1. července 2010
|
|
- Pavla Pokorná
- před 9 lety
- Počet zobrazení:
Transkript
1 Optimální výrobní program Radka Zahradníková 1. července 2010
2 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení grafickou metodou Řešení simplexovou metodou 5 Literatura
3 nejjednoduší úloha matematického modelování aplikace: optimalizace výrobních plánů, dělení materiálu, míšení surovin, dopravních plánů při zásobování atd. algoritmy řešení úlohy LP založeny na využití numerických metod řešení SLAR odvozených od Gaussovy eliminační metody
4 Geometrická interpretace množina přípustných řešení V úlohy LP je podmnožina prostoru R n, vymezená nerovností Av b cíl úlohy LP - najít přípustné řešení v V, které maximalizuje (minimalizuje) danou lineární funkci z = cv max, (příp. cv min) na přípustné množině V neprázdná množina přípustných řešení vytváří v R n vždy uzavřený konvexní polyedr každý uzavřený konvexní polyedr je jednoznačně popsán svými vrcholy každý z vrcholů polyedru přípustných řešení úlohy LP - bazické řešení optimální řešení úlohy LP leží v některém z vrcholů polyedru
5 Kanonický tvar Úloha LP bývá obvykle specifikována jako: Av b, b 0 v 0 z = cv + d max v Tento tvar úlohy LP se nazývá kanonický. - předpoklad nezápornsti přípustných řešení - počátak soustavy souřadnic - bazické řešení
6 obecná metoda řešení úlohy LP pro úlohu v kanonickém tvaru transformace úlohy zavedením vektoru pomocných proměnných v R m, definovaného způsobem: v = b Av nerovnost Av b splněna pokud v 0 řešení v přípustné pokud v 0 a v 0 simplexový tvar: Av + v = b, b 0, v 0, v 0 z cv = d z max v,v dále iterativní využití Gaussovy eliminace
7 Simplexový algoritmus Předpokládejme, že máme úlohu lineárního programování ve standardním tvaru. Tj. Av b v 0 cv max v kde z = cv je cílová funkce, Av b jsou omezující podmínky a v 0 je podmínka nezápornosti.
8 Simplexový algoritmus Nalezení výchozího bazického řešení Zavedením pomocných proměnných v převedeme danou úlohu do kanonického tvaru, který potřebujeme pro aplikaci této metody. Av + v = b z cv = d z max v,v Výchozím bazickým řešením zvoĺıme počátek soustavy souřadnic, tzn. v = 0, v = b
9 Simplexový algoritmus Sestavení simplexové tabulky v 1 v 2... v n v 1 v 2... v m a 1,1 a 1,2... a 1,n b 1 e a 2,1 a 2,2... a 2,n b a m,1 a m,2... a m,n b m z c 1 c 2... c n d
10 Simplexový algoritmus Nalezení bazického řešení s vyšší hodnotou cílové funkce Podoba simplexové tabulky a bazického řešení v k-tém kroku algoritmu: v e k A k b k z c k d k v k i = b k i i e k v k i = 0 i / e k
11 Simplexový algoritmus Nalezení bazického řešení s vyšší hodnotou cílové funkce výběr nové bazické proměnné (kĺıčového sloupce) na základě hodnoty prvků vektoru c k výběr bazické proměnné, která bude vyřazena z báze (kĺıčového řádku) na základě hodnoty podílu: bk i a k i,j přepočet nového bazického řešení a vyčíslení hodnoty cílové funkce využitím Gaussovy eliminace
12 Simplexový algoritmus Počet řešení Simplexový algoritmus může být ukončen jedním z následujících výsledků: existuje právě jedno řešení poslední řádek simlexové tabulky neobsahuje žádné záporné a nulové prvky existuje nekonečně mnoho řešení poslední řádek tabulky neobsahuje žádné záporné prvky a navíc je prvek i vektoru c end odpovídající nebazické proměnné v end i nulový. řešení je v nekonečnu sloupec odpovídající nově vybrané bazické proměnné neobsahuje žádný kladný prvek
13 Popis metody Pro všechny omezující podmínky zaneseme do grafu hraniční přímky definující poloroviny a označíme směr polorovin. Najdeme průnik jednotlivých polorovin - polyedr ohraničující množinu přípustných řešení úlohy. Nalezneme extremální vrchol. Určíme proměnné úlohy LP a hodnotu cílové funkce v extremálním vrcholu.
14 Zadání problému Beaver Creek Pottery Company je malá firma, která vyrábí originální hrnky a misky. Společnost přitom využívá dva základní zdroje - speciální hrnčířskou hĺınu a kvalifikovanou práci. Na vyrobení 1 hrnku je potřeba 3 libry hĺıny a 2 hodiny práce. Na vyrobení misky 4 libry hĺıny a hodina práce. Hrnek se prodává za 50 dolarů, miska za 40 dolarů. Společnost chce zjistit, kolik misek a kolik hrnků má každý den vyrobit, aby dosáhla maximálního zisku, pokud má na každý den k dispozici 120 liber hĺıny a pracovní kapacita je 40 hodin.
15 Řešení grafickou metodou Formulace úlohy x 1...počet misek x 2...počet hrnků Cílem úlohy je najít takový počet vyráběných kusů jednotlivých výrobků, aby bylo dosaženo maxima cílové funkce: z = 40x x 2, Omezující podmínka pro práci: 1x 1 +2x Omezující podmínka pro hĺınu: 4x 1 + 3x Podmínky nezápornosti: x 1 0 x 2 0
16 Řešení grafickou metodou Množina přípustných řešení Pokud nyní pro obě omezující podmínky zaneseme do grafu hraniční přímky definující poloroviny, označíme směr polorovin a najdeme jejich průnik, dostaneme množinu přípustných řešení (viz obr. 1) x 1 +3x 2 = x 2 20 x 1 +2x 2 = x 1 Obrázek: Množina přípustných řešení
17 x 2 x 1 Řešení grafickou metodou Extremální vrchol Z teorie víme, že funkce nabývá svého optima vždy v jednom z vrcholů polyedru. Pokud vykresĺıme přímku cílové funkce pro různá z (např. z=800, 1200, viz obr. 2) zjistíme, že cílová funkce nabývá svého maxima na množině přípustných směrů v bodě, který je nejdál od počátku x 1 +50x 2 = x 1 +50x 2 = x 1 +50x 2 = Obrázek: Cílové funkce pro různé hodnoty z
18 x 2 x 1 Řešení grafickou metodou Extremální vrchol Postup pro určení maxima (viz obr. 3): Nakresĺıme přímku cílové funkce pro libovolné z, např. z=800 Nakresĺıme přímku rovnoběžnou s přímkou z=800 dotýkající se množiny přípustných řešní v bodě nejvíce vzdáleném od počátku - extremální vrchol Obrázek: Hledání extremálního vrcholu
19 Řešení grafickou metodou Řešení v extremálním vrcholu Řešíme soustavu 2 rovnic: 1x 1 + 2x 2 = 40 x 1 = 40 2x 2 4x 1 + 3x 2 = 120 4(40 2x 2 ) + 3x 2 = 120 5x 2 = 40 tedy x 2 =8 x 1 =24. a z = 40x x 2 =40*24+50*8= 1360 dolarů.
20 x 2 x 1 Řešení grafickou metodou Shrnutí Hodnoty ve všech vrcholech polyedru Pro vrchol A dostaneme: x 1 =0 misek, x 2 =20 hrnků, z=1000 dolarů. Pro vrchol B dostaneme: x 1 =24 misek, x 2 =8 hrnků, z=1360 dolarů. Pro vrchol C dostaneme: x 1 =30 misek, x 2 =0 hrnků, z=1200 dolarů. Zjistili jsme tedy, že optimální výrobní program firmy je vyrobit každý den 24 misek a 8 hrnků, zisk firmy bude 1360 dolarů denně. 20 A B C Obrázek: Množina přípustných řešení s vyznačenými vrcholy
21 Řešení simplexovou metodou Formulace úlohy Dáno: cílová funkce: z = 40x x 2 omezující podmínky: 1x 1 +2x 2 40, 4x 1 +3x podmínky nezápornosti: x 1 0, x 2 0
22 Řešení simplexovou metodou Kanonický tvar Úlohu LP přepíšeme do kanonického tvaru, abychom mohli použít simlexovou metodu, tj. zavedeme přídavné proměnné s 1 a s 2. 1x 1 + 2x 2 + s 1 = 40 4x 1 + 3x 2 + s 2 = 120 z 40x 1 50x 2 = 0 kde x 1 0, x 2 0, s 1 0, s 2 0 a z 40x 1 50x 2 = 0 je přepsaná cílová funkce, kterou chceme maximalizovat.
23 Řešení simplexovou metodou Simplexová tabulka Jako výchozí bazické řešení voĺıme počátek soustavy souřadnic, tj. x 1 = 0, x 2 = 0 a dopočteme hodnoty s 1, s 2. Tedy dostaneme: x (0) = (x 1, x 2, s 1, s 2 ) = (0, 0, 40, 120). Výchozí simplexová tabulka má následující tvar: x 1 x 2 s 1 s 2 b s s z Bazické proměnné jsou v prvním sloupci (s 1, s 2 )
24 Řešení simplexovou metodou Hledání nového bazického řešení-krok 1 Kĺıčový sloupec - nalezení nové bazické proměnné Použijeme pravidlo výběru proměnné s největší absolutní hodnotou záporného prvku v posledním řádku - tj. x 2. Kĺıčový řádek - nalezení vyřazované bazické proměnné Pro všechny nezáporné prvky kĺıčového sloupce spočteme podíl posledního sloupce tabulky a odpovídajícího prvku kĺıčového sloupce. Řádek s nejmenším podílem je kĺıčovým řádkem - tj. s 1. x 1 x 2 s 1 s 2 b podíl 40 s = s = 40 z
25 Řešení simplexovou metodou Hledání nového bazického řešení-krok 1 Kĺıčový prvek Průsečík kĺıčového sloupce a kĺıčového řádku definuje kĺıčový prvek (2). Proměnná x 2 nahradí bazickou proměnnou s 1. Přepočet nového bazického řešení Využitím Gaussovy eliminační metody nahradíme bazickou proměnnou odpovídající kĺıčovému řádku s 1 proměnnou odpovídající kĺıčovému sloupci x 2. Řídícím prvkem eliminace je kĺıčový prvek, ke každému řádku přičteme takový násobek kĺıčového řádku, aby hodnoty všech prvků v kĺıčovém sloupci byly rovny 0. Kĺıčový řádek upravíme tak, aby na pozici kĺıčového prvku byla 1. násobek x 1 x 2 s 1 s 2 b s s z
26 Řešení simplexovou metodou Hledání nového bazického řešení-krok 1 Zisk nového bazického řešení Provedením úprav dostaneme novou simplexovou tabulku: x 1 x 2 s 1 s 2 b 1 1 x s z Novým bazickým řešením je x (1) = (0, 20, 0, 60) a hodnota cílové funkce vzrostla na z=1000.
27 Řešení simplexovou metodou Hledání nového bazického řešení-krok 2 Kĺıčový sloupec - nalezení nové bazické proměnné Záporná hodnota v posledním řádku je pouze u x 1, tedy jen pro tento prvek může dojíz k nárůstu cílové funke, tj. x 1 bude novou bazickou proměnnou. Kĺıčový řádek - nalezení vyřazované bazické proměnné Vypočteme podíl posledního sloupce tabulky a odpovídajícího prvku kĺıčového sloupce a zjistíme minimální hodnotu s 2 bude vyřazenou proměnnou. x 1 x 2 s 1 s 2 b podíl 1 1 x s z
28 Řešení simplexovou metodou Hledání nového bazického řešení-krok 2 Kĺıčový prvek Průsečík kĺıčového sloupce a kĺıčového řádku definuje kĺıčový prvek ( 5 2). Proměnná x1 nahradí bazickou proměnnou s 2. Přepočet nového bazického řešení Gaussovou eliminací zajistíme, aby proměnná x 1 nahradila bazickou proměnnou s 2. násobek x 1 x 2 s 1 s 2 b x s z
29 Řešení simplexovou metodou Hledání nového bazického řešení-krok 2 Zisk nového bazického řešení Provedením úprav dostaneme novou simplexovou tabulku: x 1 x 2 s 1 s 2 b 4 x x z Novým bazickým řešením je x (2) = (24, 8, 0, 0) a hodnota cílové funkce vzrostla na z=1360. Nyní už nemůžeme vybrat proměnnou, která by zvýšila hodnotu cílové funkce, tedy algoritmus skončil a stávající bazické řešení je optimálním řešením úlohy.
30 x A x 1 +2x 2 +s 1 =40 4x 1 +3x 2 +s 2 =120 x 1 B C Řešení simplexovou metodou Shrnutí Hodnoty ve všech vrcholech polyedru Pro vrchol A dostaneme: x 1 =0, x 2 =20,s 1 =0, s 2 =60, z=1000 Pro vrchol B dostaneme: x 1 =24, x 2 =8,s 1 =0, s 2 =0, z=1360 Pro vrchol C dostaneme: x 1 =30, x 2 =0,s 1 =10, s 2 =0, z=1200 Opět jsme tedy zjistili, že optimální výrobní program firmy je vyrobit každý den 24 misek a 8 hrnků, zisk firmy bude 1360 dolarů denně Obrázek: Množina přípustných řešení s vyznačenými vrcholy
31 Zdroje skripta k předmětu Operační analýza internetový zdroj: hlineny/teaching/ou/ou-lect 6.pdf
fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.
Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
Více4EK213 LINEÁRNÍ MODELY
4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 3. přednáška SIMPLEXOVÁ METODA I. OSNOVA PŘEDNÁŠKY Standardní tvar MM Základní věta LP Princip simplexové metody Výchozí řešení SM Zlepšení řešení
VíceLDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25
Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
Více4EK213 Lineární modely. 4. Simplexová metoda - závěr
4EK213 Lineární modely 4. Simplexová metoda - závěr 4. Simplexová metoda - závěr Konečnost simplexové metody Degenerace Modifikace pravidla pro volbu vstupující proměnné Blandovo pravidlo Kontrola výpočtu
Více4EK213 LINEÁRNÍ MODELY
4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 Mgr. Sekničková Jana, Ph.D. 2. PŘEDNÁŠKA MATEMATICKÝ MODEL ÚLOHY LP Mgr. Sekničková Jana, Ph.D. 2 OSNOVA PŘEDNÁŠKY Obecná formulace MM Množina
Více4EK201 Matematické modelování. 2. Lineární programování
4EK201 Matematické modelování 2. Lineární programování 2.1 Podstata operačního výzkumu Operační výzkum (výzkum operací) Operational research, operations research, management science Soubor disciplín zaměřených
VíceEkonomická formulace. Matematický model
Ekonomická formulace Firma balící bonboniéry má k dispozici 60 čokoládových, 60 oříškových a 85 karamelových bonbónů. Může vyrábět dva druhy bonboniér. Do první bonboniéry se dávají dva čokoládové, šest
Více4EK311 Operační výzkum. 2. Lineární programování
4EK311 Operační výzkum 2. Lineární programování 2.2 Matematický model úlohy LP Nalézt extrém účelové funkce z = c 1 x 1 + c 2 x 2 + + c n x n na soustavě vlastních omezení a 11 x 1 + a 12 x 2 + a 13 x
VíceParametrické programování
Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou
VíceSystémové modelování. Ekonomicko matematické metody I. Lineární programování
Ekonomicko matematické metody I. Lineární programování Modelování Modelování je způsob zkoumání reality, při němž složitost, chování a další vlastnosti jednoho celku vyjadřujeme složitostí, chováním a
Více12. Lineární programování
. Lineární programování. Lineární programování Úloha lineárního programování (lineární optimalizace) je jedním ze základních problémů teorie optimalizace. Našim cílem je nalézt maximum (resp. minimum)
VíceIB112 Základy matematiky
IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic
VíceObecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno
Přednáška č. 3 Katedra ekonometrie FEM UO Brno Optimalizace portfolia Investor se s pomocí makléře rozhoduje mezi následujícími investicemi: akcie A, akcie B, státní pokladniční poukázky, dluhopis A, dluhopis
Více4EK212 Kvantitativní management. 2. Lineární programování
4EK212 Kvantitativní management 2. Lineární programování 1.7 Přídatné proměnné Přídatné proměnné jsou nezáporné Mají svoji ekonomickou interpretaci, která je odvozena od ekonomické interpretace omezení
Více6 Simplexová metoda: Principy
6 Simplexová metoda: Principy V této přednášce si osvětlíme základy tzv. simplexové metody pro řešení úloh lineární optimalizace. Tyto základy zahrnují přípravu kanonického tvaru úlohy, definici a vysvětlení
VíceUčební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)
VíceObecná úloha lineárního programování
Obecná úloha lineárního programování Úloha Maximalizovat hodnotu c T x (tzv. účelová funkce) za podmínek Ax b (tzv. omezující podmínky) kde A je daná reálná matice typu m n a c R n, b R m jsou dané reálné
VíceMetody lineární optimalizace Simplexová metoda. Distribuční úlohy
Metody lineární optimalizace Simplexová metoda Dvoufázová M-úloha Duální úloha jednofázová Post-optimalizační analýza Celočíselné řešení Metoda větví a mezí Distribuční úlohy 1 OÚLP = obecná úloha lineárního
VíceLineární programování
Lineární programování Petr Tichý 19. prosince 2012 1 Outline 1 Lineární programování 2 Optimalita a dualita 3 Geometrie úlohy 4 Simplexová metoda 2 Lineární programování Lineární program (1) min f(x) za
Více4EK213 Lineární modely. 10. Celočíselné programování
4EK213 Lineární modely 10. Celočíselné programování 10.1 Matematický model úlohy ILP Nalézt extrém účelové funkce z = c 1 x 1 + c 2 x 2 + + c n x n na soustavě vlastních omezení a 11 x 1 + a 12 x 2 + a
Více0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
Více4EK213 Lineární modely. 12. Dopravní problém výchozí řešení
4EK213 Lineární modely 12. Dopravní problém výchozí řešení 12. Distribuční úlohy LP Úlohy výrobního plánování (alokace zdrojů) Úlohy finančního plánování (optimalizace portfolia) Úlohy reklamního plánování
VíceŘešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +,
Příklad 1 Najděte body, v nichž má funkce (,) vázané extrémy, případně vázané lokální extrémy s podmínkou (,)=0, je-li: a) (,)= + 1, (,)=+ 1 lok.max.v 1 2,3 2 b) (,)=+, (,)= 1 +1 1 c) (,)=, (,)=+ 1 lok.max.v
VíceMatematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
VíceMatematický model. omezující podmínky. Tab. 2.1 Prvky ekonomického a matematického modelu
16 Čeho chceme dosáhnout? Co můžeme ovlivnit? Jaké jsou překážky? Ekonomický model cíl analýzy procesy činitelé Matematický model účelová funkce proměnné omezující podmínky Příklady maximalizace zisku
VíceDIPLOMOVÁ PRÁCE. Petra Váchová Lineární programování ve výuce na střední
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Petra Váchová Lineární programování ve výuce na střední škole Katedra didaktiky matematiky Vedoucí diplomové práce: RNDr. Pavla
Více13. Lineární programování
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
Více5. Lokální, vázané a globální extrémy
5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,
VíceSimplexové tabulky z minule. (KMI ZF JU) Lineární programování EMM a OA O6 1 / 25
Simplexové tabulky z minule (KMI ZF JU) Lineární programování EMM a OA O6 1 / 25 Simplexová metoda symbolicky Výchozí tabulka prom. v bázi zákl. proměné přídatné prom. omez. A E b c T 0 0 Tabulka po přepočtu
Více7 Konvexní množiny. min c T x. při splnění tzv. podmínek přípustnosti, tj. x = vyhovuje podmínkám: A x = b a x i 0 pro každé i n.
7 Konvexní množiny Motivace. Lineární programování (LP) řeší problém nalezení minima (resp. maxima) lineárního funkcionálu na jisté konvexní množině. Z bohaté škály úloh z této oblasti jmenujme alespoň
VíceFunkce - pro třídu 1EB
Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému
Více0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
VíceZáklady matematiky pro FEK
Základy matematiky pro FEK 3. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 21 Co nás dneska čeká... Co je to soustava lineárních
Více4EK212 Kvantitativní management. 1. Úvod do kvantitativního managementu a LP
4EK212 Kvantitativní management 1. Úvod do kvantitativního managementu a LP Mgr. Jana SEKNIČKOVÁ, Ph.D. Nová budova, místnost 433 Konzultační hodiny InSIS E-mail: jana.seknickova@vse.cz Web: jana.seknicka.eu/vyuka
VíceÚlohy nejmenších čtverců
Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.
Více2.2 Grafické ešení úloh LP
2. Lineární programování 21 zabránili záporným hodnotám produkce, nezabývali jsme se pípady, kdy jako výsledný objem produkce získáme desetinné číslo. Nápravu lze snadno sjednat zahrnutím tzv. podmínek
VíceVektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
Více4EK213 Lineární modely. 5. Dualita v úlohách LP
4EK213 Lineární modely 5. Dualita v úlohách LP 5. Dualita v úlohách LP Obecné vyjádření simplexové tabulky Formulace duálního problému Formulace symetrického duálního problému Formulace nesymetrického
VíceMatematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.
3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě
VíceLineární programování(optimalizace) a soustavy lineárních nerovností
Lineární programování(optimalizace) a soustavy lineárních nerovností 2017 tuma@karlin.mff.cuni.cz 0-1 Příklad úlohy lineárního programování najdětemaximálníhodnotufunkce x 1 +x 2 přesvšechnyvektoryx =
VíceProjekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:
Více2. kapitola: Euklidovské prostory
2. kapitola: Euklidovské prostory 2.1 Definice. Euklidovským n-rozměrným prostorem rozumíme neprázdnou množinu E n spolu s vektorovým prostorem V n a přiřazením, které každému bodu a z E n a každému vektoru
VíceProblém lineární komplementarity a kvadratické programování
Problém lineární komplementarity a kvadratické programování (stručný učební text 1 J. Rohn Univerzita Karlova Matematicko-fyzikální fakulta Verze: 17. 6. 2002 1 Sepsání tohoto textu bylo podpořeno Grantovou
VíceOperační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování.
Operační výzkum Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu
VíceEKONOMICKO-MATEMATICKÉ METODY
UNIVERZITA OBRANY KATEDRA EKONOMETRIE UČEBNÍ TEXT PRO DISTANČNÍ STUDIUM EKONOMICKO-MATEMATICKÉ METODY RNDr. Michal ŠMEREK doc. RNDr. Jiří MOUČKA, Ph.D. B r n o 2 0 0 8 Anotace: Skriptum Ekonomicko-matematické
VíceUrčete a graficky znázorněte definiční obor funkce
Určete a grafick znázorněte definiční obor funkce Příklad. z = ln( + ) Řešení: Vpíšeme omezující podmínk pro jednotlivé části funkce. Jmenovatel zlomku musí být 0, logaritmická funkce je definovaná pro
Vícevyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x).
Řešené příklady z lineární algebry - část 6 Typové příklady s řešením Příklad 6.: Kvadratickou formu κ(x) = x x 6x 6x x + 8x x 8x x vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých
Více2 Spojité modely rozhodování
2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A
VíceFIT ČVUT MI-LOM Lineární optimalizace a metody. Dualita. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
FIT ČVUT MI-LOM Lineární optimalizace a metody Dualita Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Michal Černý, 2011 FIT ČVUT, MI-LOM, M. Černý, 2011: Dualita 2/5 Dualita Evropský
VíceMatematika pro informatiky
(FIT ČVUT v Praze) Konvexní analýza 13.týden 1 / 1 Matematika pro informatiky Jaroslav Milota Fakulta informačních technologíı České vysoké učení technické v Praze Letní semestr 2010/11 Extrémy funkce
VíceCVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku
VíceVYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................
VíceTeorie her a ekonomické rozhodování. 2. Maticové hry
Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru
VíceFunkce a lineární funkce pro studijní obory
Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce
VíceMatematika I, část I Vzájemná poloha lineárních útvarů v E 3
3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů
Více1.Modifikace simplexové metody
.Modifikace simplexové metody Simplexová metoda, v podobě popsané v prvním tématu, je vhodná zejména pro řešení úloh LP menších rozměrů, především pak pro ruční výpočty. Algoritmus metody je jednoduchý,
VíceKonvexní množiny Formulace úloh lineárního programování. Jiří Neubauer. Katedra ekonometrie FEM UO Brno
Přednáška č. 2 Katedra ekonometrie FEM UO Brno Euklidovský prostor E n Pod pojmem n-rozměrný euklidovský prostor budeme rozumnět prostor, jehož prvky jsou uspořádané n-tice reálných čísel X = (x 1, x 2,...,
VícePřipomenutí co je to soustava lineárních rovnic
Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a
Více15. Soustava lineárních nerovnic - optimalizace
@173 15. Soustava lineárních nerovnic - optimalizace Jak jsme se dozvěděli v 3. lekci tohoto kurzu, je obrazem rovnice ax + by + c = 0, a,b,c R (a; b) (0; 0) přímka a obrazem nerovnic ax + by + c 0, a,b,c
Vícex 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.
1. Afinní podprostory 1.1. Motivace. Uvažujme R 3. Jeho všechny vektorové podprostory jsou počátek, přímky a roviny procházející počátkem a celé R 3. Chceme-li v R 3 dělat geometrii potřebujeme i jiné
Více1 Analytická geometrie
1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice
VíceANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,
VíceCo je obsahem numerických metod?
Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem
VíceVýběr báze. u n. a 1 u 1
Výběr báze Mějme vektorový prostor zadán množinou generátorů. To jest V = M, kde M = {u,..., u n }. Pokud je naším úkolem najít nějakou bázi V, nejpřímočařejším postupem je napsat si vektory jako řádky
VíceSoustavy lineárních rovnic
Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a
VíceJedná se o soustavy ve tvaru A X = B, kde A je daná matice typu m n,
Soutavy lineárních algebraických rovnic Jedná se o soustavy ve tvaru A X = B, kde A je daná matice typu m n, X R n je sloupcový vektor n neznámých x 1,..., x n, B R m je daný sloupcový vektor pravých stran
Více14. přednáška. Přímka
14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1
VíceKOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
VíceINVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška
VíceSoustavy lineárních rovnic
Soustavy lineárních rovnic Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
VíceALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE
ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.
Více3. ANTAGONISTICKÉ HRY
3. ANTAGONISTICKÉ HRY ANTAGONISTICKÝ KONFLIKT Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku,
VíceObr. P1.1 Zadání úlohy v MS Excel
Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel. Výpočet budeme demonstrovat
VíceSoustavy linea rnı ch rovnic
[1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.
VíceParametrická rovnice přímky v rovině
Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou
Vícea počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:
Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se
Více4.3.2 Goniometrické nerovnice
4 Goniometrické nerovnice Předpoklady: 40 Pedagogická poznámka: Nerovnice je stejně jako rovnice možné řešit grafem i jednotkovou kružnicí Oba způsoby mají své výhody i nevýhody a jsou v podstatě rovnocenné
VíceSOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC
SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC Pojm: Algebraická rovnice... rovnice obsahující pouze celé nezáporné mocnin neznámé, tj. a n n + a n 1 n 1 +... + a 2 2 + a 1 + a 0 = 0, kde n je přirozené číslo.
VíceJiří Neubauer. Katedra ekonometrie FEM UO Brno
Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,
Více1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
Více1 Vektorové prostory.
1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které
VíceOSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA [ MOPV ] METODY OPERAČNÍHO VÝZKUMU
OSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA [ MOPV ] METODY OPERAČNÍHO VÝZKUMU Distanční opora RNDr. Miroslav Liška, CSc. OSTRAVA 2002 1 Simplexová metoda je iterační výpočetní postup pro nalezení optimálního
VíceFunkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018
Funkce více proměnných Extrémy Přednáška pátá 12.března 2018 Zdroje informací Diferenciální počet http://homen.vsb.cz/~kre40/esfmat2/fceviceprom.html http://www.studopory.vsb.cz/studijnimaterialy/sbirka_uloh/pdf/7.pdf
VícePřílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel
Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel 2007. Výpočet budeme demonstrovat
Více(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
Více7. přednáška Systémová analýza a modelování. Přiřazovací problém
Přiřazovací problém Přiřazovací problémy jsou podtřídou logistických úloh, kde lze obecně říci, že m dodavatelů zásobuje m spotřebitelů. Dalším specifikem je, že kapacity dodavatelů (ai) i požadavky spotřebitelů
VíceGrafické řešení rovnic a jejich soustav
.. Grafické řešení rovnic a jejich soustav Předpoklady: 003 Pedagogická poznámka: V této hodině kreslíme na čtverečkovaný papír tak, aby jeden čtvereček představovala vzdálenost. Př. : Vyřeš graficky soustavu
VíceVZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.
Více3 Lineární kombinace vektorů. Lineární závislost a nezávislost
3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární
Vícef ( x) = 5x 1 + 8x 2 MAX, 3x x ,
4. okruh z bloku KM1 - řídicí technika Zpracoval: Ondřej Nývlt (o.nyvlt@post.cz) Zadání: Lineární programování (LP), simplexová metoda, dualita v LP. Nelineární programování. Vázaný extrém. Karush-Kuhn-Tuckerova
VíceZápadočeská univerzita v Plzni. Fakulta aplikovaných věd. Ivana Kozlová. Modely analýzy obalu dat
Západočeská univerzita v Plzni Fakulta aplikovaných věd SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU MATEMATICKÉ MODELOVÁNÍ Ivana Kozlová Modely analýzy obalu dat Plzeň 2010 Obsah 1 Efektivnost a její hodnocení 2 2 Základní
Více1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
Vícefakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.
Extrémy Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz
VíceExtrémy funkce dvou proměnných
Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže
VíceOperační výzkum. Přiřazovací problém.
Operační výzkum Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ..7/2.2./28.326
VíceSOUSTAVY LINEÁRNÍCH ROVNIC
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA SOUSTAVY LINEÁRNÍCH ROVNIC Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny
VíceVektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
Více1 4( 1) Co je řešením rovnice 2y 1 = 3? Co je řešením, pokud přidáme rovnici x + y = 3? Napište
Řešená cvičení lineární algebr I Karel Král 10. října 2017 Tento tet není určen k šíření. Všechn chb v tomto tetu jsou samořejmě áměrné. Reportujte je prosím na adresu kralka@iuuk.mff.cuni... Obsah 1 Cviceni
VíceObsah. Metodický list Metodický list Metodický list Metodický list
METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Závislosti
Více