Mathematical morphology
|
|
- Antonie Matoušková
- před 6 lety
- Počet zobrazení:
Transkript
1 Mathematical morphology Václav Hlaváč Czech Technical University in Prague Czech Institute of Informatics, Robotics and Cybernetics Prague 6, Jugoslávských partyzánů 1580/3, Czech Republic also Center for Machine Perception, Outline of the talk: Point sets. Morphological transformation. Erosion, dilation, properties. Opening, closing, hit or miss. Skeleton. Thinning, sequential thinning. Distance transformation.
2 Morphology is a general concept 2/56 In biology: the analysis of size, shape, inner structure (and relationship among them) of animals, plants and microorganisms. In linguistics: analysis of the inner structure of word forms. In materials science: the study of shape, size, texture and thermodynamically distinct phases of physical objects. In signal/image processing: mathematical morphology a theoretical model based on lattice theory used for signal/image preprocessing, segmentation, etc.
3 Mathematical morphology, introduction 3/56 Mathematical morphology (MM): is a theory for analysis of planar and spatial structures; is suitable for analyzing the shape of objects; is based on a set theory, integral algebra and lattice algebra; is successful due to a a simple mathematical formalism, which opens a path to powerful image analysis tools. The morphological way... The key idea of morphological analysis is extracting knowledge from the relation of an image and a simple, small probe (called the structuring element), which is a predefined shape. It is checked in each pixel, how does this shape matches or misses local shapes in the image.
4 Mathematical morphology pioneers 4/56 Georges Matheron Jean Serra Ivan Saxl Josef Mikeš 1930, , Matheron, G. Elements pour une Theorie del Milieux Poreux Masson, Paris, Serra, J. Image Analysis and Mathematical Morphology, Academic Press, London The first promoters of the mathematical morphology in Czechoslovakia were Ivan Saxl and Josef Mikeš in 1970s.
5 Additional literature 5/56 Course on mathematical morphology by Jean Serra: Jean Serra, Image analysis and mathematical morphology. Volume 2: theoretical advances, Academic Press, London, 1988 Pierre Soille, Morphological Image Analysis: Principles and Applications, Second edition, Springer-Verlag Berlin, 2004 Laurent Najman and Hugues Talbot (editors), Mathematical Morphology, John Wiley & Sons, Inc., London, 2010
6 Links with other theories and approaches Mathematical morphology does not compete with other theories, it complements them. Discrete geometry (e.g., distance, skeleton of a region). Graph theory, e.g., minimal spanning tree (O. Boruvka 1926), watershed, computational geometry. Statistics: random models, measure theory, stereology, etc. Linear signal theory: replace + with the supremum. Scale-space: replace Gaussian smoothing with openings/closings granulometry. Level sets: dilations with PDEs, FMM (Fast Marching Method) is a distance function. Note: there are no equivalents of Fourier and wavelet transformations in mathematical morphology. 6/56
7 Different mathematical structures used 7/56 Signal processing in a vector space Vector space is a set of vectors V and set of scalars K, such that K is a field. V is a commutative group. Vectors can be added together and multiplied (scaled) by scalars. Mathematical morphology The complete lattice (E, ) is a set E provided with an ordering relation, such that x, y, z E holds (partial ordering) x x, x y, y x x = y, x y, y z x z. For any P E there exists in E (completeness) A greatest lower bound P, called infimum (also called meet). A lowest upper bound P, called supremum (also called join).
8 Example of Lattices 8/56 Lattice of primary additive colors (RGB). Lattice of real numbers R. Lattice of real numbers R = R {, + }. Lattice of whole numbers (integers) N = N {, + }. The Cartesian product of the natural numbers, ordered by so that (a, b) (c, d) (a c) & (b d).
9 Examples of complete lattices useful in image analysis 9/56 Boolean lattice of sets ordered by inclusion binary mathematical morphology, where, e.g., the occupancy of a pixel is of interest. Lattice of upper semicontinuous functions gray level mathematical morphology or binary mathematical morphology in 3D binary images, where the occupancy of a voxel is of interest. Note: Generalization to higher dimensions is possible, e.g. for n-dimensional images, as well as for multi-valued functions, e.g. time series as in motion analysis. Lattice of multi-valued functions mathematical morphology for color images.
10 Comparison of basic operations 10/56 Linear signal processing Based on the superposition principle, fundamental laws are addition, multiplication and scalar product. Basic operations preserve addition and multiplication and commute under them. ( ) Ψ λ i f i = λ i Ψ(f i ). i i The important operation is called convolution. It allows finding relation between two functions. Mathematical morphology The lattice is based on the ordering, supremum and infimum. Basic operations preserve the supremum and the infimum. Ordering preservation {x y Ψ(x) Ψ(y)} the operation Ψ is increasing. Commutation under the supremum Ψ ( x i ) = Ψ(x i ) dilation. Commutation under the infimum Ψ ( x i ) = Ψ(x i ) erosion.
11 Symmetry of supremum and infimum 11/56 The supremum and the infimum play a symmetrical role in a lattice. They are exchanged if we exchange ordering x y x y. This leads to the concept of duality. Example: In a lattice of all subsets of a set E(2E; ), two operations Ψ and Ψ are called dual, iff Ψ(X C ) = [Ψ (X)] C, where X C = E \ X denotes a complement of X in E.
12 Lattice and order Extensive, antiextensive tranform 12/56 The operation Ψ is extensive on a lattice (E, ) iff, for all elements in E, the transformed element is greater than or equal to the original element, i.e. Ψ is extensive x E, x Ψ(x). The operation Ψ is anti-extensive on a lattice (E, ) iff, for all elements in E, the transformed element is lower than or equal to the original element, i.e. Ψ is antiextensive x E, Ψ(x) x.
13 Why so abstract? 13/56 We can define operations that work in a general way. The operations can be studied without specifying the definition space. As a result, operations can be applied to, e.g., discrete images, continuous images, graphs, or meshes. Q: How the lattice framework can be used for images? A: Images are often consider as a function f : E T, where E is the set of image points (pixels) and T is a set of possible pixel values (more later).
14 Lattices of functions 14/56 Let E be arbitrary set and T a closed subset of R or Z. Functions f : E T generate a new lattice denoted T E (the abbreviation for the Cartesian product } T T {{... T} ), E times f g, iff f(x) g(x) for x E, where the supremum and the infimum derive directly from those of T, ( ) fi (x) = f i (x) ( ) fi (x) = f i (x). The approach extends directly to multivariate functions (e.g., color images, motion).
15 A simple case, the lattice for binary images 15/56 There are several ways how to define a lattice and induced morphological operation. Let us start from a simple, intuitive and practically useful case of binary images f : E {0, 1}, F = {x E f(x) = 1}. The lattice structure (E, ) for binary images can be introduced as: ( 2 E, ), where X Y X Y,,.
16 Point sets Images can be represented by point sets of an arbitrary dimension, e.g. in a N-dimensional Euclidean space. 2D Euclidean space E2 and a system of its subsets is a natural continuous domain representing planar objects. A digital counterpart of the Euclidean space based on integer numbers Z. Binary mathematical morphology in 2D a set of points represented as pairs of integers ((x, y) Z 2 ). The presence of the point informs about occupancy of a particular pixel (a location in a lattice). Binary mathematical morphology in 3D a set of points represented as triplets of integers (x, y, z) Z 3, where (x, y, z) are volumetric coordinates informing about occupancy of a particular voxel. Grayscale mathematical morphology in 2D a set of points (x, y, g) Z3, where x, y are coordinates in a plane and g represents the gray value of a particular pixel. 16/56
17 Four principles of mathematical morphology 17/56 1. Compatibility with translation The morphological operator Ψ should not depend on the translation. 2. Compatibility under the scale change The morphological operator Ψ should not depend on the scale. Note: This is principle is necessarily (slightly) violated for digital images. 3. Local knowledge The morphological operator Ψ is a local operator (see structuring elements soon). 4. Semi-continuity The morphological operator should not exhibit abrupt changes of its behavior.
18 Structuring element 18/56 A structuring element serves as a local probe in morphological operators. Structuring elements are expressed with respect to local coordinates with the origin in the representative point O (denoted by in subsequent figures). Examples: Continuous Digital
19 We start with the binary morphology, point set 19/56 We will constrain for a while to binary mathematical morphology. The example of a point set in Z2, y x X = {(1, 0), (1, 1), (1, 2), (2, 2), (0, 3), (0, 4)}
20 Translation of a set by a radiusvector 20/56 Translation X h of a point set X by a radiusvector h X h = { p E 2, p = x + h for some x X }. X h X h
21 Symmetric point set 21/56 Central symmetry is expressed with respect to a representative point O. The alternative name is a transposed point set. Definition: B = { b : b B}. Example: B = {(2, 1), (2, 2)}, B = {( 2, 1)( 2, 2)}. Original After transposition
22 Binary mathematical morphology 22/56 Deals with binary images. The domain is Z2. The range is {0, 1}. Two basic operations: dilatation and erosion, which are not invertible but dual. Two used formalisms for addition and subtraction The ordinary addition and subtraction as taught in the elementary schools. Minkowski addition, subtraction, (introduced to mathematical morphology by G. Matheron (book in French 1967), J. Serra (book in English 1982). The difference between these two approaches plays a role with erosion.
23 Minkowski addition, subtraction 23/56 Minkowski addition (Hermann Minkowski , Geometry of numbers 1889) X B = X b. b B Minkowski subtraction (the concept was introduced by H. Hadwiger in 1957) X B = X b. b B
24 Binary dilation 24/56 The dilation is a Minkowski addition, i.e. the union of translated point sets, X B = b B X b. Dilation operation X B was denoted δb(x) in a functional form by J. Serra. The dilation operation can be equivalently expressed as the function δ, δ B (X) = X B = { p E 2 : p = x + b, x X and b B }.
25 Binary dilation, an example 25/56 X = {(1, 0), (1, 1), (1, 2), (2, 2), (0, 3), (0, 4)} B = {(0, 0), (1, 0)} X B = {(1, 0), (1, 1), (1, 2), (2, 2), (0, 3), (0, 4), (2, 0), (2, 1), (2, 2), (3, 2), (1, 3), (1, 4)} X B X B
26 Binary dilation with an isotropic structuring element /56 left original, right dilation. Dilation is used to fill small holes and narrow bays in objecs. The size of the object increases. If the size has to be kept similar then dilation is combined with erosion (to come).
27 Dilation properties Commutative: X B = B X. 27/56 Associative: X (B D) = (X B) D. Invariant to translation: X h B = (X B) h. Increasing transformation: If X Y a (0, 0) B then X B Y B. Counterexample for the case of the empty representative point (0, 0) / B X B X B
28 Binary erosion 28/56 The erosion is a Minkowski subtraction, i.e. the intersection of all image X translations by the vector b B, X B = b B X b. Erosion operation X B was denoted εb(x) in a functional form by J. Serra. Equivalently, it is verified for each image pixel p, whether the result fits to X for all possible x + b. If yes then the outcome is 1, otherwise 0. ε B (X) = X B = {p E 2 : p = x + b X for all b B}. Dilation and erosion are dual morphological operations.
29 Binary erosion, an example 29/56 X = {(1, 0), (1, 1), (1, 2), (0, 3), (1, 3), (2, 3), (3, 3), (1, 4)} B = {(0, 0), (1, 0)} X B = {(0, 3), (1, 3), (2, 3)} X B X B
30 Binary erosion with an isotropic structuring element /56 left original, right erosion. Objects smaller than the structuring element vanish (e.g. lines of length one). Erosion is used for simplifying structure (decomposition of an object into simpler parts).
31 Contour by binary erosion 31/56 Contour of a binary region X (boundary mathematically) has a natural width one. X = X \ (X B). left original X, right boundary (contour) X.
32 Erosion properties 32/56 Antiextensive: If (0, 0) B then X B X. Invariant with respect to translation: X h B = (X B) h, X B h = (X B) h. Preserves inclusion: If X Y then X B Y B. Duality of erosion and dilation: (X Y ) C = X C Y. Combination of erosion and intersection: (X Y ) B = (X B) (Y B), B (X Y ) (B X) (B Y ).
33 Dilation and erosion properties (2) 33/56 The order of dilation and erosion can be interchaged: (X Y ) B = B (X Y ) (X B) (Y B). Dilation of the intersection of two sets (images) is contained in the intersection of their dilations. A possible interchange of erosion and set intersection (e.g. enables decomposition of more complex structural elements into simpler ones): B (X Y ) = (X Y ) B = (X B) (Y B), (X Y ) B (X B) (Y B), B (X Y ) = (X B) (Y B).
34 Dilation and erosion properties (3) 34/56 Sequential dilation (resp. erosion) of the image X by the structural element B followed by the structural element D is equivalent to dilation (resp. erosion) of the image X by B D (X B) D = X (B D), (X B) D = X (B D).
35 Morphological filtering 35/56 In classical signal/image processing, the term filter denotes an arbitrary processing procedure having a signal/image both as an input and an output. A filter has a precise meaning in mathematical morphology, i.e. Operation Ψ is a morphological filter Ψ is increasing and idempotent. In words: morphological filters preserve ordering relation and converge in a finite number of iterations. Two most important operations are openings and closings in this context. Openings are anti-extensive morphological filters. Closings are extensive morphological filters.
36 Binary opening 36/56 Erosion followed by dilation. X B = (X B) B If the image X remains unchanged after opening by the structuring element B, it is open with respect to B.
37 Binary closing 37/56 Dilation followed by erosion. X B = (X B) B If the image X remains unchanged after closing with the structural element B, it is closed with respect to B.
38 Properties of opening, closing 38/56 Opening and closing are dual morphological transformations (X B) C = X C B Idempotence is a property of algebraic operations or elemements of the algebra. The operation is idempotent, if its repeated use on some input provides the same output, which is yielded by a single use of that operation. Here specially: after one opening, resp. closing, the set is open, resp. closed. Subsequent use of these transformation does not change anything. X B = (X B) B X B = (X B) B
39 Transformation hit or miss 39/56 Uses a composite structuring element B = (B1, B2), B1 B2 =. X B = {x : B 1 X and B 2 X c }. Indicates the match between the composite structuring element and the part of the image. B 1 checks the objects and B 2 the background. Transformation can be expressed by erosions and dilations X B = (X B 1 ) (X c B 2 ) = (X B 1 ) \ (X B 2 ).
40 Example: detection of convex corners 40/56 Masks detecting four possible configuration of convex corners using hit or miss transformaton. The result of corner detection.
41 Homotopic transformation It is based on the connectedness relation between points, regions, which are expressed by a homotopic tree. The homotopic transformation does not change the homotopic tree. The topology relations remain unchanged. 41/56 r 1 r 1 h 1 r 2 r 2 h 1 r b r 1 2 h 1 Example: The same homotopic tree corresponds to two different images.
42 Skeleton 42/56 It is natural to represent elongated objects by a skeleton. H. Blum proposed in 1967 a Medial axis transformation. A locus of points equidistant from contour (the analogy: grass fire). A formal definition of the skeleton is based on the concept of the maximal circle (the ball in 3D).
43 Skeleton by maximal balls 43/56 A circle B(p, r) with the center p and the radius r, where r 0 is a set of points, for which the distance d r. The maximal circle B inscribed into the set X touches its boundary X in two or more points. The skeleton is a union of maximal circles centers. Not a maximal ball Maximal balls
44 Skeleton example, continuous case 44/56 Troubles with noise.
45 Discrete circles with the radius 1 45/56 Circles look differently in the discrete lattice due to different ways how the distance is defined. Examples: r= B B B B E H 4 8
46 Taxonomy of binary skeletonization algorithms Inscription of circles based on previsous definition is almost unused in practice. The computational complexity is high. The connectivity is being lost. The skeleton width > 1. 46/56 Sequential thinning. The region is eroded by a suitable structuring element, which ensures that the connectivity is not broken. The oldest approach uses structuring elements from the Golay alphabet (1969) providing a homotopic thinning. Via Voronoi diagram. Computationally expensive process, especially for large and complex objects. Via distance transformation. Fast and most often used. Via corner representation. Regions are first compressed losslessly (providing corners). The skeleton is obtained by inscribing maximal rectangles directly in the compressed data (Schlesinger M.I., 1986).
47 Properties of discrete skeleton approximations 47/56 Approximations of a true skeleton are available in discrete spaces (images). The skeleton approximation should comply to two requirements Topology, i.e. contiguity has to be pertained, e.g. a homotopic tree. Geometry, i.e. parts of the skeleton should be in the middle of the object and be invariant to geometric transformations as shift, rotation, scaling. Comparison Method topology geometry Sequential thinning yes no Via Voronoi diagram yes yes Via distance transformation no yes Via Schlesinger s corners yes yes
48 Thinning and thickening 48/56 Let X be an image and B = (B1, B2) be a composite structuring element introduced for the hit or miss transformation. Thinning X B = X \ (X B). When thinning, a part of the boundary of the object given by the structuring element B is subtracted from it by the set difference operation. Thickening X B = X (Xc B). When thickening, a part of the boundary given by the structuring element B of the background is added to the object. Thinning and thickening are dual transformations (X B) c = X c B, B = (B 2, B 1 ).
49 Sequential thinning and thickening 49/56 Let {B(1), B(2), B(3),..., B(n)} be a sequence of composite structuring elements B (i) = (B i1, B i2 ). Sequential thinning can then be expressed as a sequence of n structuring elements for square rasters (e.g. eight elements of the size 3 3, as will be shown later with Golay alphabet). X {B (i) } = (((X B (1) ) B (2) )... B (n) ). Sequential thickening (analogically) X {B (i) } = (((X B (1) ) B (2) )... B (n) ).
50 Useful sequences from the Golay s alphabet 50/56 Several sequences of structuring elements {B(i)} are useful in practice. Let us show two of them from the Golay alphabet (1969) for octagonal lattice. Structuring elements are displayed for the first two rotations, from which the other rotations can be derived. A concise representation of the composite structuring element in one matrix: the value 1 checks if the corresponding point (image pixel) is a subset of B 1 (objects). Simultaneously, the value 0 checks if the point is a subset of B 2 (background). Finally, the value means that this element is not used in the matching process. Thinning and thickening sequential by Golay alphabet elements is idempotent.
51 Thinning by the element L, homotopic approximation of the width 1 skeleton 51/56 L 1 = , L 2 = iterations
52 Thinning by the element L, cont. 52/56 Thinning until the idempotence is reached.
53 Cutting from free ends by the element E 53/56 E 1 = , E 2 = If thinning by element E is performed until the image does not change, then only closed contours remain. 5 iterations
54 Motivation for sequential morphology Distance transformation It has not matter so far, in which order the morphological operation have been used in different location in the image. Operation could have been used in a random order, line after line, in parallel,... A more specific approach, in which the order of operator positions in the image is appropriately prescribed, can yield a substantial calculation speed up. The outcome of the operator will depend not only on the input image and the operator, but also on partial results of applying the operator previous locations in the image. By doing this, the useful global information can be accumulated, and the operator can explore previous results. The benefit is in gaining the speed and simplification of algorithms. Morphological operators based on the effective distance transform algorithm (dealt with earlier) constitute an important example of this approach, e.g. in calculating skeletons in binary morphology. 54/56
55 Distance transformation Starfish example, input image 55/56 The distance transformation was explained in the lecture Digital image, basic concepts. Input color image of a starfish Starfish converted to gray scale image Segmented to logical image; 0 object; 1 background color grayscale binary
56 DT, starfish example, results 56/56 Distance transform, distance D 4 (cityblock) Distance transform, distance D 8 (chessboard) D D8 Consider a topographic view at the image function f(x, y), i.e. as a landscape where the intensity corresponds to the altitude. Distance transform, distance D QE (quasi Euclidean) Distance transform, distance D E (Euclidean) Skeleton points lie on the mountain rigdes quazieuclidean Euclidean
Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:
WORKBOOK Subject: Teacher: Student: Mathematics.... School year:../ Conic section The conic sections are the nondegenerate curves generated by the intersections of a plane with one or two nappes of a cone.
Gymnázium, Brno, Slovanské nám. 7, SCHEME OF WORK Mathematics SCHEME OF WORK. cz
SCHEME OF WORK Subject: Mathematics Year: first grade, 1.X School year:../ List of topisc # Topics Time period Introduction, repetition September 1. Number sets October 2. Rigtht-angled triangle October,
Klepnutím lze upravit styl předlohy. nadpisů. nadpisů.
1/ 13 Klepnutím lze upravit styl předlohy Klepnutím lze upravit styl předlohy www.splab.cz Soft biometric traits in de identification process Hair Jiri Prinosil Jiri Mekyska Zdenek Smekal 2/ 13 Klepnutím
Compression of a Dictionary
Compression of a Dictionary Jan Lánský, Michal Žemlička zizelevak@matfyz.cz michal.zemlicka@mff.cuni.cz Dept. of Software Engineering Faculty of Mathematics and Physics Charles University Synopsis Introduction
WORKSHEET 1: LINEAR EQUATION 1
WORKSHEET 1: LINEAR EQUATION 1 1. Write down the arithmetical problem according the dictation: 2. Translate the English words, you can use a dictionary: equations to solve solve inverse operation variable
Image Analysis and MATLAB. Jiří Militky
Image Analysis and MATLAB Jiří Militky Basic Matlab commands 0.5 0.8 IMREAD Read image from graphics file IMHIST Display histogram of image data. 0.694 GRAYTHRESH Compute global image threshold using Otsu's
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
Třída: VI. A6 Mgr. Pavla Hamříková VI. B6 RNDr. Karel Pohaněl Schváleno předmětovou komisí dne: Podpis: Šárka Richterková v. r.
MATURITNÍ TÉMATA Školní rok: 2016/2017 Ředitel školy: PhDr. Karel Goš Předmětová komise: Matematika a deskriptivní geometrie Předseda předmětové komise: Mgr. Šárka Richterková Předmět: Matematika Třída:
Grayscale mathematical morphology
Grayscale mathematical morphology Václav Hlaváč Czech Technical University in Prague Center for Machine Perception (bridging groups of the) Czech Institute of Informatics, Robotics and Cybernetics and
GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA
GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA What is an FTP client and how to use it? FTP (File transport protocol) - A protocol used to transfer your printing data files to the MAFRAPRINT
Využití hybridní metody vícekriteriálního rozhodování za nejistoty. Michal Koláček, Markéta Matulová
Využití hybridní metody vícekriteriálního rozhodování za nejistoty Michal Koláček, Markéta Matulová Outline Multiple criteria decision making Classification of MCDM methods TOPSIS method Fuzzy extension
EXACT DS OFFICE. The best lens for office work
EXACT DS The best lens for office work EXACT DS When Your Glasses Are Not Enough Lenses with only a reading area provide clear vision of objects located close up, while progressive lenses only provide
Database systems. Normal forms
Database systems Normal forms An example of a bad model SSN Surnam OfficeNo City Street No ZIP Region President_of_ Region 1001 Novák 238 Liteň Hlavní 10 26727 Středočeský Rath 1001 Novák 238 Bystřice
LOGOMANUÁL / LOGOMANUAL
LOGOMANUÁL / LOGOMANUAL OBSAH / CONTENTS 1 LOGOTYP 1.1 základní provedení logotypu s claimem 1.2 základní provedení logotypu bez claimu 1.3 zjednodušené provedení logotypu 1.4 jednobarevné a inverzní provedení
DC circuits with a single source
Název projektu: utomatizace výrobních procesů ve strojírenství a řemeslech egistrační číslo: Z..07/..0/0.008 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 09 Tento projekt je spolufinancován
Angličtina v matematických softwarech 2 Vypracovala: Mgr. Bronislava Kreuzingerová
Angličtina v matematických softwarech 2 Vypracovala: Mgr. Bronislava Kreuzingerová Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace
2. Entity, Architecture, Process
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Praktika návrhu číslicových obvodů Dr.-Ing. Martin Novotný Katedra číslicového návrhu Fakulta informačních technologií ČVUT v Praze Miloš
Litosil - application
Litosil - application The series of Litosil is primarily determined for cut polished floors. The cut polished floors are supplied by some specialized firms which are fitted with the appropriate technical
A Note on Generation of Sequences of Pseudorandom Numbers with Prescribed Autocorrelation Coefficients
KYBERNETIKA VOLUME 8 (1972), NUMBER 6 A Note on Generation of Sequences of Pseudorandom Numbers with Prescribed Autocorrelation Coefficients JAROSLAV KRAL In many applications (for example if the effect
On large rigid sets of monounary algebras. D. Jakubíková-Studenovská P. J. Šafárik University, Košice, Slovakia
On large rigid sets of monounary algebras D. Jakubíková-Studenovská P. J. Šafárik University, Košice, Slovakia coauthor G. Czédli, University of Szeged, Hungary The 54st Summer School on General Algebra
Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů
Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů Design and implementation of algorithms for adaptive control of stationary robots Marcel Vytečka 1, Karel Zídek 2 Abstrakt Článek
Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT
Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: CZ.1.07/1.5.00/34.0536 Název projektu školy: Výuka s ICT na SŠ obchodní České Budějovice Šablona
Dynamic programming. Optimal binary search tree
The complexity of different algorithms varies: O(n), Ω(n ), Θ(n log (n)), Dynamic programming Optimal binary search tree Různé algoritmy mají různou složitost: O(n), Ω(n ), Θ(n log (n)), The complexity
Vliv metody vyšetřování tvaru brusného kotouče na výslednou přesnost obrobku
Vliv metody vyšetřování tvaru brusného kotouče na výslednou přesnost obrobku Aneta Milsimerová Fakulta strojní, Západočeská univerzita Plzeň, 306 14 Plzeň. Česká republika. E-mail: anetam@kto.zcu.cz Hlavním
Dynamic Signals. Ananda V. Mysore SJSU
Dynamic Signals Ananda V. Mysore SJSU Static vs. Dynamic Signals In principle, all signals are dynamic; they do not have a perfectly constant value over time. Static signals are those for which changes
USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING
USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING Eva Minaříková Institute for Research in School Education, Faculty of Education, Masaryk University Structure of the presentation What can we as teachers
Aplikace matematiky. Dana Lauerová A note to the theory of periodic solutions of a parabolic equation
Aplikace matematiky Dana Lauerová A note to the theory of periodic solutions of a parabolic equation Aplikace matematiky, Vol. 25 (1980), No. 6, 457--460 Persistent URL: http://dml.cz/dmlcz/103885 Terms
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Anglický jazyk
VY_32_INOVACE_06_Předpřítomný čas_03. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace
VY_32_INOVACE_06_Předpřítomný čas_03 Autor: Růžena Krupičková Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace Název projektu: Zkvalitnění ICT ve slušovské škole Číslo projektu: CZ.1.07/1.4.00/21.2400
Základy teorie front III
Základy teorie front III Aplikace Poissonova procesu v teorii front II Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta
Czech Republic. EDUCAnet. Střední odborná škola Pardubice, s.r.o.
Czech Republic EDUCAnet Střední odborná škola Pardubice, s.r.o. ACCESS TO MODERN TECHNOLOGIES Do modern technologies influence our behavior? Of course in positive and negative way as well Modern technologies
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Anglický jazyk
CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA
CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA &KDSWHUSUHVHQWVWKHGHVLJQDQGIDEULFDW LRQRIPRGLILHG0LQNRZVNLIUDFWDODQWHQQD IRUZLUHOHVVFRPPXQLFDWLRQ7KHVLPXODWHG DQGPHDVXUHGUHVXOWVRIWKLVDQWHQQDDUH DOVRSUHVHQWHG
Transportation Problem
Transportation Problem ١ C H A P T E R 7 Transportation Problem The transportation problem seeks to minimize the total shipping costs of transporting goods from m origins (each with a supply s i ) to n
Vánoční sety Christmas sets
Energy news 7 Inovace Innovations 1 Vánoční sety Christmas sets Na jaře tohoto roku jste byli informováni o připravované akci pro předvánoční období sety Pentagramu koncentrátů a Pentagramu krémů ve speciálních
Chapter 7: Process Synchronization
Chapter 7: Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Critical Regions Monitors Synchronization in Solaris
Friction drives have constant or variable drives (it means variators). Friction drives are used for the transfer of smaller outputs.
Third School Year FRICTION DRIVES 1. Introduction In friction drives the peripheral force between pressed wheels is transferred by friction. To reach peripheral forces we need both a pressed force and
PC/104, PC/104-Plus. 196 ept GmbH I Tel. +49 (0) / I Fax +49 (0) / I I
E L E C T R O N I C C O N N E C T O R S 196 ept GmbH I Tel. +49 (0) 88 61 / 25 01 0 I Fax +49 (0) 88 61 / 55 07 I E-Mail sales@ept.de I www.ept.de Contents Introduction 198 Overview 199 The Standard 200
The Over-Head Cam (OHC) Valve Train Computer Model
The Over-Head Cam (OHC) Valve Train Computer Model Radek Tichanek, David Fremut Robert Cihak Josef Bozek Research Center of Engine and Content Introduction Work Objectives Model Description Cam Design
2 Axiomatic Definition of Object 2. 3 UML Unified Modelling Language Classes in UML Tools for System Design in UML 5
Contents Contents 1 Semestrální práce 1 2 Axiomatic Definition of Object 2 3 UML Unified Modelling Language 2 3.1 Classes in UML............................ 3 4 Tools for System Design in UML 5 5 Student
Perception Motivated Hybrid Approach to Tone Mapping
Perception Motivated Hybrid Approach to Tone Mapping Martin Čadík Czech Technical University in Prague, Czech Republic Content HDR tone mapping Hybrid Approach Perceptually plausible approach Cognitive
Matematická morfologie
Matematická morfologie Václav Hlaváč České vysoké učení technické v Praze Centrum strojového vnímání (přemosťuje skupiny z) Český institut informatiky, robotiky a kybernetiky Fakulta elektrotechnická,
Digital Electronics. Jaroslav Bernkopf. 17 October 2008
Digital Electronics Jaroslav Bernkopf 7 October 2008 . Introduction Úvod. Representation of Values Zobrazení veliin.2 Analogue Representation Analogové zobrazení This is an analogue meter. Toto je analogový
Introduction to MS Dynamics NAV
Introduction to MS Dynamics NAV (Item Charges) Ing.J.Skorkovský,CSc. MASARYK UNIVERSITY BRNO, Czech Republic Faculty of economics and business administration Department of corporate economy Item Charges
Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost
Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Registrační číslo: CZ.1.07/1. 5.00/34.0084 Šablona: II/2 Inovace a zkvalitnění výuky cizích jazyků na středních
AIC ČESKÁ REPUBLIKA CZECH REPUBLIC
ČESKÁ REPUBLIKA CZECH REPUBLIC ŘÍZENÍ LETOVÉHO PROVOZU ČR, s.p. Letecká informační služba AIR NAVIGATION SERVICES OF THE C.R. Aeronautical Information Service Navigační 787 252 61 Jeneč A 1/14 20 FEB +420
Zubní pasty v pozměněném složení a novém designu
Energy news4 Energy News 04/2010 Inovace 1 Zubní pasty v pozměněném složení a novém designu Od října tohoto roku se začnete setkávat s našimi zubními pastami v pozměněném složení a ve zcela novém designu.
VYSOKÁ ŠKOLA HOTELOVÁ V PRAZE 8, SPOL. S R. O.
VYSOKÁ ŠKOLA HOTELOVÁ V PRAZE 8, SPOL. S R. O. Návrh konceptu konkurenceschopného hotelu v době ekonomické krize Diplomová práce 2013 Návrh konceptu konkurenceschopného hotelu v době ekonomické krize Diplomová
1, Žáci dostanou 5 klíčových slov a snaží se na jejich základě odhadnout, o čem bude následující cvičení.
Moje hlavní město Londýn řešení: 1, Žáci dostanou 5 klíčových slov a snaží se na jejich základě odhadnout, o čem bude následující cvičení. Klíčová slova: capital, double decker bus, the River Thames, driving
Just write down your most recent and important education. Remember that sometimes less is more some people may be considered overqualified.
CURRICULUM VITAE - EDUCATION Jindřich Bláha Výukový materiál zpracován v rámci projektu EU peníze školám Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Bc. Jindřich Bláha. Dostupné z Metodického
MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY. Stručný úvod do programování v jazyce C 2.díl. České vysoké učení technické Fakulta elektrotechnická
MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY Stručný úvod do programování v jazyce C 2.díl České vysoké učení technické Fakulta elektrotechnická A1B14MIS Mikroprocesory pro výkonové systémy 07 Ver.1.10 J. Zděnek,
Enabling Intelligent Buildings via Smart Sensor Network & Smart Lighting
Enabling Intelligent Buildings via Smart Sensor Network & Smart Lighting Petr Macháček PETALIT s.r.o. 1 What is Redwood. Sensor Network Motion Detection Space Utilization Real Estate Management 2 Building
Dynamic Development of Vocabulary Richness of Text. Miroslav Kubát & Radek Čech University of Ostrava Czech Republic
Dynamic Development of Vocabulary Richness of Text Miroslav Kubát & Radek Čech University of Ostrava Czech Republic Aim To analyze a dynamic development of vocabulary richness from a methodological point
Geometry of image formation
eometry of image formation Tomáš Svoboda, svoboda@cmp.felk.cvut.cz Czech Technical University in Prague, Center for Machine Perception http://cmp.felk.cvut.cz Last update: July 4, 2008 Talk Outline Pinhole
TKGA3. Pera a klíny. Projekt "Podpora výuky v cizích jazycích na SPŠT"
Projekt "Podpora výuky v cizích jazycích na SPŠT" Pera a klíny TKGA3 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR Pera a klíny Pera a klíny slouží k vytvoření rozbíratelného
Klepnutím lze upravit styl předlohy. Klepnutím lze upravit styl předlohy. nadpisů. nadpisů. Aleš Křupka.
1 / 13 Klepnutím lze upravit styl předlohy Klepnutím lze upravit styl předlohy www.splab.cz Aleš Křupka akrupka@phd.feec.vutbr.cz Department of Telecommunications Faculty of Electrotechnical Engineering
Výuka odborného předmětu z elektrotechniky na SPŠ Strojní a Elektrotechnické
Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Oddělení celoživotního vzdělávání Závěrečná práce Výuka odborného předmětu z elektrotechniky na SPŠ Strojní a Elektrotechnické Vypracoval:
SEZNAM PŘÍLOH. Příloha 1 Dotazník Tartu, Estonsko (anglická verze) Příloha 2 Dotazník Praha, ČR (česká verze)... 91
SEZNAM PŘÍLOH Příloha 1 Dotazník Tartu, Estonsko (anglická verze)... 90 Příloha 2 Dotazník Praha, ČR (česká verze)... 91 Příloha 3 Emailové dotazy, vedení fakult TÜ... 92 Příloha 4 Emailové dotazy na vedení
WYSIWYG EDITOR PRO XML FORM
WYSIWYG EDITOR PRO XML FORM Ing. Tran Thanh Huan, Ing. Nguyen Ba Nghien, Doc. Ing. Josef Kokeš, CSc Abstract: In this paper, we introduce the WYSIWYG editor pro XML Form. We also show how to create a form
11.12. 100 ΕΙΣΟΔΟΣ = E / ENTRANCE = E = = 1174 550 ΤΥΠΟΠΟΙΗΜΕΝΟ ΚΥ = 2000 (ΕΠΙΛΟΓΗ: 2100) / CH STANDARD = 2000 (OPTIONAL: 2100) 243 50 ΚΥ/CH + 293 ΚΥ/CH +103 100 ΚΥ /CH 6 11 6 20 100 0,25 ΚΑ (CO) + 45
Právní formy podnikání v ČR
Bankovní institut vysoká škola Praha Právní formy podnikání v ČR Bakalářská práce Prokeš Václav Leden, 2009 Bankovní institut vysoká škola Praha Katedra Bankovnictví Právní formy podnikání v ČR Bakalářská
SPECIAL THEORY OF RELATIVITY
SPECIAL THEORY OF RELATIVITY 1. Basi information author Albert Einstein phenomena obsered when TWO frames of referene moe relatie to eah other with speed lose to the speed of light 1905 - speial theory
Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT
Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: CZ.1.07/1.5.00/34.0536 Název projektu školy: Výuka s ICT na SŠ obchodní České Budějovice Šablona
místo, kde se rodí nápady
místo, kde se rodí nápady a private european network of information centres on materials and innovative products. Created in 2001 in Paris, it provides members with a large selection of specific, reproducible
Image Segmentation via Graph-Cuts
1/42 Image Segmentation via Graph-Cuts Pavel Matula 21. května 2012 2/42 Outline Graph Theory Flow Networks and Graph Cuts Maximum Flow Algorithms Discrete Energy Minimization Euclidean Metric Approximation
PAINTING SCHEMES CATALOGUE 2012
Evektor-Aerotechnik a.s., Letecká č.p. 84, 686 04 Kunovice, Czech Republic Phone: +40 57 57 Fax: +40 57 57 90 E-mail: sales@evektor.cz Web site: www.evektoraircraft.com PAINTING SCHEMES CATALOGUE 0 Painting
Radiova meteoricka detekc nı stanice RMDS01A
Radiova meteoricka detekc nı stanice RMDS01A Jakub Ka kona, kaklik@mlab.cz 15. u nora 2014 Abstrakt Konstrukce za kladnı ho softwarove definovane ho pr ijı macı ho syste mu pro detekci meteoru. 1 Obsah
Czech Technical University in Prague DOCTORAL THESIS
Czech Technical University in Prague Faculty of Nuclear Sciences and Physical Engineering DOCTORAL THESIS CERN-THESIS-2015-137 15/10/2015 Search for B! µ + µ Decays with the Full Run I Data of The ATLAS
Fourth School Year PISTON MACHINES AND PISTON COMPRESSORS
Fourth School Year PISTON MACHINES AND PISTON COMPRESSORS 1. Piston machines Piston machines are classified as machines working with volume changes. It means that the working medium is closed by a in a
Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Inovace a individualizace výuky
Číslo projektu: CZ.1.07/1.5.00/34.0036 Název projektu: Inovace a individualizace výuky Autor: Mgr. Libuše Matulová Název materiálu: European Union Označení materiálu: VY_32_INOVACE_MAT 22 Datum vytvoření:
Standardní řada lisů Standard range of presses: 1000 600 340 14-85 280 2000 x 1200 900. 260 2000 x 1200 900. 630 500 89 10 80 500 x 500 560
ZS ZS ydraulické čtyřsloupové lisy ZS jsou produkční lisy určené pro tažení, stříhání a jiné tvářecí práce. Standardní a zvláštní příslušenství je obdobné jako u lisů typu Z. Rám a rozměry lisu jsou přizpůsobovány
EU peníze středním školám digitální učební materiál
EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky
User manual SŘHV Online WEB interface for CUSTOMERS June 2017 version 14 VÍTKOVICE STEEL, a.s. vitkovicesteel.com
1/ 11 User manual SŘHV Online WEB interface for CUSTOMERS June 2017 version 14 2/ 11 Contents 1. MINIMUM SYSTEM REQUIREMENTS... 3 2. SŘHV ON-LINE WEB INTERFACE... 4 3. LOGGING INTO SŘHV... 4 4. CONTRACT
Laboratoř na čipu. Lab-on-a-chip. Pavel Matějka
Laboratoř na čipu Lab-on-a-chip Pavel Matějka Typy analytických čipů 1. Chemické čipy 1. Princip chemického čipu 2. Příklady chemických čipů 3. Příklady analytického použití 2. Biočipy 1. Princip biočipu
VŠEOBECNÁ TÉMATA PRO SOU Mgr. Dita Hejlová
VŠEOBECNÁ TÉMATA PRO SOU Mgr. Dita Hejlová VZDĚLÁVÁNÍ V ČR VY_32_INOVACE_AH_3_03 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti Název školy Název šablony Předmět
Social Media a firemní komunikace
Social Media a firemní komunikace TYINTERNETY / FALANXIA YOUR WORLD ENGAGED UČTE SE OD STARTUPŮ ANALYSIS -> PARALYSIS POUŽIJTE TO, CO ZNÁ KAŽDÝ POUŽIJTE TO, CO ZNÁ KAŽDÝ POUŽIJTE TO, CO ZNÁ KAŽDÝ POUŽIJTE
The Czech education system, school
The Czech education system, school Pracovní list Číslo projektu Číslo materiálu Autor Tematický celek CZ.1.07/1.5.00/34.0266 VY_32_INOVACE_ZeE_AJ_4OA,E,L_10 Mgr. Eva Zemanová Anglický jazyk využívání on-line
CHAIN TRANSMISSIONS AND WHEELS
Second School Year CHAIN TRANSMISSIONS AND WHEELS A. Chain transmissions We can use chain transmissions for the transfer and change of rotation motion and the torsional moment. They transfer forces from
Unit 3 Stereochemistry
Unit 3 Stereochemistry Stereoisomers hirality (R) and (S) Nomenclature Depicting Asymmetric arbons Diastereomers Fischer Projections Stereochemical Relationships Optical Activity Resolution of Enantiomers
2N Voice Alarm Station
2N Voice Alarm Station 2N Lift1 Installation Manual Version 1.0.0 www.2n.cz EN Voice Alarm Station Description The 2N Voice Alarm Station extends the 2N Lift1/ 2N SingleTalk with an audio unit installed
( =>)8":(6&0?2&@"6*9:+& (?)(:5(%5&+)$(9&(>>68(:@$&
Děličky těsta BONGARD PANEOTRAD PF9 C3/@= 73X 1// F2: S=F201 V:U0 F/: 293 20 :F =2: 93/0Q F91F?@289:X :2; 9 @CC89 :F3/@1F/@: @==97V2Y901D 0A@B:;$%&*:8) C"#&"'&;*))$%+& D")&8%&'"#& je proces výroby pečiva,
PixLa PIXEL LABYRINTH PIXEL LABYRINTH PIXEL LABYRINTH PIXEL LABYRINTH PIXEL LABYRINTH PIXEL LABYRINTH PIXEL LABYRINTH PIXEL LABYRINTH PIXEL LABYRINTH
PIXEL LABYRINTH PIXEL LABYRINTH PIXEL LABYRINTH PIXEL LABYRINTH PIXEL LABYRINTH PIXEL LABYRINTH PIXEL LABYRINTH PIXEL LABYRINTH 2015 PIXEL LABYRINTH 2015 Série Pixel Labyrint nás vrací zpět labyrintem
DYNAMICS - Force effect in time and in space - Work and energy
Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 109 Tento projekt
Air Quality Improvement Plans 2019 update Analytical part. Ondřej Vlček, Jana Ďoubalová, Zdeňka Chromcová, Hana Škáchová
Air Quality Improvement Plans 2019 update Analytical part Ondřej Vlček, Jana Ďoubalová, Zdeňka Chromcová, Hana Škáchová vlcek@chmi.cz Task specification by MoE: What were the reasons of limit exceedances
Karta předmětu prezenční studium
Karta předmětu prezenční studium Název předmětu: Algoritmizace prostorových úloh Číslo předmětu: 548-0069 Garantující institut: Garant předmětu: Institut geoinformatiky RNDr. Daniela Szturcová, PhD. Kredity:
Gymnázium, Brno, Slovanské nám. 7, SCHEME OF WORK Mathematics SCHEME OF WORK. http://agb.gymnaslo. cz
SCHEME OF WORK Subject: Mathematics Year: second grade, 2.X School year:../ List of topisc # Topics Time period 1. Functions 09-10 2. Exponential and logarithm function 10-01 3. Trigonometric functions
Palmovka Business center +420 224 217 217. Kancelářské prostory k pronájmu / Offices for lease. Na Žertvách 2247/29, Prague 8
Kancelářské prostory k pronájmu / Offices for lease Palmovka Business center Na Žertvách 2247/29, Prague 8 +420 224 217 217 Knight Frank, spol. s r.o., Diamant building, Wenceslas Square 3, 110 00, Prague
Číslo projektu: CZ.1.07/1.5.00/34.0036 Název projektu: Inovace a individualizace výuky
Číslo projektu: CZ.1.07/1.5.00/34.0036 Název projektu: Inovace a individualizace výuky Autor: Mgr. Libuše Matulová Název materiálu: Education Označení materiálu: VY_32_INOVACE_MAT27 Datum vytvoření: 10.10.2013
Transformers. Produkt: Zavádění cizojazyčné terminologie do výuky odborných předmětů a do laboratorních cvičení
Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ..07/..30/0.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 09 Tento projekt je
If there is any inconsistency of weather forecast between Local Weather Station and this unit, the Local Weather Station's forecast should prevail. The trend pointer displayed on the LCD indicates the
Uni- and multi-dimensional parametric tests for comparison of sample results
Uni- and multi-dimensional parametric tests for comparison of sample results Jedno- a více-rozměrné parametrické testy k porovnání výsledků Prof. RNDr. Milan Meloun, DrSc. Katedra analytické chemie, Universita
Automatika na dávkování chemie automatic dosing
Automatika na dávkování chemie automatic dosing Swimmingpool Technology Autodos 700 Automatické dávkování Autodos Autodos automatic dosing Autodos 700 je jedno-kanálové zaøízení, pro mìøení a dávkování.
Daniel Pitín Sun in the loft Vienna 4
Daniel Pitín Sun in the Loft 2 0 1 Vienna 4 Sun in the Loft represents a number of paintings and objects I made last year. The key theme of this exhibition is space: imaginary space, mental space, the
II/2 Inovace a zkvalitnění výuky cizích jazyků na středních školách
Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona Označení materiálu II/2 Inovace a zkvalitnění výuky cizích jazyků na středních školách VY_22_INOVACE_Mrh16 Vypracoval(a),
SSOS_AJ_3.17 Czech education
Číslo a název projektu Číslo a název šablony DUM číslo a název CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT SSOS_AJ_3.17
Immigration Studying. Studying - University. Stating that you want to enroll. Stating that you want to apply for a course.
- University I would like to enroll at a university. Stating that you want to enroll I want to apply for course. Stating that you want to apply for a course an undergraduate a postgraduate a PhD a full-time
Immigration Studying. Studying - University. Stating that you want to enroll. Stating that you want to apply for a course.
- University Rád/a bych se zapsal/a na vysoké škole. Stating that you want to enroll Rád/a bych se zapsal/a na. Stating that you want to apply for a course bakalářské studium postgraduální studium doktorské
Tabulka 1 Stav členské základny SK Praga Vysočany k roku 2015 Tabulka 2 Výše členských příspěvků v SK Praga Vysočany Tabulka 3 Přehled finanční
Příloha I Seznam tabulek Tabulka 1 Stav členské základny SK Praga Vysočany k roku 2015 Tabulka 2 Výše členských příspěvků v SK Praga Vysočany Tabulka 3 Přehled finanční odměny pro rozhodčí platný od roku
Brisk guide to Mathematics
Brisk guide to Mathematics Jan Slovák and Martin Panák, Michal Bulant, Vladimir Ejov, Ray Booth Brno, Adelaide, 208 Authors: Ray Booth Michal Bulant Vladimir Ezhov Martin Panák Jan Slovák With further
STUDY EDITS FOR BETTER TRANSPORT IN THE CENTRE OF NÁCHOD
CZECH TECHNICAL UNIVERSITY IN PRAGUE Faculty of transportation sciences Title of project STUDY EDITS FOR BETTER TRANSPORT IN THE CENTRE OF NÁCHOD 2006 Petr Kumpošt Basic information about town Náchod Náchod