Statický kvarkový model
|
|
- Radomír Antonín Netrval
- před 6 lety
- Počet zobrazení:
Transkript
1 Statický kvarkový model Supermulltiplet: charakterizován I a hypernábojem Y=B+S Skládání multipletů spinových či izotopických, např. dvě částice se spinem 1/2 Tři částice se spinem 1/2 Kvartet a dva dublety 1
2 I 3 Y 2
3 U spin a V spin Supermultiplet: jaké body v rovině jsou obsazeny a s jakou multiplicitou může přejít na trojúhelník či bod má jednotkovou multiplicitu a leží na hranici 3
4 4
5 Součin supermultipletů Oktet a singlet SU(3) oktet: SU(3) singlet: 5
6 (p,q) 6
7 7
8 MEZONY V KVARKOVÉM MODELU s s u -d 8
9 9
10 Podobně pro U spin a V spin Izotopický spin: U spin: d s -s d U + U + ( ) = 10
11 Singletní SU(3) stav : ortogonální k ostatním stavů s 11
12 Jak odvodit Použijem U a V spin ds U-spi n triplet? -s d U 3 = 1 U 3 = 0 U 3 = 1 1,1> Posunovací operátory: U 1,1> = 2 1,0> U (ds ) = (U d)s + d(u s ) = ss d d 1,0> Rovnost pravých stran 1,0> = 1/ 2 (ss d d ) su V-spi n triplet? u s V 3 = 1 V 3 = 0 V 3 = 1 Lineární kombinace a normalizace V + 1,-1> = 2 1,0> V + (us ) = (V + u)s + u(v + s ) = ss u u 1,0> = 1/ 2 (ss uu ) 12
13 Spin a parita qq Pseudoskalární mezony vektorové mezony 13
14 Asi problém η, η rozpad na piony ale η 8, η 1 obsahují s kvark 14
15 BARYONY V KVARKOVÉM MODELU = (6 3 ) 3= Nekvarkový antitriplet
16 Vlnové funkce dekupletu z rozkladu 6 3 (ud+du) (ǀud> +ǀdu > ) 16
17 Ostatní vlnové funkce s použitím posunovacích operátorů Podobně pro U Stav ǀ U=3/2,U 3 = 1 2 > ǀI = 1, I 3 = 1, Y = 0 > Rovnost pravých stran Stav s úplně symetrické při záměně pořadí v libovolných dvojicích 17
18 Vlnové funkce oktetu t Oktet z rozkladu 6 3 Smíšená symetrie tj. symetrická při záměně prvých dvou kvarkových vůní 18
19 Oktet ze součinu 3 Smíšená antisymetrie 19
20 Vlnová funkce SU(3) singletu Singlet ze součinu Stav s Y= 0 : dvě možnosti - izotopický singlet z 3 s izotopickým singletem z 3 tj. (ud-du)/ 2 s kvarkem s (uds dus ) / 2 - izotopický dublet z 3 s izotopickým dubletem z 3 ( (us - su ) / 2 ) ( (ds - sd ) / 2 u ) d 0,0> = 1/ 2 ( 1/2,1/2> 1/2,-1/2> - 1/2,-1/2> 1/2,1/2>) 0,0> = ½ ( usd> - sud> + sdu> - dsu> ) Linární kombinace a správná normalizace Úplně antisymetrická 20
21 J P = 3/2 + 21
22 Celkové vlnové funkce tříkvarkových stavů Základní stav l=0 symetrický Spinová část Plně symetrický se spinem 3/2 Smíšené symetrie SU (2) multiplety označuje spinový stav 1/2,1/2> 1/2,-1/2> 22
23 Spinová vlnová funkce = Spin ½ ½ ½ Spin 1 a 0 (3 1) 2= ½ 0 ½ Spin 3/2 a 1/2 Spin 1/2 1,1> = 1 2, 1 2 > 1 1 2, 1 2 > 2 1,0> = 1/ 2 [ 1 2, 1 2 > 1 1 2, 1 2 > , 1 2 > 1 1 2, 1 2 > 2 ] 1/2, 1/2> = 2 3 1,1> 1 2, 1 2 > 3-1/ 3 1, 0 > 1 2, 1 2 > 3 = = , 1 2 > 1 1 2, 1 2 > 2 1 2, 1 2 > 3-1/ 3 (1/ 2 )[ 1 2, 1 2 > 1 1 2, 1 2 > , 1 2 > 1 1 2, 1 2 > 2 ] 1 2, 1 2 > 3 1/2, 1/2> = 1 6 [ 2 ] Smíšená symetrie M S 23
24 24
25 Celková symetrie Stav z SU(3) Stav z SU(2) 4 S Např. uud> = 10 S u u d + u u d + u u d = 1 2, 1/2 > u 1 2, 1/2 > u 1 2, 1/2 > d
26 Problém: stav Δ ++ uuu> identické částice Pauliho princip, celková vln. funkce plně antisymetrická ale současně spin 3/2 což je plně symetrická vlnová funkce pro projekci 3/2 Tj. uuu> 3/2, 3/2>j je plně symetrická spor Všechny fermiony jsou ve stejném stavu, neboť mají projekci spinu 1/2 Řešení problému: BARVA kvarky mohou nabývat třech barevných stavů R (red), G (green), B (blue) Všechny pozorované částice bezbarvé barevná část vlnové funkce je antisymetrická, neboť je popsána barevným singletem (podobně jako SU (3) singlet) > - GRB> antisymetrická symetrická 26
27 Proton s projekcí spinu ½. Proton uud Kombinace oktetu SU(3) s dubletem s SU(2) symetrický stav = M S M A 27
28 Vyšší spiny: kvarky mají moment hybnosti Parita: 28
29 Baryonové supermultiplety Hmotnostní relace Baryonový dekuplet: parametry Baryonový oktet 1/2 + Experimentálně prověřeno 29
30 Mezonové supermultiplty??? rozdíl Vvsvětleno směšováním stavů 30
31 Θ 35 o Vysvětluji rozpady a podobnost hmot ω a ρ o 31
32 QCD : interakce způsobeny barevnými gluony změny v hmotnostech analogické hyperjemnému rozštěpení energetických hladin v kvantové elektrodynamice Parametry jsou hmotnosti kvarků Srovnání s měřením : statické hmotnosti m u = m d = GeV, m s = GeV, 32
33 Prověřování kvarkového modelu Kvarky neexistují volné Předpověď existence hyperonu Ω Hypotéza: tento rozdíl je stejný v dekupletu odhad hmotnosti Ω 1675 MeV Rozpad při změně podivnosti ΔS = 1 povolen na Potvrzení experimenty OK. 33
34 Magnetické momenty baryonů μ m i 34
35 Výsledky potvrzují oprávněnost hypotézy o barvě. 35
36 OZI (Okuba, Zweig, Iizuka) pravidlo Tokové diagramy 36
37 Drell Yanova produkce leptonových párů Poměr experimentálně ověřen v oblasti primárních energií, kde nejsou rezonance 37
38 Účinné průřezy hadron-hadronových interakcí
39 Vztahy mezi reakcemi typu: π p K + Σ (1385) π p π + Δ Zachování U-spinu 39
40 Půvabné a krásné hadrony 1. Mezony ψ ψ Hmotnost GeV šířka velmi malá? 2. nazvaný J Společný název J/ψ 40
41 SLAC BNL 41
42 SLAC experiment Jiskrové komory železo Sprškové poč. Pb-sklo, 5 rad. délek Supra. Magnet 0.4 T Trigrovací hodoskopy scint HD. Válcové jiskrové komory Scint. počítače pro triger SC SC x HD měření času pro separaci pionů a kaonů 42
43 BNL experiment Čerenkov plněný vodíkem Scintilátory pro dobu letu Kalorimetr: 25 počítačů z Pb-skla, 3 rad. délky 43
44 Vlastnosti ψ Pozorované šířky důsledek rozlišení SLAC Iterace, rozlišení ve tvaru Gausse Proč??? 44
45 J/ψ Interferenční jevy při měření úhlových rozděleních leptonů, hlavně mionů 45
46 46
47 Mezon ψ ( označován i jako ψ(3685) nebo ψ (2S) ) 47
48 Interpertace rozpadů J/ψ Hypotéza c, náboj 2/3 e, nese kvantové číslo půvab Nové kvantové číslo půvab (charm) c, zachovává se v silných a elmag. inter. 48
49 Proč je šířka tak malá? D OZI pravidlo 49
50 Mezony ψ (3770), ψ(4040) ψ(4195) Možné rozpady na D mezony J/ψ Crystal Ball SLAC 50
51 Celkový spin páru kvarků n 2s+1 L J Spin stavu Moment hybnosti mezi kvarky Hlavní kvant. číslo 51
52 Půvabné hadrony e + vs e D, D 0 52
53 D + 53
54 Potlačené: π Proč? D + (c d) D 0 (c u) D 0 ( cu) D ( cd) Tvoří dublet s c=1 Tvoří antidublet s c=-1 τ s 54
55 C= 1 D C= -1 55
56 Rozšíření kvarkového modelu 56
57 Krásné hadrony Energie protonů 400 GeV Υ Další experimenty: urychlovač DORIS v DESY, urychlovač CESR v Cornell Úzké šířky resonancí Vázané stavy nového kvarku b (beauty nebo bottom, m 4.7 GeV) 57
58 B hadrony (krásné hadrony) 58
59 B = 1 B + (u b) B 0 (d b) B = -1 B 0 (d b ) B (u b) Mnoho rozpadů s malým větvícím poměrem, koncový stav určen tím, že nejčastěji kvark b přechází na kvark c B + D 0 ρ + 2% B + D (2010) π + π + π 0 5% b c W B 0 D (2010) π + π + π 9% B + D l + ν 2% B s mezony jeden z lehkých kvarků nahrazen s kvarkem Baryony s kvarkem b, např. Λ b (udb), hmotnost 5.6 GeV, Λ + c l ν l 6.5 % 59
60 Kvark t Neexistuje toponium Identifikace t přes kinematické rovnice zákonů zachování Princip: změří se částice a jety, tj. jejich úhel emise a energie, identifikuje se W boson a rozpad B mezonu l je elektron či mion, hadrony tvoří obvykle jet Testuje se, zda daný případ vyhovuje hypotéze o produkci kvarku t (metoda největší věrohodnosti), volný parametr je hmotnost kvarku t, tzv. rekonstruovaná r hmotnost m t 60
61 Identifikace W Přes leptonové rozpady (elektron či mion, každý 10 %). Chybějící energie: Identifikace rozpadů B mezonů 61
62 Experiment CDF ve FNAL Z nejmenší hodnoty m t 174GeV Simulované pozadí Simulované tt prípady 62
63 Leptony, 3 rodiny ν e e ν μ μ ν τ τ Kvarky, 3 rodiny u d c s t b 63
Mezony π, mezony K, mezony η, η, bosony 1
Mezony π, mezony K, mezony η, η, bosony 1 Mezony π, (piony) a) Nabité piony hmotnost, rozpady, doba života, spin, parita, nezachování parity v jejich rozpadech b) Neutrální piony hmotnost, rozpady, doba
LEPTONY. Elektrony a pozitrony a elektronová neutrina. Miony a mionová neutrina. Lepton τ a neutrino τ
LEPTONY Elektrony a pozitrony a elektronová neutrina Pozitronium, elektronové neutrino a antineutrino Beta rozpad nezachování parity, měření helicity neutrin Miony a mionová neutrina Lepton τ a neutrino
Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model
Elementární částice 1. Leptony 2. Baryony 3. Bosony 4. Kvarkový model 5. Slabé interakce 6. Partonový model I.S. Hughes: Elementary Particles M. Leon: Particle Physics W.S.C. Williams Nuclear and Particle
Prověřování Standardního modelu
Prověřování Standardního modelu 1) QCD hluboce nepružný rozptyl, elektron (mion) proton, strukturní funkce fotoprodukce γ proton produkce gluonů v e + e produkce jetů, hadronů 2) Elektroslabá torie interference
o Mají poločíselný spin (všechny leptony a kvarky, všechny baryony - například elektron, neutrino, proton, neutron, baryony Λ hyperon...).
Rozdělení částic Elementární částice můžeme dělit buď podle "rodové příslušnosti" na leptony, kvarky, intermediální částice a Higgsovy částice nebo podle statistického chování na fermiony a bosony. Dělení
1. Struktura hmoty. Následující schéma uvádí tento pojem do souvislosti s dalším
1. Struktura hmoty Hmota je tvořena z hlediska vnějšího pohledu různými látkami. Následující schéma uvádí tento pojem do souvislosti s dalším členěním: Atomy jsou tvořeny elementárními částicemi (pojem
2. 4 F Y Z I K A E L E M E N T Á R N Í C H ČÁSTIC
2. Jaderná fyzika 69 2. 4 F Y Z I K A E L E M E N T Á R N Í C H ČÁSTIC V této kapitole se dozvíte: co je předmětem studia fyziky elementárních částic; jak se částice na základě svých vlastností třídí do
Alexander Kupčo. kupco/qcd/ telefon:
QCD: Přednáška č. 1 Alexander Kupčo http://www-hep2.fzu.cz/ kupco/qcd/ email: kupco@fzu.cz telefon: 608 872 952 F. Halzen, A. Martin: Quarks and leptons Kvarky, partony a kvantová chromodynamika cesta
postaven náš svět CERN
Standardní model elementárních částic a jejich interakcí aneb Cihly a malta, ze kterých je postaven náš svět CERN Jiří Rameš, Fyzikální ústav AV ČR, v.v.i. Czech Teachers Programme, CERN, 3.-7. 3. 2008
O čem se mluví v CERNu? Martin Rybář
O čem se mluví v CERNu? 29.11. 2012 Martin Rybář CERN Evropská organizace pro jaderný výzkum (Conseil Européen pour la recherche nucléaire) Založen roku 1954 ČR součástí od roku 1993 nejrozsáhlejší výzkumné
Hamiltonián popisující atom vodíku ve vnějším magnetickém poli:
Orbitální a spinový magnetický moment a jejich interakce s vnějším polem Vše na příkladu atomu H: Elektron (e - ) a jádro (u atomu H pouze p + ) mají vlastní magnetický moment (= spin). Tyto dva dipóly
Standardní model a kvark-gluonové plazma
Standardní model a kvark-gluonové plazma Boris Tomášik Fakulta jaderná a fyzikálně inženýrská, ČVUT International Particle Physics Masterclasses 2012 7.3.2012 Struktura hmoty molekuly atomy jádra a elektrony
Podivnosti na LHC. Abstrakt
Podivnosti na LHC O. Havelka 1, J. Jerhot 2, P. Smísitel 3, L. Vozdecký 4 1 Gymnýzium Trutnov, ondra10ax@centrum.cz 2 SPŠ Strojní a elektrotechnická, České Budějovice, jerrydog@seznam.cz 3 Gymnázium Vyškov,
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou?
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? 10/20/2004 1 Bethe Blochova formule (1) je maximální možná předaná energie elektronu N r e - vogadrovo čislo - klasický poloměr elektronu
Jana Nováková Proč jet do CERNu? MFF UK
Jana Nováková MFF UK Proč jet do CERNu? Plán přednášky 4 krát částice kolem nás intermediální bosony mediální hvězdy hon na Higgsův boson - hit současné fyziky urychlovač není projímadlo detektor není
Standardní model. Projekt je spolufinancován z prostředků ESF a státního rozpočtu ČR
Standardní model Standardní model je v současné době všeobecně uznávanou teorií, vysvětlující stavbu a vlastnosti hmoty. Výzkum částic probíhal celé dvacáté století, poslední předpovězené částice byly
Od kvantové mechaniky k chemii
Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi
Fyzika atomového jádra
Fyzika atomového jádra (NJSF064) František Knapp http://www.ipnp.cz/knapp/jf/ frantisek.knapp@mff.cuni.cz Literatura [1] S.G. Nilsson, I. Rangarsson: Shapes and shells in nuclear structure [2] R. Casten:
Standardní model částic a jejich interakcí
Standardní model částic a jejich interakcí Jiří Rameš Fyzikální ústav AV ČR, v. v. i., Praha Přednáškové dopoledne Částice, CERN, LHC, Higgs 24. 10. 2012 Hmota se skládá z atomů Každý atom tvoří atomové
Role Higgsova bosonu ve fyzice
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta jaderná a fyzikálně inženýrská BAKALÁŘSKÁ PRÁCE Role Higgsova bosonu ve fyzice částic a jeho hledání Praha, 2008 Vlasák Michal ii iii Prohlášení Prohlašuji,
Katedra fyziky. Prověrka Standardního modelu a fyzika
České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Katedra fyziky BAKALÁŘSKÁ PRÁCE Prověrka Standardního modelu a fyzika těžkých kvarků Praha, 2010 Autor: Vedoucí práce: Michal
Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =
Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. neutronové číslo
JADERNÁ FYZIKA I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í 1. Úvod 4 14 17 1 jádra E. Rutherford, 1914 první jaderná reakce: α+ N O H 2 7 8 + 1 jaderné síly = nový druh velmi silných sil vzdálenost
Laserová technika prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program
ELEKTROMAGNETICKÁ INTERAKCE
ELEKTROMAGNETICKÁ INTERAKCE Základní informace Působení výběrové (na Q e 0) Dosah Symetrie IM částice nekonečný U(1) loc γ - foton Působení interakce: Elektromagnetická interakce je výběrová interakce.
Prvek, nuklid, izotop, izobar
Prvek, nuklid, izotop, izobar A = Nukleonové (hmotnostní) číslo A = počet protonů + počet neutronů A = Z + N Z = Protonové číslo, náboj jádra Frederick Soddy (1877-1956) NP za chemii 1921 Prvek = soubor
Higgsův boson. Závěrečná práce. Základní škola sv. Voršily v Olomouci Aksamitova 6, Olomouc. Autor: Marek Vysloužil, Václav Cenker.
Základní škola sv. Voršily v Olomouci Aksamitova 6, 772 00 Olomouc Higgsův boson Závěrečná práce Autor: Marek Vysloužil, Václav Cenker Třída: IX Vedoucí práce: Mgr. Vilém Lukáš Olomouc 2013 Obsah Úvod...
Theory Česky (Czech Republic)
Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider
ATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura
Jan Mazanec GLOBÁLNÍ STRUKTURA VESMÍRU
Jan Mazanec GLOBÁLNÍ STRUKTURA VESMÍRU Ing. Jan Mazanec (janmazanec@email.cz) Recenzoval: Ing. Jiří Havlíček Jazyková korektura: Ing. Jarka Kovaříková Grafická úprava: Barbora Trnková & Tomáš Javůrek Grafická
Základy Mössbauerovy spektroskopie. Libor Machala
Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických
HMOTNOST JÁDRA JE S PŘESNOSTÍ 1% ROVNA A u, KDE u = ATOMOVÁ HMOTNOSTNÍ JEDNOTKA - u = 1, (28) x kg MeV
JÁDRO JÁDRO SE SKLÁDÁ Z A NUKLEONŮ ( A = HMOTNOSTNÍČÍSLO ), Z NICHŽ Z ( NÁBOJOVÉČÍSLO ) JE PROTONŮ A N = A Z ( NEUTRONOVÉČÍSLO ) NEUTRONŮ. HMOTNOST JÁDRA JE S PŘESNOSTÍ 1% ROVNA A u, KDE u = ATOMOVÁ HMOTNOSTNÍ
Experimentální metody ve fyzice vysokých energií Alice Valkárová
Experimentální metody ve fyzice vysokých energií Alice Valkárová alice@ipnp.troja.mff.cuni.cz 10/20/2004 1 Literatura o detektorech částic Knihy: C.Grupen, Particle detectors,cambridge University Press,1996
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Jiří Chudoba; Rupert Leitner; Michal Suk Hledání top kvarku v experimentech na urychlovačích částic Pokroky matematiky, fyziky a astronomie, Vol. 40 (1995), No.
Global Properties of A-A Collisions II
Satz Lecture Notes Global Properties of A-A Collisions II M. Kliemant, R. Sahoo, T. Schuster, R. Stock 18.10.2013 RQGP: Vojtěch Pacík & Olga Rusňáková Osnova Úvod Rozdělení příčné energie E T Prostorová
Fyzika atomového jádra
Fyzika atomového jádra (NJSF064) František Knapp http://www-ucjf.troja.mff.cuni.cz/~knapp/jf/ frantisek.knapp@mff.cuni.cz Slupkový model jádra evidence magických čísel: hmoty, separační energie, vazbové
Příklady Kosmické záření
Příklady Kosmické záření Kosmické částice 1. Jakou kinetickou energii získá proton při pádu z nekonečné výšky na Zem? Poloměr Zeměje R Z =637810 3 maklidováenergieprotonuje m p c 2 =938.3MeV. 2. Kosmickékvantum
Prvek, nuklid, izotop, izobar, izoton
Prvek, nuklid, izotop, izobar, izoton A = Nukleonové (hmotnostní) číslo A = počet protonů + počet neutronů A = Z + N Z = Protonové číslo, náboj jádra Prvek = soubor atomů se stejným Z Nuklid = soubor atomů
A Large Ion Collider Experiment
LHC není pouze Large Hadron Collider ATLAS ALICE CMS LHCb A Large Ion Collider Experiment Alenka v krajině ě velmi horké a husté éjaderné éhmoty a na počátku našeho vesmíru Díky posledním pokrokům se v
Elektromagnetická kalorimetrie a rekonstrukce π0 na ALICI. Jiri Kral University of Jyväskylä
Elektromagnetická kalorimetrie a rekonstrukce π0 na ALICI Jiri Kral University of Jyväskylä Zimní škola EJF 2013 Kalorimetrie Hardware IJZ, věže detektoru Elektronizace a on-line kalibrace Digitalizace
Higgsův boson ve standardním modelu
Natura 11/2004 30. října 2004 Higgsův boson ve standardním modelu zpracoval: Jiří Svršek 1 podle článku [1] Petera A. McNamary III a Sau Lan Wua Abstract V současnosti jsou všechna experimentální data
Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření
Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou
2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru
1 Pracovní úkol 1. Seznámit se s interaktivní verzí simulace 2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru 3. Kvantitativně srovnat energetické ztráty v kalorimetru pro různé
Urychlovače částic principy standardních urychlovačů částic
Urychlovače částic principy standardních urychlovačů částic Základní info technické zařízení, které dodává kinetickou energii částicím, které je potřeba urychlit nabité částice jsou v urychlovači urychleny
Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích
Fyzika IV. 1) orbitální magnetický moment (... moment proudové smyčky) gyromagnetický poměr: kvantování: Bohrův magneton: 2) spinový magnetický moment
λ=21 cm 1) orbitální magnetický moment (... moment proudové smyčky) μ I S gyromagnetický poměr: kvantování: Bohrův magneton: 2) spinový magnetický moment 2 Zeemanův jev - rozštěpení spektrálních čar v
PLANCK EINSTEIN BOHR de BROGLIE
KVANTOVÁ MECHANIKA PLANCK 1858-1947 EINSTEIN 1879-1955 BOHR 1885-1962 de BROGLIE 1892-1987 HEISENBERG 1901-1976 SCHRÖDINGER 1887-1961 BORN 1882-1970 JORDAN 1902-1980 PAULI 1900-1958 DIRAC 1902-1984 VŠECHNO
(v zrcadle výtvarné estetiky)
Několik vět o nejmenším: kosmickém záření a elementárních částicích (v zrcadle výtvarné estetiky) Jan Hladký, Fyzikální ústav v. v. i., AV ČR Praha. Proč studia částic a KZ provádíme? - základní výzkum
Kam kráčí současná fyzika
Kam kráčí současná fyzika Situace před II. světovou válkou Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie velkého
Fyzika atomového jádra (FAJ) Petr Veselý Ústav Jaderné fyziky, Česká Akademie Věd www-ucjf.troja.mff.cuni.cz/~vesely/faj/faj.pdf
Fyzika atomového jádra (FAJ) Petr Veselý Ústav Jaderné fyziky, Česká Akademie Věd www-ucjf.troja.mff.cuni.cz/~vesely/faj/faj.pdf Letní semestr 2017 Motivace Studium jaderné struktury: - široká škála systémů
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Rupert Leitner; Michal Suk Nobelova cena za fyziku v roce 1995 Pokroky matematiky, fyziky a astronomie, Vol. 41 (1996), No. 3, 157--160 Persistent URL: http://dml.cz/dmlcz/137769
Objevili Rutherford, Geiger, Marsden rozptyl alfa částic na zlaté folii. Asi krát menší než atom, obsahuje většinu hmoty atomu
Jádro Připomínám, co jsme se dozvěděli na druhé hodině: Objevili Rutherford, Geiger, Marsden rozptyl alfa částic na zlaté folii Asi 100 000krát menší než atom, obsahuje většinu hmoty atomu Víme: Skládá
KVARKY S BARVOU A VŮNÍ A CO DÁL?
KVARKY S BARVOU A VŮNÍ A CO DÁL? JIŘÍ CHÝLA Fyzikální ústav Akademie věd České republiky, Na Slovance 2, 182 21 Praha 8 chyla@fzu.cz Došlo 24.7.06, přijato 28.8.06. Klíčová slova: standardní model, kvarky,
Stavba atomů a molekul
Stavba atomů a molekul Michal Otyepka V prezentaci jsou použity obrázky z řady zdrojů, které nejsou důsledně citovány, tímto se všem dotčeným omlouvám. Vidět znamená věřit Úvod l cíle seznámit studenty
Úvod do strukturní analýzy farmaceutických látek
Úvod do strukturní analýzy farmaceutických látek Garant předmětu: doc. Ing. Bohumil Dolenský, Ph.D. A28, linka 40, dolenskb@vscht.cz Nukleární Magnetická Rezonance I. Příprava předmětu byla podpořena projektem
Úvod do laserové techniky
Úvod do laserové techniky Látka jako soubor kvantových soustav Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze petr.koranda@gmail.com 18. září 2018 Světlo jako elektromagnetické
Cesta do mikrosvěta. Martin Rybář
Cesta do mikrosvěta Martin Rybář Nobelovy ceny za SM 40 nobelových cen 64 fyziků Antoine Henri Becquerel Pierre Curie Marie Curie Joseph John Thomson Max Planck Niels Bohr Robert Andrews Millikan Arthur
Orbitalová teorie. 1.KŠPA Beránek Pavel
Orbitalová teorie 1.KŠPA Beránek Pavel Atom Základní stavební částice hmoty je atom Víme, že má vnitřní strukturu: jádro (protony + neutrony) a obal (elektrony) Už víme, že v jádře drží protony pohromadě
Měření hmoty Higgsova bosonu podle doby letu tau leptonu
Měření hmoty Higgsova bosonu podle doby letu tau leptonu Jana Nováková, Tomáš Davídek UČJF Higgs -> tau tau na LHC v oblasti malých hmot Higgse dává významný příspěvek měřitelné v oblasti m H [115, 140]
Narušení CP invariance při rozpadech
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta jaderná a fyzikálně inženýrská Katedra fyziky Obor: Matematické inženýrskví Zaměření: Matematická fyzika Narušení CP invariance při rozpadech elementárních
BAKALÁŘSKÁ PRÁCE. Peter Berta Zkoumání kvark-gluonové struktury elementárních částic
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Peter Berta Zkoumání kvark-gluonové struktury elementárních částic Ústav částicové a jaderné fyziky Vedoucí bakalářské práce: Prof.
Ve zkratce. Prehistorie standardního modelu
č. 2 Čs. čas. fyz. 65 (2015) 71 Ve zkratce Standardní model elektroslabých interakcí Jiří Hořejší Ústav částicové a jaderné fyziky, Matematicko-fyzikální fakulta Univerzity Karlovy, V Holešovičkách 2,
Teorie Molekulových Orbitalů (MO)
Teorie Molekulových Orbitalů (MO) Kombinace atomových orbitalů na všech atomech v molekule Vhodná symetrie Vhodná (podobná) energie Z n AO vytvoříme n MO Pro začátek dvouatomové molekuly: H 2, F 2, CO,...
2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A
2. Jaderná fyzika 9 2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A V této kapitole se dozvíte: o historii vývoje modelů stavby atomového jádra od dob Rutherfordova experimentu;
Relativistická kinematika
Relativistická kinematika 1 Formalismus čtyřhybnosti Pro řešení relativistických kinematických úloh lze často s výhodou použít formalismus čtyřhybnosti. Čtyřhybnost je čtyřvektor, který v sobě zahrnuje
OPVK CZ.1.07/2.2.00/
18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti
Úvod do strukturní analýzy farmaceutických látek
Úvod do strukturní analýzy farmaceutických látek Garant předmětu: doc. Ing. Bohumil Dolenský, Ph.D. A28, linka 40, dolenskb@vscht.cz Nukleární Magnetická Rezonance II. Příprava předmětu byla podpořena
Základy kvantové teorie (OFY042)
Příklady na cvičení k přednášce Základy kvantové teorie (OFY042) Zimní semestr 2007/2008, pondělí 2:20-3:50 v M3 Určeno pro 3. ročník Příklady jsou vybírány z různých učebnic a sbírek příkladů. Program
Prvek, nuklid, izotop, izobar, izoton
Prvek, nuklid, izotop, izobar, izoton A = Nukleonové (hmotnostní) číslo A = počet protonů + počet neutronů A = Z + N Z = Protonové číslo, náboj jádra Prvek = soubor atomů se stejným Z Nuklid = soubor atomů
Úvod do moderní fyziky. lekce 3 stavba a struktura atomu
Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi
ČÁST VIII - M I K R O Č Á S T I C E
ČÁST VIII - M I K R O Č Á S T I C E 32 Základní částice 33 Dynamika mikročástic 34 Atom - elektronový obal 35 Atomové jádro 36 Radioaktivita 37 Molekuly 378 Pod pojmem mikročástice budeme rozumět tzv.
Kvantová mechanika ve 40 minutách
Stručný průvodce konečněrozměrnou kvantovou mechanikou České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Úvod do kryptologie 6. 5. 2010 Program 1 Od klasické mechaniky k mechanice
4. JADERNÁ FYZIKA A Z. protonové (atomové) číslo, pořadové číslo v periodické tabulce, Q = Z.e. neutronové číslo. nukleonové (hmotnostní) číslo
FYZIKA MIKROSVĚTA 2 4. JADERNÁ FYZIKA Z > = N > = 0 protonové (atomové) číslo, pořadové číslo v periodické tabulce, Q = Z.e neutronové číslo A > nukleonové (hmotnostní) číslo A Z N A Z X X - chemický prvek
NMR spektroskopie rádiové frekvence jádra spinovou rezonancí jader spinový moment lichý počet
NMR spektroskopie NMR spektroskopie Nukleární Magnetická Resonance - spektroskopická metoda založená na měření absorpce elektromagnetického záření (rádiové frekvence asi od 4 do 900 MHz). Na rozdíl od
Kvarky s barvou a vůní a co dál?
Kvarky s barvou a vůní a co dál? Jiří Chýla, Fyzikální ústav AV ČR Pokrok ve vědě jde často daleko složitějšími cestami, než jak se o tom dočítáme v knihách o historii vědy. To platí zvláště o teoretické
Elektronový obal atomu
Elektronový obal atomu Vlnění o frekvenci v se může chovat jako proud částic (kvant - fotonů) o energii E = h.v Částice pohybující se s hybností p se může chovat jako vlna o vlnové délce λ = h/p Kde h
2. Atomové jádro a jeho stabilita
2. Atomové jádro a jeho stabilita Atom je nejmenší hmotnou a chemicky nedělitelnou částicí. Je tvořen jádrem, které obsahuje protony a neutrony, a elektronovým obalem. Elementární částice proton neutron
SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE
SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE Obecné základy nedestruktivní metoda strukturní analýzy zabývá se rezonancí atomových jader nutná podmínka pro měření spekter: nenulový spin atomového jádra
jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony
atom jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony molekula Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti seskupení alespoň dvou atomů
Řešit atom vodíku znamená nalézt řešení Schrödingerovy rovnice s příslušným hamiltoniánem. 1 4πǫ 0. 2m e
8 Atom vodíku Správné řešení atomu vodíku je jedním z velkých vítězství kvantové mechaniky. Podle klasické fyziky náboj, který se pohybuje se zrychlením (elektron obíhající vodíkové jádro proton), by měl
2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru
Pracovní úkol: 1. Seznámit se s interaktivní verzí simulace 2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru 3. Kvantitativně srovnat energetické ztráty v kalorimetru pro různé
Fyzika elementárn (Standardní model)
Fyzika elementárn rních částic (Standardní model) Zdenka.Broklova@mff.cuni.cz Délková škála 2 Jak pozorovat malé objekty? Částice mají i vlnové vlastnosti (dualismus, QM) Vlnová délka částice je nepřímo
(1 + v ) (5 bodů) Pozor! Je nutné si uvědomit, že v a f mají opačný směr! Síla působí proti pohybu.
Přijímací zkouška na navazující magisterské studium - 017 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Těleso s hmotností
Lineární algebra : Skalární součin a ortogonalita
Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Od kvarků k prvním molekulám
Od kvarků k prvním molekulám Petr Kulhánek České vysoké učení technické v Praze Hvězdárna a planetárium hl. m. Prahy Aldebaran Group for Astrophysics kulhanek@aldebaran.cz www.aldebaran.cz ZÁKLADNÍ SLOŽKY
Orbitaly, VSEPR 1 / 18
rbitaly, VSEPR Rezonanční struktury, atomové a molekulové orbitaly, hybridizace, určování tvaru molekuly pomocí teorie VSEPR, úvod do symetrie molekul, dipólový moment 1 / 18 Formální náboj Rozdíl mezi
Kvarky, leptony a Velk t esk
45 Kvarky, leptony a Velk t esk Tento obr zek m ûeme povaûovat za Ñfotografiiì vesmìru starèho pouze 300 000 let, tedy v dobï p ed asi 15 109 lety. Takov obraz bychom tehdy vidïli p i pohledu do vöech
Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r
Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory
Orbitaly, VSEPR. Zdeněk Moravec, 16. listopadu / 21
rbitaly, VSEPR Rezonanční struktury, atomové a molekulové orbitaly, hybridizace, určování tvaru molekuly pomocí teorie VSEPR, úvod do symetrie molekul, dipólový moment Zdeněk Moravec, http://z-moravec.net
30 let asymptotické volnosti a 40 let kvarků. pád a triumf kvantové teorie pole
30 let asymptotické volnosti a 40 let kvarků aneb pád a triumf kvantové teorie pole (Od barevných kvarků ke kvantové chromodynamice) O tom, jak měl jeden mladý doktorand správné vnuknutí, ale smutný osud,
Kalorimetr Tilecal a rekonstrukce signálu. Seminář FzÚ, 9.4.2010 Tomáš Davídek, ÚČJF MFF UK 1
Kalorimetr Tilecal a rekonstrukce signálu Seminář FzÚ, 9.4.2010 Tomáš Davídek, ÚČJF MFF UK 1 Kalorimetry (1) Základní úkoly: identifikace a měření směru a energie elektronů, pozitronů a fotonů (elektromagnetické
Lineární algebra : Skalární součin a ortogonalita
Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 30. dubna 2014, 09:00 1 2 15.1 Prehilhertovy prostory Definice 1. Buď V LP nad
Struktura atomů a molekul
Struktura atomů a molekul Obrazová příloha Michal Otyepka tento text byl vysázen systémem L A TEX2 ε ii Úvod Dokument obsahuje všechny obrázky tak, jak jsou uvedeny ve druhém vydání skript Struktura atomů
1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o.
. Kvantové jámy Pokročilé metody růstu krystalů po jednotlivých vrstvách (jako MBE) dovolují vytvořit si v krystalu libovolný potenciál. Jeden z hojně používaných materiálů je: GaAs, AlAs a jejich ternární
4 Přenos energie ve FS
4 Přenos energie ve FS Petr Ilík KF a CH, PřF UP Přenos energie (excitace) do C - 1-1 molekula chl je i při vysoké ozářenosti excitována max. 10x za sekundu neefektivní pro C - nténní systém s mnoha pigmenty
Historie standardního modelu mikrosvěta
Historie standardního modelu mikrosvěta Jiří Hořejší, Ústav částicové a jaderné fyziky MFF UK (2.vydání 2017/2018) RANÉ OBDOBÍ FYZIKY ELEMENTÁRNÍCH ČÁSTIC J. J. Thomson 1856 1940 Za počátek historie fyziky
Zeemanův jev. 1 Úvod (1)
Zeemanův jev Tereza Gerguri (Gymnázium Slovanské náměstí, Brno) Stanislav Marek (Gymnázium Slovanské náměstí, Brno) Michal Schulz (Gymnázium Komenského, Havířov) Abstrakt Cílem našeho experimentu je dokázat
Born-Oppenheimerova aproximace
Born-Oppenheimerova aproximace Oddělení elektronického a jaderného pohybu Jádra 2000 x těžší než elektrony elektrony kvantová chemie, popis systému (do 100 atomů) na základě vlastností elektronů (jádra
Elementární částice a standardní model
GYMNÁZIUM F. X. ŠALDY PŘEDMĚTOVÁ KOMISE FYSIKY Elementární částice a standardní model Poznámky & ilustrace Gymnázium F. X. Šaldy Honsoft 2007 Pracovní verze 1.0 2 ÚVOD Rady laskavému čtenáři V této kapitole