávající kapacitu optických vláken, bez nutnosti pokládat nové. S tím také souvisí přiřazování vlnových délek daným signálům, které jsou dále přenášeny ke koncovým uzlům a směrování daných signálů. Směrovače hledají nejoptimálnější cestu k přenosu, a aby byly co nejvíce efektivní, snaží se vybrat i nejvhodnější vlnovou délku. Tuto problematiku nazýváme směrování a přiřazování vlnových délek (z anglického routing and wavelength assignment, dále jen RWA). V RWA řešíme způsobem abychom minimalizovali počet využitých zdrojů a přitom respektovali omezení vlnových délek popsaných v sekci 2.2 a na obrázku 4.1. V této kapitole bylo čerpáno z [7]. λ Směrovač vlnovod s vlnovou délkou λ1 Uzel vlnovod s vlnovou délkou λ2 Obr. 4.1: Ukázka směrování 4.1 RWA Výhody směrování pomocí RWA jsou usnadnění přepínaní, protože přiřazení vlnové délky je stejné jako sestavení spojení (uzavření okruhu). To zvyšuje spolehlivost sítě a správnost doručených dat. Další výhodou je dobré zajištění kvality služeb (QoS) díky pevně dané šířky pásma. 22

24 Nevýhody jsou při dlouhých obvodech, při 2 směrném procesu (REQ ACK) je dlouhá odezva (v řádech ms). Pokud není správně využit traffic grooming 5, může být kapacita sítě hrubě nevyužita. RWA problematika v optických sítích je klasifikována jako NP-kompletní, to znamená velice složitá. Při hledání řešení pomocí ILP, je k přihlédnutí ke složitosti, možné řešit jen pro malé sítě (do 15 uzlů). Pro větší sítě je řešení velice složité, až nemožné. Ke směrování přistupujeme fixními nebo adaptivními algoritmy. Důležité je vědět, že algoritmy se volí podle heuristiky sítě, a proto nejčastěji používaný algoritmus nemusí být nejvhodnější. Řešení takovýchto sítí je dobře popsáno v [10]. Samotný problém přiřazování vlnové délky může být formulován do teorie grafů, který je také klasifikován jako NP-kompletní. Typicky se tato metoda snaží přiřadit stejné vlnové délky k co nejvíce optickým spojům. RWA rozlišujeme do dvou skupin, podle předpokladu využití statické a dynamické. Statické RWA se vztahuje na případy, kdy předem známe topologii sítě a musíme sestavit optické spojení pro všechny požadavky. V dynamickém RWA přicházejí požadavky náhodně a zůstávají jen po určitý časový úsek. To znamená nejen vytváření optických spojů, ale i jejich rušení. V obou těchto případech řešíme dva separátní problémy směrování a přiřazení vlnové délky. Problém statického směrování může být formulován jako ILP model 6.1.1, jehož cílem je minimalizovat počet použitých vlnových délek, potřebných k vytvoření daného spojení. Tento model, kvůli své složitosti (klasifikován jako NP-kompletní), je možné řešit pouze pro malé sítě. Pro větší sítě je nutno použít jiný model. Oblast řešení se dá taky upravit, stanovením pro které páry zdroj-cíl se bude problém řešit. U dynamického směrování, je možné, že daný požadavek nelze na žádném spoji vyřídit, z důvodu přeplnění sítě (nedostatečných zdrojů). V takovém případě je požadavek zablokován. K zablokování může také dojít v případě, že není možné dodržet podmínku jedné vlnové délky na cestě zdroj-cíl. K tomuto nemusí dojít, pokud se v síti vyskytují měniče vlnových délek. Stejně jako u statického RWA, se tato problematika dá rozdělit na problém směrování a přiřazení vlnové délky. 23

25 5 SDRUŽOVÁNÍ PROVOZŮ V klasických optických sítích, kde se využívají AD multiplexery, nastává problém, že pro každou využitou vlnovou délku musí být použit jeden AD multiplexer. Dnes nejčastěji používané SONET/WDM kruhové sítě. Sdružováním provozů ve WDM sítích se také zabývá [12] a [5]. Při přenášení pomalého provozu pak dochází k plýtvání vlnovými délkami, jelikož jejich kapacita není plně využita. Rychlost jedné vlnové délky přesahuje 1 Gb/s. Z toho vyplývá, že cílem optického sdružování je snížit počet použitých OEO součástek na minimum, aby se ušetřila cena a zvýšila efektivita využití dostupných prostředků. Tak jako směrovače se snaží najít nejoptimálnější cestu k cíli, tak se sdružování snaží, aby se k cíli využilo co nejméně prostředků (vlnových délek, AD multiplexerů, optických kabelů). Vzhledem také k povaze optických sítí, chovají se jako okruh, je sdružování provozů nutné. Dosáhnutí optimalizace je sdružení pomalých provozů tak, aby se co nejlépe využila dostupná kapacita. ADM ADM ADM ADM ADM λ1 λ2 λ3 λ1 λ3 DX DX 2 2 λ1, λ2, λ3 λ1, λ2, λ3 ADM ADM ADM λ3 λ1 λ2 D X 1 3 D X λ1 λ2 λ3 ADM ADM ADM ADM ADM λ3 λ1 D X 1 3 D X λ1 λ2 ADM ADM 4 4 DX DX λ3 λ2 λ1 ADM ADM ADM λ3 λ2 λ1 ADM ADM ADM Obr. 5.1: Nesdružená síť Obr. 5.2: Sdružená síť Obvod λ 1 mezi uzly 1 a 2 mezi uzly 3 a 4 λ 2 mezi uzly 1 a 3 mezi uzly 1 a 4 λ 3 mezi uzly 1 a 4 mezi uzly 2 a 3 Tab. 5.1: Přiřazení nesdružené Obvod λ 1 mezi uzly 1 a 2 mezi uzly 1 a 3 λ 2 mezi uzly 2 a 3 mezi uzly 2 a 4 λ 3 mezi uzly 1 a 4 mezi uzly 3 a 4 Tab. 5.2: Přiřazení sdružené Sdružovat signály je možné pouze, pokud mají stejný cíl. Ke sdružení dochází v ADM, kde během průchodu signálu je signál poslán k cílové stanici. Tam je zpracován a poslán zpátky, kde se přidruží k vlnové délce se stejným cílem a pokračuje 24

26 dále k cíli. Pokud by nebylo použito sdružování muselo by se k jednomu uzlu posílat více vlnových délek, než je třeba. To je dobře vidět na obrázku 5.1, kde je zobrazeno nesdružené sdílení signálů a 5.2, kde je sdružené. 5.1 Statické sdružování O statickém sdružování lze uvažovat tehdy, kdy se provoz v síti nemění v čase nebo se mění zanedbatelně. S těmito známými parametry lze sestavit model pro RWA, kde sestavení cest je první částí řešení celkového problému sdružování. Dalším postupem v řešení statického sdružování je minimalizace využití ADM prvků, čili snížení ceny řešení. Toho lze dosáhnout správnou kombinací cest. Dobrým řešením, popsaným také v [6], spolu s naznačením heuristiky ke snížení ADM prvků je koncept dělení cesty, kde odstraněním vlnové délky a jejím následným vytvořením v uzlu před cílem, dosáhne požadovaného uzlu. To sice zvýší počet ADM, ale pokud jsou umístěny strategicky a může jeden ADM využívat více cest, sníží to celkové náklady na výstavbu sítě. 5.2 Dynamické sdružování Dynamické sdružování, jako opak statického, musí rychle reagovat na změny požadavků sítě. Ideální řešení je tedy použití ROADM popsaných výše v sekci Dynamické sdružování je nutné pro lokace jako například metropolitní sítě, nebo sítě blízko koncových uživatelů. V dynamickém sdružování se berou v potaz dva důležité faktory a to nárazovost přenosů a požadavky na šířku pásma. V případě velkého zatížení nárazovými přenosy se tok sítí vyhladí a jeví se více plynulý. Při vysoké nárazovosti přenosů je volen přístup dynamického zřizování světlovodů, nebo také přepojování dávek popsané v sekci

27 6 PRAKTICKÁ ČÁST 6.1 Lineární programování Lineární programování (LP), nebo také lineární optimalizace. Metoda lineárního programování se používá pro co nejlepší využití dostupných prostředků. Lze s její pomocí optimalizovat například výrobní procesy, logistiku, nebo zisk. K využití LP existuje mnoho důvodů. Mezi jiné patří fakt, že mnoho problému se dá snadno vyjádřit lineárním modelem. Díky tomu se vynalezlo mnoho algoritmů pro jejich řešení. Nevýhodou LP je náročnost na výpočet, je klasifikován jako NP-kompletní, tudíž velice složitý. Při optimalizování rozsáhlých procesů nemusí být efektivní z důvodu doby výpočtu, nebo složitosti algoritmu. K optimalizaci využívá účelovou funkci (objective function), která představuje daný problém s přihlédnutím k (subject to) lineárním rovnostem, nerovnostem a podmínkám určujícím meze. Z povahy řešeného problému se volí maximalizace (zisk, tok) nebo minimalizace (počet cest, náklady) účelové funkce. Z této povahy vyplývá, že je vhodné také pro využití v sítích, kde lze optimalizovat tok sítí a u optických sítí využití vlnových délek. LP je navrženo pro reálná čísla. Občas je ale potřeba mít celočíselné výsledky, protože někdy není možné zdroje rozdělit na menší části, mohou to být pouze celky (lidé, stroje). Proto existuje Integrální lineární programování ILP, které s touto podmínkou počítá ILP Integrální lineární programování (Integer linear programming ILP) je odnož lineárního programování, která počítá pouze s celými čísly. Z názvu integrální vyplývá, že se pracuje pouze s celými čísly, ale existuje i odnož ILP, která v procesu dokáže počítat i s desetinnými čísly. Ta se nazývá Mixed ILP (MILP). V řešení se ničím neliší od LP 6.1. Speciálním případem ILP je binární LP, které využívá pouze 1 a GLPK GLPK je zkratka pro GNU Linear Programming Kit. Jak z názvu vyplývá, balíček je vhodný pro řešení LP modelů. Je možné pomocí něj řešit obsáhlé modely a také jeho odnože ILP, MILP. Nespornou výhodou je export do výstupních souborů, takže výsledky nejsou závislé pouze na konzolovém výstupu a uživatel se tímto dostane k mnohem podrobnějším výsledkům. Pomocí GLPK je možné počítat i vybrané problémy teorie grafů, převedené do LP modelů, a lze do grafického souboru exportovat 26

28 zobrazenou síť. Jako programovací jazyk se používá odnož jazyka AMPL pojmenovaný GNU MathProg. Balíček při spuštění dokáže jednoduše vyhledat chyby v zápisu a uživatele na tyto chyby upozornit. GLPK je dostupný jak pro Windows, tak Unixové systémy. Neobsahuje grafické rozhraní a veškerá obsluha je přes příkazový řádek. Balíček ke stažení pro Linux a další informace o něm jsou dostupné z [4], pro Windows je stažení možné z [3]. Samotný balíček se skládá z více částí, které dohromady dokážou řešit danou problematiku. Jako výčet: různé metody (dual simplex, interior-point, branch-and-cut) LP/MIP solver GNU MathProg překladač API Zprovoznění GLPK Ke zprovoznění GLPK na Windows je nutno stáhnout balíček pro Windows zmíněný výše v odstavci 6.2 a nainstalovat si potřebné knihovny. Doporučuje se nainstalovat Windows SDK, C++ překladače a prostředí pro úpravu kódu (např. Visual Studio, PSPad,... ). Jako poslední krok je třeba ze staženého archivu zkopírovat.dll soubory do adresáře C:\Windows\System32. Ovládání probíhá z příkazové řádky tím, že se dostaneme do příslušného adresáře a příkazem glpsol s příslušnýmy argumenty spustíme. Viz následující kapitola Základní příkazy Syntaxe spuštění balíčku GLPK v příkazové řádce se zadává ve formátu > glpsol [mód spuštění] [soubor.mod] [doplňující argumenty], kde mód spuštění -m značí --model, čili že vstupem bude modelový (*.mod) soubor, či cesta k němu. Může se také používat -d, nebo -y (--data, --display), které slouží k čtení/zápisu dat do souboru, ale jen pro soubory striktně psané v jazyce GNU MathProg. Další příkaz použitý v této práci je příkaz --output, s jehož pomocí lze výstup ukládat do souborů, jak grafických tak textových. Podporované výstupní soubory jsou například *.txt, *.xlm, *.svg, *.xls. O formátování se stará GLPK, v případě obrázku jej definuje uživatel. Pro nápovědu se používá příkaz > glpsol -h, který vypíše všechny možné argumenty, s krátkým popisem. 27

29 6.3 MatLab: MatPlan WDM Speciánlím případem využití balíčku GLPK solveru je doplňek MatPlan WDM. Ten je dostupný z oficiálních stránek MatLab [9]. Balíček slouží pro komplexní výpočty provozu v sítích za pomocí MILP. Je výhodnější oproti GLPK, protože obsahuje grafické rozhraní s možnosti nastavení vlastností sítě, nebo ruční konfiguraci XML souborů. Nevýhodou je délka výpočtu větších sítí. Ty v případě řešené sítě dosahují 5 minut a rostou s velikostí sítě. Doplněk MatPlan WMD dokáže generovat provoz, upravovat generovaná data a vytvářet topologii sítě se zadanými parametry. Obr. 6.1: Ukázka prostředí MatPlan WDM Prostředí muselo být lehce přeprogramováno, protože nefungovalo správně a nebylo možno vytvořit vlastní síť, nebo vložit vstupní data. Výstup programu je nastavitelný po provedení výpočtu a dokáže vypsat, kromě výsledků ILP, použité cesty, využití kapacity vlnových délek, počet převodů vlnových délek a mnoho dalšího. 28

30 7 MAXIMÁLNÍ TOK SÍTÍ A MINIMÁLNÍ CENA Topologie sítě, pro kterou je prováděna simulace, je inspirována síti CESNET [2]. Topologie je pro účely semestrální práce velice zjednodušena a upravena pro potřeby ILP modelu. Zjednodušit se taky musela pro to, aby byla řešitelná ILP modelem. Proto je omezena na 11 uzlů. Síť je zobrazena na obrázku 7.1, kde jsou také vyznačeny směry komunikace a kapacity spojení. Pro řešení maximálního toku v síti, je třeba si zvolit zdroj a cíl vysílaní. Zdroj s je takový uzel, který má všechny spojení odchozí a cíl d je takový uzel, který má všechna spojení příchozí. Jediná vyjímka je vstup a výstup sítě. V daném modelu je zvolen zdroj jako uzel číslo 1 a uzel číslo 11 jako cíl Obr. 7.1: Topologie pro maximalizaci toku 7.1 Sestavení ILP modelu maximálního toku Model je sestaven pro graf G{V, E}, kde V označuje počet uzlů v grafu (síti) a E počet hran, neboli kombinace uzlů. Dalším důležitým parametrem je kapacita sítě K, celkový tok F. Proměnné i, j označují uzly, mezi kterými je spojení zamýšleno. K tomu se váže tok f mezi uzly a kapacita spojení k. Jelikož je model řešen pro optickou síť, jednotka kapacity je vlnová délka, neboli kolik vlnových délek je možno využít na jednom spojení. i. (i,j) G f i,j (j,i) G f j,i = 0 maximize F s,d subject to: ii. 0 f i,j k i,j (7.1) iii. K = (j) G f s,j = (i) G f i,d 29

31 V sekci LP 6.1 jsou dány požadavky na ILP model, tudíž vytvoření účelové funkce, kterou představuje tok ze vstupního uzlu do cílového uzlu F s,d. Jelikož se jedná o hledání maximálního toku v síti, bude se účelová funkce maximalizovat. Na účelovou funkci se vážou podmínky, které musí být dodrženy. Podmínku i. stanovuje Kirchhoffův zákon a to, že tok do uzlu vstupující se musí rovnat toku z uzlu vystupujícím. Neboli podmínka zachování toku (flow conservation), která je pro síť klíčová. Druhou podmínkou ii. je podmínka kapacity. Ta určuje, že tok mezi uzly nesmí být záporný a zároveň nesmí překročit kapacitu daného spojení. Poslední třetí iii. podmínka se týká uspokojení požadavků sítě. Platí pro krajní uzly s a d, pro které musí platit, že tok vstupující do sítě se musí rovnat toku ze sítě vystupujícím. Je to obdobná podmínka jako u i., ale pro krajní uzly. Pro celý model musí platit i, j p; p G, kde p jsou krajní uzly. Výsledný model pro maximální tok je popsán rovnicí 7.1. Řešený graf G{V,E} je dle obrázku 7.1 složen z V = 11 uzlů. Tyto uzly spolu tvoří hrany, které jsou popsány tabulkou 7.1 a tvoří vstupní data pro výpočet maximálního toku a minimální ceny sítě. V tabulce E i,j představují indexy uzlů a C E kapacitu dané hrany. Hran je E = 20 a spolu s uzly tedy vytváří graf G{11,20}. E i E j C E Obr. 7.2: Vstupní data pro maximální tok a minimální cenu 30

32 7.1.1 Řešení modelu maximálního toku K řešení ILP modelu byl použit nástroj GLPK popsaný v sekci 6.2. Popsaný model je do GLPK vložen maticí, která určuje spojení a kapacitu mezi uzly. Program je přiložen jako příloha A.1. Výsledkem řešení modelu pro topologii na obrázku 7.1 je maximální tok 18 vlnových délek mezi zadanými uzly 1 a 11. V tabulce 7.3, která je vytvořena z výstpu GLPK přiloženého v příloze B.1, lze pozorovat na kterých spojeních byl využit jak vysoký tok f i,j a jaká byla maximální kapacita spoje k i,j. Jako poslední v tabulce je výsledný maximální tok F s,d. Obr. 7.3: Tabulka toků v síti i, j k i,j f i,j x[1,2] x[1,4] 10 8 x[4,2] 3 3 x[2,3] x[3,5] 10 8 x[3,6] 5 5 x[7,4] 7 0 x[4,5] 5 5 x[5,6] 5 5 x[5,7] 5 5 x[5,8] 3 3 x[6,8] 2 2 x[6,9] 3 3 x[6,10] 5 5 x[7,8] 5 5 x[9,8] 5 0 x[8,11] x[10,9] 2 0 x[9,11] 10 3 x[10,11] 10 5 F s,d Sestavení ILP modelu minimální ceny Pokud je odstraněna kapacitní podmínka, jedná se o hledání minimální cesty je-li cena rovna nule, jedná se o hledání maximálního toku. Hledání minimální ceny je tedy hledání maximálního toku za co nejmenší cenu. Vytvoření takového modelu tedy znamená rozšíření stávajícího modelu maximálního toku o cenu každého spojení. Celková cena je označená C s,d a cena na spojích c i,j. Jelikož je problém řešen pro optické sítě, každá použitá vlnová délka, znamená navýšení ceny o 1. Vztah pro minimální cenu 7.2 se tedy od předchozího liší pouze v účelové funkci. i. (i,j) G f i,j (j,i) G f j,i = 0 minimize F s,d * C s,d subject to: ii. 0 f i,j k i,j (7.2) iii. K = (j) G f s,j = (i) G f i,d 31

33 7.2.1 Řešení modelu minimální ceny Jelikož se jedná o LP problém, k řešení je opět použit GLPK. V tomto případě je ale minimální cena zadána grafem ve formátu DIMACS, přiloženého v příloze A.2. Z výsledků, v příloze B.2, lze vidět stejný tok sítí jako v případě maximálního toku sítí, ale navíc je zde minimální cena řešení. Ta je v případě použité topologie 98 vlnových délek. 32

34 8 SDRUŽOVÁNÍ PROVOZŮ Pro další optimalizaci sítě a ušetření prostředků je využíván traffic grooming, popsaný v kapitole 5. Jelikož traffic grooming spadá do lineární problematiky, zařazeno do NP-kompletní, tak jeho řešení bude taktéž realizováno pomocí GLPK. Při sestavování modelu pro sdružování provozů se uvažují definovaná spojení mezi uzly, použité vlnové délky a nejdůležitější sdružovací faktor. Sdružovací faktor, označovaný g, určuje maximální možný počet vlnových délek, sdružených do jednoho kanálu. Pro lepší představu o ušetřených prostředcích bude simulace provedena několikrát, pro více parametrů sítě. Sdružování provozů, oproti maximálnímu toku je prováděno pro plně duplexní spojení a je použita topologie na obrázku 8.1. Problematikou sdružování se také zabývá [13] Obr. 8.1: Obecná topologie 8.1 Sestavení ILP modelu sdružování provozů Před vytvořením modelu, je třeba stanovit použité proměnné. Cílem je minimalizovat počet použitých vlnových délek W. Použité vlnové délky mají index w a jsou používány na spojeních c. Spojů je finální počet t. Spoje jsou vedeny přes uzly i a j, to jestli je mezi uzly i a j veden spoj c značí binární proměnná δc ij 1, nebo 0. Vše je v grafu G(V,E). i. Ww=1 x cw = 1 minimize W subject to: ii. tc=1 x cw δc ij g iii. x cw = 1 nebo 0 a nabývá hodnot (8.1) 33

35 Minimalizace vlnových délek W je provedena za podmínek uvedených v rovnici 8.1. Podmínka i určuje, že pouze jedna vlnová délka může být přiřazená danému spoji. Nesmí se na jednom spoji vyskytnou více než jednou. Následující podmínka ii zaručuje použití jedné vlnové délky skrze všechny uzly w spoje c a omezuje maximální počet sdružených vlnových délek na sdružovací faktor g. Poslední podmínka iii určuje, že proměnné x cw a x ij cw jsou binární Řešení ILP modelu sdružování provozů Pro řešení problému sdružování provozů se uvažuje síť bez konverze vlnových délek a s provozem stanoveným v tabulce 8.1. Provoz je sestaven náhodně z čísel od 1 do 100 a představuje využití dané linky v Gbps. # Tab. 8.1: Vstupní data sdružování Realizace modelu proběhla v programu MatLab za využití GLPK solveru reprezentovaného MatPlan WDM doplňkem popsaného v sekci 6.3. Síť byla nastavena na kapacitu vlnové délky 60 Gbps a maximum 15 vlnových délek na spoj. Dále bylo nastaveno plné využití kapacity vlnové délky, před začátkem sdružování. Součtem vstupních dat sdružení z tabulky 8.1, lze zjistit, že celková minimální požadovaná kapacita přenosu je 5468 Gbps. Utilizace vlnové délky Utilizace, nebo také využití vlnové délky, je hodnota v procentech určující maximální možné využití kapacity vlnové délky. Po naplnění této hranice, se síť snaží sdružit provoz, který je nad rámec využití. Sdružování pokračuje do doby, dokud není možné přenést veškerý provoz, poté není nalezeno řešení modelu. 34

36 Utilizace [%] Počet vlnových délek [-] Sdružení [Gbps] Tab. 8.2: Výsledky sdružování utilizací Z výsledků v tabulce 8.2 vyplývá, že se model nejprve snaží pokrýt ztrátu kapacity využitím více vlnových délek, aby pokryl dostatečnou kapacitu a poté se uchýlí ke sdružování. Sdružování v nejlepším případě pokrylo 2.3% celkového provozu sítí. Omezení vlnových délek na spoji Další možností využití sdružování provozů, je ponechání plného využití kapacity vlnové délky a omezení počtu přenášených vlnových délek na spoji. To má za následek snížení počtu využití vlnových délek a zvýšení sdružování provozů. Vlnové délky na spoji [-] Počet vlnových délek [-] Sdružení [Gbps] Tab. 8.3: Výsledky sdružování omezením vlnových délek Snižováním maximálního počtu vlnových délek na spoji má za následek zvětšující se využití kapacity vlnových délek a tím snížení celkového počtu vlnových délek. Jakmile přestanou vlnové délky stačit, začne sdružování provozů. Způsob omezení vlnových délek na spoji je efektivnější, než omezení využití kapacity. Vyplývá to z tabulky 8.3, kde maximální sdružení pokrylo 5.16% z celkového provozu. 35

37 9 ZÁVĚR Tento dokument popisuje problematiku optických sítí, navrhuje možnosti jejich řešení a prezentuje výsledky. Na základě poskytnutých informací, by čtenář měl porozumět funkci optických sítí, jejich směrování a optimalizaci za použití přepínání a sdružování provozů. V simulacích bylo dokázáno, že vypracované modely jsou lineárními problémy a je tedy vhodné je řešit pomocí lineárního programování a také že se řadí do NPkompletní problematiky a je pro to nutno zvolit heuristický přístup. Z toho vyplývá, že pro řešení velkých sítí můžou výpočty zabrat dlouhou dobu, v závislosti na velikosti. Všechny modely jsou řešeny pro zjednodušenou topologii, inspirovanou sítí pro českou republiku CESNET. Ta je pro všechny modely stejná a je dána grafem G{11,20}. V jednotlivých příkladech bylo dokázáno, že pomocí lineárního programování lze najít maximální tok sítí, při daných kapacitách spojení a minimálním počtu vlnových délek. Vytvořený matematický model je obecný, a proto je možné ho využít na jakoukoliv síť. Pro výpočet modelu poté stačí pouze změnit výchozí data pro balíček GLPK. Na maximální tok sítí byl navázán model minimální ceny. V modelu si je možné cenu představit jako délku vedení, nebo aktuální cenu za optické vedení. V neposlední řadě nejdůležitější model sdružování provozů. Ukazuje možnosti optických sítí optimalizovat využití vlnových délek, což je v praxi nesmírně výhodné. V rámci bakalářské práce, byl využit statický provoz a dva přístupy. První přístup skrze využití kapacity vlnových délek a druhý omezením maximálního počtu vlnových délek na spojení. Druhý přístup se ukázal být efektivnějším. V řešení se balíček GLPK ukázal jako vhodný pro řešení všech zadaných modelů. Všechny modely se vypočítaly skoro okamžitě a přesně. Jeho největší výhodou se ukázalo být jeho flexibilita (možnosti úprav a vkládání dat), jednoduchost užití a to i na operačním systému Windows, který je široce rozšířen. Doplněk aplikace MatLab, využívající jádro GLPK se také ukázal velice vhodný pro řešení problematiky optických sítí. 36

38 LITERATURA [1] BANERJEE, Dhritiman a Biswanath MUKHERJEE. Wavelength-Routed Optical Networks: Linear Formulation, Resource Budgeting Tradeoffs, and a Reconfiguration Study [online]. 5. online: IEEE, 2000, [cit ]. ISBN Dostupné z URL: < document/879346/> [2] CESNET Topologie. CESNET [online]. Praha: CESNET, z. s. p. o., 2016 [cit ]. Dostupné z URL: < topologie>. [3] GLPK Stažení. SourceForge: Project WinGLPK [online]. ONLINE: Xypron projects, 2016 [cit ]. Dostupné z URL: < projects/winglpk/>. [4] GLPK - Introduction. GLPK - GNU Project [online]. Boston: GNU Project, 2012 [cit ]. Dostupné z URL: < glpk/>. [5] HU, Jian-Qiang a Eytan MODIANO. Traffic Grooming in WDM Networks. In: HU, Jian-Qiang a Eytan MODIANO. Emerging Optical Network Technologies [online]. online: Springer US, 2005, s [cit ]. ISBN ISSN Dostupné z URL: < com/chapter/ %2f _11> [6] HUANG, Shu a Rudra DUTTA. Dynamic traffic grooming: the changing role of traffic grooming [online]. 4. online: IEEE, 2007, s [cit ]. ISBN X. Dostupné z URL: < document/ /> [7] KUCHAR, Anton. PŘEPÍNÁNÍ A SMĚROVÁNÍ OPTICKÝCH SIGNÁLŮ JE UŽ TO TADY? In: [online]. Ústav fotoniky a elektroniky AV ČR: online, 2012 [cit ]. Dostupné z URL: <http: // [8] LENZ, Roland. Introduction to all optical switching technologies [online]. Budapest University of Technology and Economics: online, 2003 [cit ]. Dostupné z URL: < PDF> 37

PŘEPÍNÁNÍ A SMĚROVÁNÍ OPTICKÝCH SIGNÁLŮ JE UŽ TO TADY?

PŘEPÍNÁNÍ A SMĚROVÁNÍ OPTICKÝCH SIGNÁLŮ JE UŽ TO TADY? PŘEPÍNÁNÍ A SMĚROVÁNÍ OPTICKÝCH SIGNÁLŮ JE UŽ TO TADY? Anton Kuchar Ústav fotoniky a elektroniky AV ČR v.v.i., Chaberská 57, 182 51 Praha 8, kuchar@ufe.cz PŘEPÍNÁNÍ A SMĚROVÁNÍ OPTICKÝCH SIGNÁLŮ - JE UŽ

Více

Systémy pro sběr a přenos dat

Systémy pro sběr a přenos dat Systémy pro sběr a přenos dat propojování distribuovaných systémů modely Klient/Server, Producent/Konzument koncept VFD (Virtual Field Device) Propojování distribuovaných systémů Používá se pojem internetworking

Více

ZÁKLADNÍ METODY REFLEKTOMETRIE

ZÁKLADNÍ METODY REFLEKTOMETRIE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

FTTX - pasivní infrastruktura. František Tejkl 17.09.2014

FTTX - pasivní infrastruktura. František Tejkl 17.09.2014 FTTX - pasivní infrastruktura František Tejkl 17.09.2014 Náplň prezentace Optické vlákno - teorie, struktura a druhy vláken (SM,MM), šíření světla vláknem, přenos opt. signálů Vložný útlum a zpětný odraz

Více

5. Směrování v počítačových sítích a směrovací protokoly

5. Směrování v počítačových sítích a směrovací protokoly 5. Směrování v počítačových sítích a směrovací protokoly Studijní cíl V této kapitole si představíme proces směrování IP.. Seznámení s procesem směrování na IP vrstvě a s protokoly RIP, RIPv2, EIGRP a

Více

Distribuované systémy a počítačové sítě

Distribuované systémy a počítačové sítě Distribuované systémy a počítačové sítě propojování distribuovaných systémů modely Klient/Server, Producent/Konzument koncept VFD (Virtual Field Device) Propojování distribuovaných systémů Používá se pojem

Více

PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/ PŘEDMĚT PRÁCE S POČÍTAČEM

PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/ PŘEDMĚT PRÁCE S POČÍTAČEM PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/02.0010 PŘEDMĚT PRÁCE S POČÍTAČEM Obor: Studijní obor Ročník: Druhý Zpracoval: Mgr. Fjodor Kolesnikov PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST

Více

TECHNOLOGIE OPTICKÝCH VLÁKEN A KABELŮ

TECHNOLOGIE OPTICKÝCH VLÁKEN A KABELŮ TECHNOLOGIE OPTICKÝCH VLÁKEN A KABELŮ Výhody optického přenosu signálu: Vysoká přenosová rychlost Velká kapacita a šířka přenosových pásem Nízká výkonová úroveň Odolnost proti rušivým vlivům necitlivost

Více

Definice pojmů a přehled rozsahu služby

Definice pojmů a přehled rozsahu služby PŘÍLOHA 1 Definice pojmů a přehled rozsahu služby SMLOUVY o přístupu k infrastruktuře sítě společnosti využívající technologie Carrier IP Stream mezi společnostmi a Poskytovatelem 1. Definice základních

Více

TOPOLOGIE DATOVÝCH SÍTÍ

TOPOLOGIE DATOVÝCH SÍTÍ TOPOLOGIE DATOVÝCH SÍTÍ Topologie sítě charakterizuje strukturu datové sítě. Popisuje způsob, jakým jsou mezi sebou propojeny jednotlivá koncová zařízení (stanice) a toky dat mezi nimi. Topologii datových

Více

Technologie počítačových sítí

Technologie počítačových sítí Technologie počítačových sítí Ověření přenosu multicastových rámců a rámců řídících protokolů PAgP a LACP pro agregaci linek do virtuálního svazku přes tunelované VLAN pomocí technologie 802.1QinQ Tomáš

Více

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Příklady použití tenkých vrstev Jaromír Křepelka

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Příklady použití tenkých vrstev Jaromír Křepelka Příklady použití tenkých vrstev Jaromír Křepelka Příklad 01 Spočtěte odrazivost prostého rozhraní dvou izotropních homogenních materiálů s indexy lomu n 0 = 1 a n 1 = 1,52 v závislosti na úhlu dopadu pro

Více

12. Virtuální sítě (VLAN) VLAN. Počítačové sítě I. 1 (7) KST/IPS1. Studijní cíl. Základní seznámení se sítěmi VLAN. Doba nutná k nastudování

12. Virtuální sítě (VLAN) VLAN. Počítačové sítě I. 1 (7) KST/IPS1. Studijní cíl. Základní seznámení se sítěmi VLAN. Doba nutná k nastudování 12. Virtuální sítě (VLAN) Studijní cíl Základní seznámení se sítěmi VLAN. Doba nutná k nastudování 1 hodina VLAN Virtuální síť bývá definována jako logický segment LAN, který spojuje koncové uzly, které

Více

PŘEPÍNÁNÍ A SMĚROVÁNÍ OPTICKÝCH SIGNÁLŮ - JE UŽ TO TADY?

PŘEPÍNÁNÍ A SMĚROVÁNÍ OPTICKÝCH SIGNÁLŮ - JE UŽ TO TADY? 1 PŘEPÍNÁNÍ A SMĚROVÁNÍ OPTICKÝCH SIGNÁLŮ - JE UŽ TO TADY? Anton Kuchar Ústav fotoniky a elektroniky AV ČR v.v.i., Chaberská 57, 182 51 Praha 8, kuchar@ufe.cz Anotace V příspěvku je referováno o současném

Více

Adaptabilní systém pro zvýšení rychlosti a spolehlivosti přenosu dat v přenosové síti

Adaptabilní systém pro zvýšení rychlosti a spolehlivosti přenosu dat v přenosové síti 1 Adaptabilní systém pro zvýšení rychlosti a spolehlivosti přenosu dat v přenosové síti Oblast techniky V oblasti datových sítí existuje různorodost v použitých přenosových technologiích. Přenosové systémy

Více

ZÁKLADY DATOVÝCH KOMUNIKACÍ

ZÁKLADY DATOVÝCH KOMUNIKACÍ ZÁKLADY DATOVÝCH KOMUNIKACÍ Komunikační kanál (přenosová cesta) vždy negativně ovlivňuje přenášený signál (elektrický, světelný, rádiový). Nejčastěji způsobuje: útlum zeslabení, tedy zmenšení amplitudy

Více

Informační a komunikační technologie. 3. Počítačové sítě

Informační a komunikační technologie. 3. Počítačové sítě Informační a komunikační technologie 3. Počítačové sítě Studijní obor: Sociální činnost Ročník: 1 1. Základní vlastnosti 2. Technické prostředky 3. Síťová architektura 3.1. Peer-to-peer 3.2. Klient-server

Více

Základní komunikační řetězec

Základní komunikační řetězec STŘEDNÍ PRŮMYSLOVÁ ŠKOLA NA PROSEKU EVROPSKÝ SOCIÁLNÍ FOND Základní komunikační řetězec PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL

Více

KOMBINAČNÍ LOGICKÉ OBVODY

KOMBINAČNÍ LOGICKÉ OBVODY Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je vstup určen jen výhradně kombinací vstupních veličin. Hodnoty

Více

Optické sítě. Počítačové sítě a systémy. _ 3. a 4. ročník SŠ technické. Ing. Fales Alexandr Software: SMART Notebook 11.0.583.0

Optické sítě. Počítačové sítě a systémy. _ 3. a 4. ročník SŠ technické. Ing. Fales Alexandr Software: SMART Notebook 11.0.583.0 Optické sítě sítě 1 Předmět: Téma hodiny: Třída: Počítačové sítě a systémy Optické sítě _ 3. a 4. ročník SŠ technické Autor: Ing. Fales Alexandr Software: SMART Notebook 11.0.583.0 Obr. 1 Síťové prvky

Více

Programy pro ˇreˇsen ı ulohy line arn ıho programov an ı 18. dubna 2011

Programy pro ˇreˇsen ı ulohy line arn ıho programov an ı 18. dubna 2011 Programy pro řešení úlohy lineárního programování 18. dubna 2011 Přehled Mathematica Sage AMPL GNU Linear Programming Kit (GLPK) Mathematica Mathematika je program pro numerické a symbolické počítání.

Více

U Úvod do modelování a simulace systémů

U Úvod do modelování a simulace systémů U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení

Více

Pohled do nitra mikroprocesoru Josef Horálek

Pohled do nitra mikroprocesoru Josef Horálek Pohled do nitra mikroprocesoru Josef Horálek Z čeho vycházíme = Vycházíme z Von Neumannovy architektury = Celý počítač se tak skládá z pěti koncepčních bloků: = Operační paměť = Programový řadič = Aritmeticko-logická

Více

Informační a komunikační technologie. 1.7 Počítačové sítě

Informační a komunikační technologie. 1.7 Počítačové sítě Informační a komunikační technologie 1.7 Počítačové sítě Učební obor: Kadeřník, Kuchař - číšník Ročník: 1 1. Základní vlastnosti 2. Technické prostředky 3. Síťová architektura 1. Peer-to-peer 2. Klient-server

Více

SEMESTRÁLNÍ PROJEKT Y38PRO

SEMESTRÁLNÍ PROJEKT Y38PRO SEMESTRÁLNÍ PROJEKT Y38PRO Závěrečná zpráva Jiří Pomije Cíl projektu Propojení regulátoru s PC a vytvoření knihovny funkcí pro práci s regulátorem TLK43. Regulátor TLK43 je mikroprocesorový regulátor s

Více

SAS (Single-Attachment Station) - s jednou dvojicí konektorů, tj. pro použití pouze na jednoduchém kruhu.

SAS (Single-Attachment Station) - s jednou dvojicí konektorů, tj. pro použití pouze na jednoduchém kruhu. 4.1.1 FDDI FDDI je normalizováno normou ISO 9314. FDDI je lokální síť tvořící kruh. Jednotlivé stanice jsou propojeny do kruhu. K propojení stanic se používá optické vlákno. Lidovější variantou FDDI je

Více

IEEE802.3 Ethernet. Ethernet

IEEE802.3 Ethernet. Ethernet IEEE802.3 Ethernet Ethernet 1 Předmět: Téma hodiny: Třída: Počítačové sítě a systémy IEEE802.3 Ethernet část IV. 3. a 4. ročník SŠ technické Autor: Ing. Fales Alexandr Software: SMART Notebook 11.0.583.0

Více

Globální matice konstrukce

Globální matice konstrukce Globální matice konstrukce Z matic tuhosti a hmotnosti jednotlivých prvků lze sestavit globální matici tuhosti a globální matici hmotnosti konstrukce, které se využijí v řešení základní rovnice MKP: [m]{

Více

Směrování. static routing statické Při statickém směrování administrátor manuálně vloží směrovací informace do směrovací tabulky.

Směrování. static routing statické Při statickém směrování administrátor manuálně vloží směrovací informace do směrovací tabulky. Směrování Ve větších sítích již není možné propojit všechny počítače přímo. Limitujícím faktorem je zde množství paketů všesměrového vysílání broadcast, omezené množství IP adres atd. Jednotlivé sítě se

Více

Profilová část maturitní zkoušky 2013/2014

Profilová část maturitní zkoušky 2013/2014 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2013/2014 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA

Více

PB169 Operační systémy a sítě

PB169 Operační systémy a sítě PB169 Operační systémy a sítě Řízení přístupu k médiu, MAC Marek Kumpošt, Zdeněk Říha Řízení přístupu k médiu Více zařízení sdílí jednu komunikační linku Zařízení chtějí nezávisle komunikovat a posílat

Více

Kroucená dvojlinka. původně telefonní kabel, pro sítě začalo používat IBM (Token Ring) kroucením sníženo rušení. potah (STP navíc stínění)

Kroucená dvojlinka. původně telefonní kabel, pro sítě začalo používat IBM (Token Ring) kroucením sníženo rušení. potah (STP navíc stínění) Fyzická vrstva Kroucená dvojlinka původně telefonní kabel, pro sítě začalo používat IBM (Token Ring) kroucením sníženo rušení potah (STP navíc stínění) 4 kroucené páry Kroucená dvojlinka dva typy: nestíněná

Více

Identifikátor materiálu: ICT-3-02

Identifikátor materiálu: ICT-3-02 Identifikátor materiálu: ICT-3-02 Předmět Téma sady Informační a komunikační technologie Téma materiálu Pasivní a aktivní síťové prvky Autor Ing. Bohuslav Nepovím Anotace Student si procvičí / osvojí pasivní

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Petr

Více

Profilová část maturitní zkoušky 2017/2018

Profilová část maturitní zkoušky 2017/2018 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2017/2018 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA

Více

JAK ČÍST TUTO PREZENTACI

JAK ČÍST TUTO PREZENTACI PŘENOSOVÉ METODY V IP SÍTÍCH, S DŮRAZEM NA BEZPEČNOSTNÍ TECHNOLOGIE David Prachař, ABBAS a.s. JAK ČÍST TUTO PREZENTACI UŽIVATEL TECHNIK SPECIALISTA VÝZNAM POUŽÍVANÝCH TERMÍNŮ TERMÍN SWITCH ROUTER OSI

Více

Popis výukového materiálu

Popis výukového materiálu Popis výukového materiálu Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_I.14.20 Autor Petr Škapa Datum vytvoření 09. 01. 2012 Předmět, ročník Tematický celek Téma Druh učebního materiálu Anotace (metodický

Více

Moderní technologie linek. Zvyšování přenosové kapacity Zvyšování přenosové spolehlivosti xdsl Technologie TDMA Technologie FDMA

Moderní technologie linek. Zvyšování přenosové kapacity Zvyšování přenosové spolehlivosti xdsl Technologie TDMA Technologie FDMA Moderní technologie linek Zvyšování přenosové kapacity Zvyšování přenosové spolehlivosti xdsl Technologie TDMA Technologie FDMA Zvyšování přenosové kapacity Cílem je dosáhnout maximum fyzikálních možností

Více

Ústav automobilního a dopravního inženýrství. Datové sběrnice CAN. Brno, Česká republika

Ústav automobilního a dopravního inženýrství. Datové sběrnice CAN. Brno, Česká republika Ústav automobilního a dopravního inženýrství Datové sběrnice CAN Brno, Česká republika Obsah Úvod Sběrnice CAN Historie sběrnice CAN Výhody Sběrnice CAN Přenos dat ve vozidle s automatickou převodovkou

Více

Přednáška 3. Opakovače,směrovače, mosty a síťové brány

Přednáška 3. Opakovače,směrovače, mosty a síťové brány Přednáška 3 Opakovače,směrovače, mosty a síťové brány Server a Client Server je obecné označení pro proces nebo systém, který poskytuje nějakou službu. Služba je obvykle realizována některým aplikačním

Více

PB169 Operační systémy a sítě

PB169 Operační systémy a sítě PB169 Operační systémy a sítě Přenos dat v počítačových sítích Marek Kumpošt, Zdeněk Říha Způsob propojení sítí opak. Drátové sítě TP (twisted pair) kroucená dvoulinka 100Mbit, 1Gbit Koaxiální kabel vyšší

Více

Strukturovaná kabeláž počítačových sítí

Strukturovaná kabeláž počítačových sítí Strukturovaná kabeláž počítačových sítí druhy kabelů (koaxiální kabel, TWIST, optický kabel) přenosové rychlosti ztráty na přenosové cestě Koaxiální kabel Původní, první, počítačové rozvody byly postaveny

Více

7. přednáška Systémová analýza a modelování. Přiřazovací problém

7. přednáška Systémová analýza a modelování. Přiřazovací problém Přiřazovací problém Přiřazovací problémy jsou podtřídou logistických úloh, kde lze obecně říci, že m dodavatelů zásobuje m spotřebitelů. Dalším specifikem je, že kapacity dodavatelů (ai) i požadavky spotřebitelů

Více

Střední škola pedagogická, hotelnictví a služeb, Litoměříce, příspěvková organizace

Střední škola pedagogická, hotelnictví a služeb, Litoměříce, příspěvková organizace Střední škola pedagogická, hotelnictví a služeb, Litoměříce, příspěvková organizace Předmět: Počítačové sítě Téma: Počítačové sítě Vyučující: Ing. Milan Káža Třída: EK1 Hodina: 21-22 Číslo: III/2 4. Síťové

Více

Způsoby realizace této funkce:

Způsoby realizace této funkce: KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je výstup určen jen výhradně kombinací vstupních veličin. Hodnoty výstupních veličin nezávisejí na předcházejícím stavu logického obvodu, což znamená, že kombinační

Více

CESNET a akademická sféra. 9.4.2013, Josef Baloun, Systémový inženýr

CESNET a akademická sféra. 9.4.2013, Josef Baloun, Systémový inženýr CESNET a akademická sféra 9.4.2013, Josef Baloun, Systémový inženýr Obsah Úvod Představení sdružení CESNET a ICS Představení sítě CESNET2 Test 100GE DWDM karty Nasazení 100GE DWDM Uplatnění 100GE technologie

Více

Standard IEEE

Standard IEEE Standard IEEE 802.11 Semestrální práce z předmětu Mobilní komunikace Jméno: Alena Křivská Datum: 15.5.2005 Standard IEEE 802.11 a jeho revize V roce 1997 publikoval mezinárodní standardizační institut

Více

VYUŽITÍ MATLABU PRO PODPORU VÝUKY A PŘI ŘEŠENÍ VÝZKUMNÝCH ÚKOLŮ NA KATEDŘE KOMUNIKAČNÍCH A INFORMAČNÍCH SYSTÉMŮ

VYUŽITÍ MATLABU PRO PODPORU VÝUKY A PŘI ŘEŠENÍ VÝZKUMNÝCH ÚKOLŮ NA KATEDŘE KOMUNIKAČNÍCH A INFORMAČNÍCH SYSTÉMŮ VYUŽITÍ MATLABU PRO PODPORU VÝUKY A PŘI ŘEŠENÍ VÝZKUMNÝCH ÚKOLŮ NA KATEDŘE KOMUNIKAČNÍCH A INFORMAČNÍCH SYSTÉMŮ Markéta Mazálková Katedra komunikačních a informačních systémů Fakulta vojenských technologií,

Více

Vlákno (anglicky: thread) v informatice označuje vlákno výpočtu neboli samostatný výpočetní tok, tedy posloupnost po sobě jdoucích operací.

Vlákno (anglicky: thread) v informatice označuje vlákno výpočtu neboli samostatný výpočetní tok, tedy posloupnost po sobě jdoucích operací. Trochu teorie Vlákno (anglicky: thread) v informatice označuje vlákno výpočtu neboli samostatný výpočetní tok, tedy posloupnost po sobě jdoucích operací. Každá spuštěná aplikace má alespoň jeden proces

Více

X.25 Frame Relay. Frame Relay

X.25 Frame Relay. Frame Relay X.25 Frame Relay Frame Relay 1 Předmět: Téma hodiny: Třída: Počítačové sítě a systémy X.25, Frame relay _ 3. a 4. ročník SŠ technické Autor: Ing. Fales Alexandr Software: SMART Notebook 11.0.583.0 Obr.

Více

CWDM CrossConnect pro Datacentra

CWDM CrossConnect pro Datacentra CrossConnect CrossConnect pro Datacentra CrossConnect system pro datová centra je založen na využití technologie vlnového multiplexu pro přenos na krátké vzdálenosti. Díky použití technologie je možné

Více

5. Umělé neuronové sítě. Neuronové sítě

5. Umělé neuronové sítě. Neuronové sítě Neuronové sítě Přesný algoritmus práce přírodních neuronových systémů není doposud znám. Přesto experimentální výsledky na modelech těchto systémů dávají dnes velmi slibné výsledky. Tyto systémy, včetně

Více

Ctislav Fiala: Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb

Ctislav Fiala: Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb 16 Optimální hodnoty svázaných energií stropních konstrukcí (Graf. 6) zde je rozdíl materiálových konstant, tedy svázaných energií v 1 kg materiálu vložek nejmarkantnější, u polystyrénu je téměř 40krát

Více

Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence

Více

Dlouhodobé a důvěryhodné ukládání elektronických dokumentů. Oskar Macek

Dlouhodobé a důvěryhodné ukládání elektronických dokumentů. Oskar Macek Dlouhodobé a důvěryhodné ukládání elektronických dokumentů Oskar Macek Co je to dokument? co se rozumí pod pojmem dokument, je definováno v zákoně 499/2004 Sb., ve znění pozdějších předpisů v 2, písmeno

Více

Fakulta elektrotechniky a komunikačních technologií Ústav radioelektroniky. prof. Ing. Stanislav Hanus, CSc v Brně

Fakulta elektrotechniky a komunikačních technologií Ústav radioelektroniky. prof. Ing. Stanislav Hanus, CSc v Brně Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií Ústav radioelektroniky Autor práce: Vedoucí práce: prof. Ing. Stanislav Hanus, CSc. 3. 6. 22 v Brně Obsah Úvod Motivace

Více

Popis výukového materiálu

Popis výukového materiálu Popis výukového materiálu Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_I.2.14 Autor Předmět, ročník Tematický celek Téma Druh učebního materiálu Anotace (metodický pokyn, časová náročnost, další pomůcky

Více

Počítačové sítě Teoretická průprava II. Ing. František Kovařík

Počítačové sítě Teoretická průprava II. Ing. František Kovařík Počítačové sítě Teoretická průprava II. Ing. František Kovařík SPŠE a IT Brno frantisek.kovarik@sspbrno.cz ISO_OSI 2 Obsah 1. bloku Vrstvový model Virtuální/fyzická komunikace Režie přenosu Způsob přenosu

Více

Témata profilové maturitní zkoušky

Témata profilové maturitní zkoušky Obor: 18-20-M/01 Informační technologie Předmět: Databázové systémy Forma: praktická 1. Datový model. 2. Dotazovací jazyk SQL. 3. Aplikační logika v PL/SQL. 4. Webová aplikace. Obor vzdělání: 18-20-M/01

Více

SEKVENČNÍ LOGICKÉ OBVODY

SEKVENČNÍ LOGICKÉ OBVODY Sekvenční logický obvod je elektronický obvod složený z logických členů. Sekvenční obvod se skládá ze dvou částí kombinační a paměťové. Abychom mohli určit hodnotu výstupní proměnné, je potřeba u sekvenčních

Více

Rozšiřující desce s dalšími paralelními porty Rozšiřující desce s motorkem Elektrickém zapojení Principu činnosti Způsobu programování

Rozšiřující desce s dalšími paralelními porty Rozšiřující desce s motorkem Elektrickém zapojení Principu činnosti Způsobu programování 8. Rozšiřující deska Evb_IO a Evb_Motor Čas ke studiu: 2-3 hodiny Cíl Po prostudování tohoto odstavce budete něco vědět o Výklad Rozšiřující desce s dalšími paralelními porty Rozšiřující desce s motorkem

Více

ZÁKLADY DATOVÝCH KOMUNIKACÍ

ZÁKLADY DATOVÝCH KOMUNIKACÍ ZÁKLADY DATOVÝCH KOMUNIKACÍ Komunikační kanál (přenosová cesta) vždy negativně ovlivňuje přenášený signál (elektrický, světelný, rádiový). Nejčastěji způsobuje: útlum zeslabení, tedy zmenšení amplitudy

Více

25. DIGITÁLNÍ TELEVIZNÍ SIGNÁL A KABELOVÁ TELEVIZE

25. DIGITÁLNÍ TELEVIZNÍ SIGNÁL A KABELOVÁ TELEVIZE 25. DIGITÁLNÍ TELEVIZNÍ SIGNÁL A KABELOVÁ TELEVIZE Digitalizace obrazu a komprese dat. Uveďte bitovou rychlost nekomprimovaného číslicového TV signálu a jakou šířku vysílacího pásma by s dolním částečně

Více

Registrační číslo projektu: CZ.1.07/1.5.00/ Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Registrační číslo projektu: CZ.1.07/1.5.00/ Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence schopnost, který je spolufinancován

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence schopnost, který je spolufinancován

Více

Optické sítě. RNDr. Ing. Vladimir Smotlacha, Ph.D.

Optické sítě. RNDr. Ing. Vladimir Smotlacha, Ph.D. Optické sítě RNDr. Ing. Vladimir Smotlacha, Ph.D. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze Vladimír Smotlacha, 2011 Počítačové sít ě BI-PSI LS

Více

Martin Lísal. Úvod do MPI

Martin Lísal. Úvod do MPI Martin Lísal září 2003 PARALELNÍ POČÍTÁNÍ Úvod do MPI 1 1 Co je to paralelní počítání? Paralelní počítání je počítání na paralelních počítačích či jinak řečeno využití více než jednoho procesoru při výpočtu

Více

IEC 793-2:1989 Optical fibres. Part 2: Product specification (Optická vlákna. Část 2: Výrobní specifikace)

IEC 793-2:1989 Optical fibres. Part 2: Product specification (Optická vlákna. Část 2: Výrobní specifikace) ČESKOSLOVENSKÁ NORMA MDT 666.189.21:666.22 Říjen 1992 OPTICKÁ VLÁKNA Část 2: Výrobní specifikace ČSN IEC 793-2 35 8862 Optical fibres. Part 2: Product specifications Fibres optiques. Deuxième partie: Spécifications

Více

Představíme základy bezdrátových sítí. Popíšeme jednotlivé typy sítí a zabezpečení.

Představíme základy bezdrátových sítí. Popíšeme jednotlivé typy sítí a zabezpečení. 10. Bezdrátové sítě Studijní cíl Představíme základy bezdrátových sítí. Popíšeme jednotlivé typy sítí a zabezpečení. Doba nutná k nastudování 1,5 hodiny Bezdrátové komunikační technologie Uvedená kapitola

Více

Aktivní prvky: brány a směrovače. směrovače

Aktivní prvky: brány a směrovače. směrovače Aktivní prvky: brány a směrovače směrovače 1 Předmět: Téma hodiny: Třída: Počítačové sítě a systémy Aktivní prvky brány a směrovače 3. a 4. ročník SŠ technické Autor: Ing. Fales Alexandr Software: SMART

Více

Principy ATM sítí. Ing. Vladimír Horák Ústav výpočetní techniky Univerzity Karlovy Operační centrum sítě PASNET

Principy ATM sítí. Ing. Vladimír Horák Ústav výpočetní techniky Univerzity Karlovy Operační centrum sítě PASNET Principy ATM sítí Ing. Vladimír Horák Ústav výpočetní techniky Univerzity Karlovy Operační centrum sítě PASNET vhor@cuni.cz Konference Vysokorychlostní sítě 1999 Praha 10. listopadu Asynchronous Transfer

Více

MATLAB PRO PODPORU VÝUKY KOMUNIKAČNÍCH SYSTÉMŮ

MATLAB PRO PODPORU VÝUKY KOMUNIKAČNÍCH SYSTÉMŮ MATLAB PRO PODPORU VÝUKY KOMUNIKAČNÍCH SYSTÉMŮ Aneta Coufalíková, Markéta Smejkalová Mazálková Univerzita obrany Katedra Komunikačních a informačních systémů Matlab ve výuce V rámci modernizace výuky byl

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup ELEKTONIKA I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í 1. Usměrňování a vyhlazování střídavého a. jednocestné usměrnění Do obvodu střídavého proudu sériově připojíme diodu. Prochází jí proud

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY STUDIE TURBÍNY S VÍŘIVÝM OBĚŽNÝM KOLEM STUDY OF TURBINE WITH SIDE CHANNEL RUNNER

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY STUDIE TURBÍNY S VÍŘIVÝM OBĚŽNÝM KOLEM STUDY OF TURBINE WITH SIDE CHANNEL RUNNER VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE STUDIE TURBÍNY S VÍŘIVÝM OBĚŽNÝM KOLEM STUDY

Více

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly. Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?

Více

Multiplexory sériových rozhraní na optický kabel ELO E246, ELO E247, ELO E248, ELO E249, ELO E24A, ELO E24B. Uživatelský manuál

Multiplexory sériových rozhraní na optický kabel ELO E246, ELO E247, ELO E248, ELO E249, ELO E24A, ELO E24B. Uživatelský manuál Multiplexory sériových rozhraní na optický kabel ELO E246, ELO E247, ELO E248, ELO E249, ELO E24A, ELO E24B Uživatelský manuál 1.0 Úvod...3 1.1 Použití multiplexoru...3 2.0 Principy činnosti...3 3.0 Instalace...3

Více

Numerické metody a programování. Lekce 8

Numerické metody a programování. Lekce 8 Numerické metody a programování Lekce 8 Optimalizace hledáme bod x, ve kterém funkce jedné nebo více proměnných f x má minimum (maximum) maximalizace f x je totéž jako minimalizace f x Minimum funkce lokální:

Více

Základy tvorby výpočtového modelu

Základy tvorby výpočtového modelu Základy tvorby výpočtového modelu Zpracoval: Jaroslav Beran Pracoviště: Technická univerzita v Liberci katedra textilních a jednoúčelových strojů Tento materiál vznikl jako součást projektu In-TECH 2,

Více

ZPRÁVA Z PRŮMYSLOVÉ PRAXE

ZPRÁVA Z PRŮMYSLOVÉ PRAXE ZPRÁVA Z PRŮMYSLOVÉ PRAXE Číslo projektu: Název projektu: Jméno a adresa firmy: Jméno a příjmení, tituly studenta: Modul projektu: CZ.1.07/2.4.00/31.0170 Vytváření nových sítí a posílení vzájemné spolupráce

Více

I. Současná analogová technika

I. Současná analogová technika IAS 2010/11 1 I. Současná analogová technika Analogové obvody v moderních komunikačních systémech. Vývoj informatických technologií v poslední dekádě minulého století digitalizace, zvýšení objemu přenášených

Více

SIMULACE JEDNOFÁZOVÉHO MATICOVÉHO MĚNIČE

SIMULACE JEDNOFÁZOVÉHO MATICOVÉHO MĚNIČE SIMULE JEDNOFÁZOVÉHO MATICOVÉHO MĚNIČE M. Kabašta Žilinská univerzita, Katedra Mechatroniky a Elektroniky Abstract In this paper is presented the simulation of single-phase matrix converter. Matrix converter

Více

Grafové algoritmy. Programovací techniky

Grafové algoritmy. Programovací techniky Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být

Více

Základy počítačových sítí Model počítačové sítě, protokoly

Základy počítačových sítí Model počítačové sítě, protokoly Základy počítačových sítí Model počítačové sítě, protokoly Základy počítačových sítí Lekce Ing. Jiří ledvina, CSc Úvod - protokoly pravidla podle kterých síťové komponenty vzájemně komunikují představují

Více

Routování směrovač. směrovač

Routování směrovač. směrovač Routování směrovač směrovač 1 Předmět: Téma hodiny: Třída: _ Počítačové sítě a systémy Routování směrovač 3. a 4. ročník SŠ technické Autor: Ing. Fales Alexandr Software: SMART Notebook 11.0.583.0 Obr.

Více

Měření v optické síti různé požadavky operátorů

Měření v optické síti různé požadavky operátorů Kam kráčí telekomunikační sítě Senec 2018 Měření v optické síti různé požadavky operátorů Bc. Anna Biernátová RŮZNÍ OPERÁTOŘI SPOLEČNÁ ČÁST t Trasy v souběhu Společná ochranná trubka Společný optický kabel

Více

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/ Vzdělávání v informačních a komunikačních technologií

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/ Vzdělávání v informačních a komunikačních technologií VY_32_INOVACE_31_09 Škola Název projektu, reg. č. Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Tematická oblast Název Autor Vytvořeno, pro obor, ročník Anotace Přínos/cílové kompetence Střední

Více

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: MEIII - 2.1.5 Síťové aktivní prvky Obor: Mechanik Elektronik Ročník: 3. Zpracoval(a): Bc. Martin Fojtík Střední průmyslová škola Uherský Brod, 2010 Obsah

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

VY_32_INOVACE_E 15 03

VY_32_INOVACE_E 15 03 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

21. DIGITÁLNÍ SÍŤ GSM

21. DIGITÁLNÍ SÍŤ GSM 21. DIGITÁLNÍ SÍŤ GSM Digitální síť GSM (globální systém pro mobilní komunikaci) je to celulární digitální radiotelefonní systém a byl uveden do provozu v roce 1991. V České republice byl systém spuštěn

Více

Instalace a konfigurace web serveru. WA1 Martin Klíma

Instalace a konfigurace web serveru. WA1 Martin Klíma Instalace a konfigurace web serveru WA1 Martin Klíma Instalace a konfigurace Apache 1. Instalace stáhnout z http://httpd.apache.org/ nebo nějaký balíček předkonfigurovaného apache, např. WinLamp http://sourceforge.net/projects/winlamp/

Více

Soupravy pro měření útlumu optického vlákna přímou metodou

Soupravy pro měření útlumu optického vlákna přímou metodou Jednosměrné měřicí soupravy: Tyto měřící soupravy měří pouze v jednom směru. Pro měření v druhém směru je nutné přemístění. Výhodou těchto souprav je nízká cena. Schéma zapojení těchto měřicích soustav

Více

1. 5. Minimalizace logické funkce a implementace do cílového programovatelného obvodu CPLD

1. 5. Minimalizace logické funkce a implementace do cílového programovatelného obvodu CPLD .. Minimalizace logické funkce a implementace do cílového programovatelného obvodu Zadání. Navrhněte obvod realizující neminimalizovanou funkci (úplný term) pomocí hradel AND, OR a invertorů. Zaznamenejte

Více

Převodník RS-232 na mnohavidové optické vlákno ELO E14C. Uživatelský manuál

Převodník RS-232 na mnohavidové optické vlákno ELO E14C. Uživatelský manuál Převodník na mnohavidové optické vlákno ELO E14C Uživatelský manuál 1.0 Úvod 3 1.1 Použití převodníku 3 2.0 Principy činnosti 3 3.0 Instalace 4 3.1 Připojení optické trasy 4 3.2 Připojení rozhraní 4 3.3

Více

Univerzita Karlova v Praze

Univerzita Karlova v Praze [Vzor: Pevná deska bakalářské práce není součástí elektronické verze] Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Rok Jméno a příjmení autora [Vzor :Titulní strana bakalářské

Více

PROTOKOL RDS. Dotaz na stav stanice " STAV CNC Informace o stavu CNC a radiové stanice FORMÁT JEDNOTLIVÝCH ZPRÁV

PROTOKOL RDS. Dotaz na stav stanice  STAV CNC Informace o stavu CNC a radiové stanice FORMÁT JEDNOTLIVÝCH ZPRÁV PROTOKOL RDS Rádiový modem komunikuje s připojeným zařízením po sériové lince. Standardní protokol komunikace je jednoduchý. Data, která mají být sítí přenesena, je třeba opatřit hlavičkou a kontrolním

Více

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením.

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Na čem závisí účinnost vedení? účinnost vedení závisí na činiteli útlumu β a na činiteli odrazu

Více

EXTRAKT z mezinárodní normy

EXTRAKT z mezinárodní normy EXTRAKT z mezinárodní normy Extrakt nenahrazuje samotnou technickou normu, je pouze informativním materiálem o normě ICS: 03.220.01; 35.240.60 Komunikační infrastruktura pro pozemní mobilní zařízení (CALM)

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009.

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. XXVI Název: Vláknová optika Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009 Odevzdal dne: Možný počet bodů

Více