1. Změřte statickou charakteristiku termistoru pro proudy do 25 ma a graficky ji znázorněte.
|
|
- Julie Šmídová
- před 9 lety
- Počet zobrazení:
Transkript
1 1 Pracovní úkoly 1. Změřte statickou charakteristiku termistoru pro proudy do 25 ma a graficky ji znázorněte. 2. Změřte teplotní závislost odporu termistoru v teplotním intervalu přibližně 180 až 380 K. 3. Graficky znázorněte závislost logaritmu odporu R termistoru na 1/T a vyhodnoťte velikost materiálových veličin R a B, aktivační energie U a teplotního součinitele odporu α při pokojové teplotě. 4. Stanovte teplotu termistoru v maximu charakteristiky, případně v některých dalších bodech a tepelný odpor K. 2 Teoretický úvod Termistor je polovodičová součástka, jejíž vlastnosti se dají s výhodou využít v elektrických obvodech. Termistor je charakteristický tím, že jeho odpor je silně závislý na teplotě a to tak, že s rostoucí teplotou klesá. V oblasti, kde se uplatňuje zejména příměsová vodivost, můžeme odpor R termistoru v závislosti na teplotě T vyjádřit jako R = R exp ( B T ), (1) kde R je veličina závislá na tvaru a materiálu součástky a B popisuje citlivost termistoru. V kovalentních vodičích, kde s rostoucí teplotou vzrůstá počet nositelů náboje v daném objemu, platí B = U 2k, (2) kde U je aktivační energie nutná k ionizaci příměsí a k je Boltzmannova konstanta. Konstantu B z měření snadno určíme pomocí lineární regrese z vynesené závislosti ln R = f(1/t ) v grafu. ln R = ln R + B T (3) Teplotní součinitel odporu α u termistoru je definovaný jako Po dosazení rovnice (1) do (4) získáváme α = 1 dr R dt. (4) α = B T 2 (5) Statická charakteristika určuje závislost napětí na termistoru na procházejícím proudu při stálé okolní teplotě. Měříme vlastně dynamicky ustálený stav, kdy je vyrovnaný příkon P a je stejně velký jako tepelný výkon termistoru T T0 K, kde K je tepelný odpor termistoru, T je jeho teplota a T 0 je teplota okolí. Z toho pak plyne pro závislost na teplotě: R (T T 0 ) exp ( ) B T U = (6) K Z této rovnice pak můžeme určit teplotu T m, při které bude odpor maximální T m = B B(B 4T 0 ) (7) 2 Pro měření teploty se používá platinový odporový teploměr, pro který s dostatečnou přesností v rámci oboru teplot, který budeme proměřovat platí rovnice 1 / 6
2 Tabulka 1: Chyby měřících přístrojů pro měření statické charakteristiky termistoru Voltmetr Ampérmetr Rozsah Chyba Rozsah Chyba 0,2 V (0,05%+3) 0,4 ma (1%+5) 2 V (0,05%+3) 4 ma (1%+5) 40 ma (1,5%+5) T = 273, 15 K + R T R 0 ᾱr 0, (8) kde R T je odpor teploměru při teplotě T, R 0 je odpor při teplotě tání ledu a ᾱ je teplotní součinitel odporu teploměru. 3 Měření 3.1 Chyba měření Chybu měření počítám dle [2]. Celková chyba měření σ f (pro veličinu f) je určena jako σ f = σ 2 stat + σ 2 mer, (9) kde σ stat je statistická chyba měření f a σ mer je chyba měřidla (určená obvykle jako polovina nejmenšího dílku stupnice) použitého pro měření f. Metoda přenosu chyb je pak pro veličinu vypočtenou z n jiných naměřených veličin x i σ f = n ( ) 2 f σx x 2 i (10) i 3.2 Měření statické charakteristiky termistoru i=1 Statická charakteristika termistoru byla proměřována tak, že postupně byl zvyšován proud procházející obvodem v intervalu od 0, 08 ma do 25 ma. Pro měření napětí na termistoru a proudu v obvodu byly použity digitální multimetry - jejich chyby jsou uvedeny v tabulce č. 3. Naměřené hodnoty včetně chyb měření jsou uvedeny v tabulce č. 2. Graficky jsou pak naměřené hodnoty, včetně chybových úseček, znázorněny na obrázku č Teplotní závislost odporu termistoru Dalším měřením bylo měření teplotní závislosti odporu termistoru. To bylo realizováno pomocí platinového odporového teploměru s charakteristikami R 0 = 100 Ω a ᾱ = 3, K 1, které bereme jako přesné. Odpory odporového teploměru a termistoru v závislosti na teplotě byly měřeny pomocí digitálních ohmmetrů. Chyby měření přístrojů jsou uvedeny v tabulce č. 3. Platinový teploměr i termistor jsou napevno zabudovány do jednoho zařízení, aby v průběhu měření bylo co nejlépe zajištěno to, že obě na na teplo citlivé součástky budou na stejné teplotě. Nízké teploty byly dosaženy ochlazením kapalným dusíkem, kdežto vysoké teploty byly naopak dosaženy pomocí topení v termosce, kde byly teploměry umístěny. Počátek měření probíhal od teplot, kdy se po konci kontaktu teploměru s kapalným dusíkem, začal odpor zvyšovat (nejprve jsme chvilku počkali, protože teploměr má určitou teplotní setrvačnost a trochu dusíku se ještě z povrchu teploměru odpařovalo). 2 / 6
3 Tabulka 2: Měření statické charakteristiky termistoru I/mA σ I /A U/V σ U /V I/mA σ I /A U/V σ U /V 0,080 0,002 0, , ,28 0,04 1,2326 0,0009 0,160 0,003 0, , ,96 0,05 1,3618 0,0010 0,240 0,003 0, , ,80 0,17 1,4864 0,0010 0,300 0,004 0, , ,76 0,19 1,5600 0,0011 0,360 0,005 0, , ,94 0,20 1,6312 0,0011 0,42 0,01 0,2045 0,0004 7,44 0,21 1,6524 0,0011 0,48 0,01 0,2380 0,0004 8,52 0,23 1,6851 0,0011 0,54 0,02 0,2679 0,0004 9,68 0,25 1,7059 0,0012 0,60 0,02 0,2989 0, ,0 0,3 1,7165 0,0012 0,66 0,02 0,3277 0, ,8 0,3 1,7178 0,0012 0,72 0,02 0,3557 0, ,3 0,3 1,7182 0,0012 0,78 0,02 0,3840 0, ,5 0,3 1,7138 0,0012 0,84 0,02 0,4054 0, ,5 0,3 1,7086 0,0012 0,92 0,02 0,4447 0, ,6 0,3 1,7014 0,0012 1,02 0,02 0,4875 0, ,8 0,4 1,6932 0,0011 1,14 0,02 0,5401 0, ,0 0,4 1,6854 0,0011 1,30 0,02 0,6132 0, ,1 0,4 1,6772 0,0011 1,58 0,03 0,7328 0, ,2 0,4 1,6689 0,0011 1,74 0,03 0,7877 0, ,9 0,4 1,6575 0,0011 1,86 0,03 0,8302 0, ,9 0,5 1,6505 0,0011 1,96 0,03 0,8642 0, ,1 0,5 1,6422 0,0011 2,24 0,03 0,9555 0, U/V Naměřené hodnoty I/mA Obrázek 1: Graf statické charakteristiky termistoru 3 / 6
4 Tabulka 3: Chyby ohmmetrů použitých pro měření teplotní závislosti termistoru Platinový teploměr Termistor Rozsah Chyba Rozsah Chyba 400 Ω (0,8%+4) 200 Ω (0,2%+5) 2000 Ω (0,15%+3) Ω (0,15%+3) Ω (0,15%+3) Ω (0,15%+3) Ω (0,2%+5) Tabulka 4: Teplotní závislost odporu termistoru R T /Ω σ RT /Ω R/Ω σ R /Ω R T /Ω σ RT /Ω R/Ω σ R /Ω 50,0 0, ,0 1, ,0 0, ,0 1, ,0 0, ,0 1, ,0 0, ,0 1, ,0 0, ,0 1, ,0 0, ,0 1, ,0 0, ,0 1, ,0 0, ,0 1, ,4 66,0 0, ,0 1, ,2 68,0 0, ,0 1, ,0 69,0 1, ,0 1, ,9 70,0 1, ,0 1, ,8 72,0 1, ,0 1, ,8 74,0 1, ,0 1, ,7 76,0 1, ,0 1, ,6 78,0 1, ,0 1, ,6 80,0 1, ,0 1, ,4 82,0 1, ,0 1, ,4 84,0 1, ,0 1, ,3 86,0 1, ,0 1, ,3 88,0 1, ,0 1, ,3 4 / 6
5 16 14 Naměřené hodnoty Lineární regrese 12 ln(r/ω) /(T /K) Obrázek 2: Graf teplotní charakteristiky termistoru 3.4 Lineární regrese teplotní závislosti Grafické zpracování bylo provedeno v programu gnuplot, který použil metodu nejmenších čtverců pro proložení funkce naměřenými hodnotami. Graf je na obrázku č. 2. Hodnoty, které přímo vyšly z lineární regrese jsou B = (2550 ± 20) K R = (88 ± 8) mω Z hodnoty B pak mohu určit aktivační energii U U = (7, 04 ± 0, 06) J Pro účely určení teplotního součinitele odporu α při pokojové teplotě uvažuji, že pokojová teplota je zhruba 20 C. α = (0, 0297 ± 0, 0002) K Stanovení teploty termistoru v maximu charakteristiky Maximální hodnota napětí na termistoru při statickém měření byla zhruba mezi 12 ma a 14 ma. Pro účely dalšího výpočtu pak budu brát právě jedno diskrétní měření, které odpovídá nejvyšší hodnotě napětí, a to konkrétně při proudu I m = (13, 3 ± 0, 3) ma. Při tomto proudu bylo napětí na součástce U m = (1, 7182 ± 0, 0012) V. To odpovídá odporu R m = Um I m = (129 ± 3) Ω. Z již vypočítané konstanty B pak plyne, že maximum charakteristiky termistoru je na teplotě T m = (350 ± 4) K, což pak dle (7) odpovídá teplotě okolí T 0 = (302 ± 4) K. To vcelku odpovídá experimentu, protože termistor byl v nádobě, která izolovala teplo a v průběhu pokusu ji zahříval a proto kolem něj byla teplota okolí vyšší než běžná pokojová teplota. Tomu pak odpovídá tepelný odpor K = (2100 ± 500) KW 1 5 / 6
6 4 Diskuse Chyby měření mohly být převážně způsobeny nedokonalou teplotní rovnováhou v měření soustavě. Při měření statické charakteristiky bylo vždy potřeba chvíli počkat na to, na jaké hodnotě se proud a napětí po přenastavení ustálí, což jsem prováděl, ale je pravděpodobné, že za delší dobu by se ustálily na jiných hodnotách. Také to, že teplota okolí rostla s tím, jak jsme zvyšovali proud v termistoru, mělo vliv na vývoj měření. Pro měření teplotní závislosti odporu je zase kritické, aby platinový odporový teploměr byl v dynamické teplotní rovnováze s termistorem - aby byly současně na stejné hodnotě - protože hodnoty byly odečítány vždy zaráz. Ale to ve skutečnosti není zcela pravda, protože každá z těchto na teplo citlivých součástek mí jinou tepelnou kapacitu a ohřívá se s mírně jinou rychlostí. To nejspíše způsobilo to sice ne příliš velké, ale viditelné, prohnutí grafu závislosti ln R na 1/T a tento jev mohl i změnit mírně sklon této prohnuté přímky. Dalším jevem, který se mohl uplatnit, zejména při nejnižších teplotách, je ne zcela přesná závislost odporového teploměru na lineární funkci. V bližším přiblížení by se dala použít kvadratická funkce, což jsme neprovedli. Vysoká relativní chyba určení tepelného odporu je velká, protože je exponenciálně závislá na 1/T. Teplotu okolí u statického měření jsem vypočítal zpětně, protože umístění termistoru do izolační nádoby způsobilo nárůst teploty v jeho okolí a tedy i změnu jeho naměřené charakteristiky. Jedná se ovšem o věrohodnější způsob než v případě opačného postupu, kdy bychom se dopustili relativně velké chyby právě v určení okolní teploty. 5 Závěr Proměřil jsem statickou charakteristiku termistoru a vytvořil její graf. Naměřil jsem teplotní závislost odporu termistoru a určil jsem z ní důležité konstanty pro termistor. B = (2550 ± 20) K R = (88 ± 8) mω U = (7, 04 ± 0, 06) J α = (0, 0297 ± 0, 0002) K 1 Naměřené maximum statické charakteristiky termistoru bylo na teplotě a odpovídající teplotní odpor byl T m = (350 ± 4) K, K = (2100 ± 500) KW 1 6 Literatura [1] R. Bakule, J. Šternberk: Fyzikální praktikum II - Elektřina a magnetismus UK Praha, 1989 [2] J. Englich: Úvod do praktické fyziky I Matfyzpress, Praha / 6
PRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: IX Název: Charakteristiky termistoru Pracoval: Pavel Brožek stud. skup. 12 dne 31.10.2008
PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Charakteristiky termistoru. stud. skup.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. Úloha č. IX Název: Charakteristiky termistoru Pracoval: Lukáš Vejmelka stud. skup. FMUZV (73) dne 17.10.2013 Odevzdal
Fyzikální praktikum II
Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum II Úloha č. 9 Název úlohy: Charakteristiky termistoru Jméno: Ondřej Skácel Obor: FOF Datum měření: 16.11.2015 Datum odevzdání:... Připomínky opravujícího:
Obrázek 1: Schema čtyřbodového zapojení (převzato z [1]) 2. Změřte odpor šesti drátů Wheatstoneovým a Thomsonovým můstkem Metra - MTW.
Obrázek 1: Schema čtyřbodového zapojení (převzato z [1]) 1 Pracovní úkoly 1. Změřte průměry šesti ů na pracovní desce. 2. Změřte odpor šesti ů Wheatstoneovým a Thomsonovým můstkem Metra - MTW. Vysvětlete
Praktikum II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. XI Název: Charakteristiky diod Pracoval: Matyáš Řehák stud.sk.: 13 dne: 17.10.2008 Odevzdal
Praktikum II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. II Název: Měření odporů Pracoval: Matyáš Řehák stud.sk.: 13 dne: 17.10.2008 Odevzdal dne:...
3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.
Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost
1. Změřit metodou přímou závislost odporu vlákna žárovky na proudu, který jím protéká. K měření použijte stejnosměrné napětí v rozsahu do 24 V.
1 Pracovní úkoly 1. Změřit metodou přímou závislost odporu vlákna žárovky na proudu, který jím protéká. K měření použijte stejnosměrné napětí v rozsahu do 24 V. 2. Změřte substituční metodou vnitřní odpor
1. Stanovte a graficky znázorněte charakteristiky vakuové diody (EZ 81) a Zenerovy diody (KZ 703).
1 Pracovní úkoly 1. Stanovte a graficky znázorněte charakteristiky vakuové diody (EZ 81) a Zenerovy diody (KZ 703). 2. Určete dynamický vnitřní odpor Zenerovy diody v propustném směru při proudu 200 ma
PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úlohač.IV
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úlohač.IV Název: Měření fotometrického diagramu. Fotometrické veličiny a jejich jednotky Vypracoval: Petr Škoda Stud.
1. Změřte průběh intenzity magnetického pole na ose souosých kruhových magnetizačních cívek
1 Pracovní úkoly 1. Změřte průběh intenzity magnetického pole na ose souosých kruhových magnetizačních cívek (a) v zapojení s nesouhlasným směrem proudu při vzdálenostech 1, 16, 0 cm (b) v zapojení se
PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Charakteristiky optoelektronických součástek
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III. Úloha č. 5 Název: Charakteristiky optoelektronických součástek Pracoval: Lukáš Vejmelka obor (kruh) FMUZV (73) dne 3.3.2014
PRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: II Název: Měření odporů Pracoval: Pavel Brožek stud. skup. 12 dne 28.11.2008 Odevzdal
1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy:
1 Pracovní úkoly 1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy: (a) cívka bez jádra (b) cívka s otevřeným jádrem (c) cívka s uzavřeným jádrem 2. Přímou metodou změřte odpor
PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úlohač.8 Název: Kalibrace odporového teploměru a termočlánku- fázové přechody Pracoval: Lukáš Ledvina stud.skup.17 24.3.2009
Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora
Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět očník /y/ CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_EM_1.01_měření proudu a napětí Střední odborná škola a Střední odborné učiliště,
2. Stanovte hodnoty aperiodizačních odporů pro dané kapacity (0,5; 1,0; 2,0; 5,0 µf). I v tomto případě stanovte velikost indukčnosti L.
1 Pracovní úkoly 1. Sestavte obvod podle obr. 1 a změřte pro obvod v periodickém stavu závislost doby kmitu T na velikosti zařazené kapacity. (C = 0,1; 0,3; 0,5; 1,0; 3,0; 5,0 µf, R = 20 Ω). Výsledky měření
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky M UK Praktikum III - Optika Úloha č. 5 Název: Charakteristiky optoelektronických součástek Pracoval: Matyáš Řehák stud.sk.: 13 dne: 2. 3. 28
PRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XVIII Název: Přechodové jevy v RLC obvodu Pracoval: Pavel Brožek stud. skup. 12 dne 24.10.2008
Úloha I.E... nabitá brambora
Fyzikální korespondenční seminář MFF K Úloha.E... nabitá brambora Řešení XXV..E 8 bodů; průměr 3,40; řešilo 63 studentů Změřte zátěžovou charakteristiku brambory jako zdroje elektrického napětí se zapojenými
9. MĚŘENÍ TEPELNÉ VODIVOSTI
Měřicí potřeby 9. MĚŘENÍ TEPELNÉ VODIVOSTI 1) střídavý zdroj s regulačním autotransformátorem 2) elektromagnetická míchačka 3) skleněná kádinka s olejem 4) zařízení k měření tepelné vodivosti se třemi
PRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XI Název: Charakteristiky diody Pracoval: Pavel Brožek stud. skup. 12 dne 9.1.2009 Odevzdal
PRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: VIII Název: Měření impedancí rezonanční metodou Pracoval: Pavel Brožek stud. skup. 12
1. Změřte voltampérovou charakteristiku vakuové diody (EZ 81) pomocí zapisovače 4106.
1 Pracovní úkol 1. Změřte voltampérovou charakteristiku vakuové diody (EZ 81) pomocí zapisovače 4106. 2. Změřte voltampérovou charakteristiku Zenerovy diody (KZ 703) pomocí převodníku UDAQ- 1408E. 3. Pro
PRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: X Název: Hallův jev Pracoval: Pavel Brožek stud. skup. 12 dne 19.12.2008 Odevzdal dne:
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 17 Název: Měření absorpce světla Pracoval: Matyáš Řehák stud.sk.: 13 dne: 17. 4. 008 Odevzdal dne:...
ENERGIZE GROUP s.r.o. STŘEDISKO KALIBRAČNÍ SLUŽBY Tylova 2923, 316 00 Plzeň
List 1 z 10 Obor měřené veličiny: elektrické veličiny Kalibrace: Nominální teplota pro kalibraci: (23 ± 2) C a rozsah měření 1* Stejnosměrné elektrické napětí (0 10) mv (>10 200) mv (>0.2 V 2) V (>2 20)
Laboratorní úloha č. 4 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH VLASTNOSTÍ PNEUMATICKÝCH A ODPOROVÝCH TEPLOMĚRŮ
Laboratorní úloha č 4 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH VLASTNOSTÍ PNEUMATICKÝCH A ODPOROVÝCH TEPLOMĚRŮ 1 Teoretický úvod Pro laboratorní a průmyslové měření teploty kapalných a plynných medií v rozsahu
Fyzikální praktikum...
Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum... Úloha č.... Název úlohy:... Jméno:...Datum měření:... Datum odevzdání:... Připomínky opravujícího: Možný počet bodů Udělený počet bodů Práce při
PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 11 Název: Dynamická zkouška deformace látek v tlaku
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 11 Název: Dynamická zkouška deformace látek v tlaku Pracoval: Jakub Michálek stud. skup. 15 dne:. dubna 009 Odevzdal
PRAKTIKUM IV Jaderná a subjaderná fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Jaderná a subjaderná fyzika Úloha č. A5 Název: Spektrometrie záření α Pracoval: Radim Pechal dne 27. října 2009 Odevzdal
FJFI ČVUT V PRAZE. Úloha 8: Závislost odporu termistoru na teplotě
ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE Datum měření: 29. 4. 2009 Pracovní skupina: 3, středa 5:30 Spolupracovali: Monika Donovalová, Štěpán Novotný Jméno: Jiří Slabý Ročník, kruh:. ročník, 2. kruh
Fyzikální praktikum II
Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum II Úloha č. 18 Název úlohy: Přechodové jevy v RLC obvodu Jméno: Ondřej Skácel Obor: FOF Datum měření: 2.11.2015 Datum odevzdání:... Připomínky opravujícího:
Elektrotechnická měření - 2. ročník
Protokol SADA DUM Číslo sady DUM: Název sady DUM: VY_32_INOVACE_EL_7 Elektrotechnická měření pro 2. ročník Název a adresa školy: Střední průmyslová škola, Hronov, Hostovského 910, 549 31 Hronov Registrační
3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. P = 1 T
1 Pracovní úkol 1. Změřte účiník (a) rezistoru (b) kondenzátoru (C = 10 µf) (c) cívky Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost
Praktikum I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. III Název: Proudění viskózní kapaliny Pracoval: Matyáš Řehák stud.sk.: 16 dne: 20.3.2008
11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr
Úvod: 11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr Odporové senzory teploty (například Pt100, Pt1000) použijeme pokud chceme měřit velmi přesně teplotu v rozmezí přibližně 00 až +
I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Mechanika a molekulová fyzika Úloha č.: XVII Název: Studium otáčení tuhého tělesa Pracoval: Pavel Brožek stud. skup. 12
Vyzařování černého tělesa, termoelektrický jev, závislost odporu na teplotě.
Klíčová slova Vyzařování černého tělesa, termoelektrický jev, závislost odporu na teplotě. Princip Podle Stefanova-Boltzmannova zákona vyzařování na jednotu plochy a času černého tělesa roste se čtvrtou
Závislost odporu termistoru na teplotě
Fyzikální praktikum pro JCH, Bc Jméno a příjmení: Zuzana Dočekalová Datum: 21.4.2010 Spolupracovník: Aneta Sajdová Obor: Jaderně chemické inženýrství Číslo studenta: 5 (středa 9:30) Ročník: II. Číslo úlohy:
LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika
VUT FSI BRNO ÚVSSaR, ODBOR ELEKTROTECHNIKY JMÉNO: ŠKOLNÍ ROK: 2010/2011 PŘEDNÁŠKOVÁ SKUPINA: 1E/95 LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika ROČNÍK: 1. KROUŽEK: 2EL SEMESTR: LETNÍ UČITEL: Ing.
PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Elektrická vodivost elektrolytů. stud. skup.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. Úloha č. 26 Název: Elektrická vodivost elektrolytů Pracoval: Lukáš Vejmelka stud. skup. FMUZV 73) dne 12.12.2013 Odevzdal
PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Diskuse výsledků 0 4. Seznam použité literatury 0 1
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM... Úloha č. Název: Pracoval: stud. skup. dne Odevzdal dne: Možný počet bodů Udělený počet bodů Práce při měření 0 5 Teoretická
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 1 Název: Studium rotační disperze křemene a Kerrova jevu v kapalině Pracoval: Matyáš Řehák stud.sk.:
PRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: VII Název: Měření indukčnosti a kapacity metodou přímou Pracoval: Pavel Brožek stud.
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 3 Název: Mřížkový spektrometr Pracoval: Matyáš Řehák stud.sk.: 13 dne: 10. 4. 2008 Odevzdal dne:...
NÍZKOFREKVENČNÍ ZESILOVAČ S OZ
NÍZKOFREKVENČNÍ ZESILOVAČ S OZ 204-4R. Navrhněte a sestavte neinvertující nf zesilovač s OZ : 74 CN, pro napěťový přenos a u 20 db (0 x zesílení) při napájecím napětí cc ± 5 V a zatěžovacím odporu R L
Vycházím se studijního textu k fyzikálnímu praktiku [1]. Existují různé možnosti, jak měřit svítivost
1 Pracovní úkoly 1. Pomocí fotometrického luxmetru okalibrujte normální žárovku (stanovte její svítivost). Pro určení svítivosti normální žárovky (a její chyby) vyneste do grafu závislost osvětlení na
VEDENÍ ELEKTRICKÉHO PROUDU V KOVECH
I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í VEDENÍ ELEKTICKÉHO POD V KOVECH. Elektrický proud (I). Zdroje proudu elektrický proud uspořádaný pohyb volných částic s elektrickým nábojem mezi dvěma
3. Diskutujte výsledky měření z hlediska platnosti Biot-Savartova zákona.
1 Pracovní úkol 1. Změřte závislost výchlk magnetometru na proudu protékajícím cívkou. Měření proveďte pro obě cívk a různé počt závitů (5 a 10). Maximální povolený proud obvodem je 4. 2. Výsledk měření
Laboratorní úloha č. 1 Základní elektrická měření
Laboratorní úloha č. 1 Základní elektrická měření Úkoly měření: 1. Zvládnutí obsluhy klasických multimetrů. 2. Jednoduchá elektrická měření měření napětí, proudu, odporu. 3. Měření volt-ampérových charakteristik
PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Měření indexu lomu Jaminovým interferometrem
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III. Úloha č. 19 Název: Měření indexu lomu Jaminovým interferometrem Pracoval: Lukáš Vejmelka obor (kruh) FMUZV (73) dne 17.3.2014
Laboratorní úloha KLS 1 Vliv souhlasného rušení na výsledek měření stejnosměrného napětí
Laboratorní úloha KLS Vliv souhlasného rušení na výsledek měření stejnosměrného napětí (Multisim) (úloha pro seznámení s prostředím MULTISIM.0) Popis úlohy: Cílem úlohy je potvrdit často opomíjený, byť
Západočeská univerzita v Plzni. Fakulta aplikovaných věd
Závislost odporu vodičů na teplotě František Skuhravý Západočeská univerzita v Plzni Fakulta aplikovaných věd datum měření: 4.4.2003 Úvod do problematiky Důležitou charakteristikou pevných látek je konduktivita
Úloha 1 Multimetr. 9. Snižte napájecí napětí na 0V (otočením ovládacího knoflíku výstupního napětí zcela doleva).
Úloha 1 Multimetr CÍLE: Po ukončení tohoto laboratorního cvičení byste měli být schopni: Použít multimetru jako voltmetru pro měření napětí v provozních obvodech. Použít multimetru jako ampérmetru pro
PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Seznam použité literatury 0 1. Celkem max.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM... Úloha č. Název: Pracoval: stud. skup. dne Odevzdal dne: Možný počet bodů Udělený počet bodů Práce při měření 0 5 Teoretická
Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou:
Pracovní úkol: 1. Sestavte obvod podle obr. 1 a změřte pro obvod v periodickém stavu závislost doby kmitu T na velikosti zařazené kapacity. (C = 0,5-10 µf, R = 0 Ω). Výsledky měření zpracujte graficky
TEPELNÉ ÚČINKY EL. PROUDU
Univerzita Pardubice Fakulta elektrotechniky a informatiky Materiály pro elektrotechniku Laboratorní cvičení č 1 EPELNÉ ÚČINKY EL POUDU Jméno(a): Jiří Paar, Zdeněk Nepraš Stanoviště: 6 Datum: 21 5 28 Úvod
Mikroelektronika a technologie součástek
FAKULTA ELEKTROTECHNKY A KOMUNKAČNÍCH TECHNOLOGÍ VYSOKÉ UČENÍ TECHNCKÉ V BRNĚ Mikroelektronika a technologie součástek laboratorní cvičení Garant předmětu: Doc. ng. van Szendiuch, CSc. Autoři textu: ng.
Voltův článek, ampérmetr, voltmetr, ohmmetr
Úloha č. 1b Voltův článek, ampérmetr, voltmetr, ohmmetr Úkoly měření: 1. Sestrojte Voltův článek. 2. Seznamte se s multimetry a jejich zapojováním do obvodu. 3. Sestavte obvod pro určení vnitřního odporu
Pracoviště zkušební laboratoře: 1 Blue Panter Metrology Mezi Vodami 27, 143 00 Praha 4
List 1 z 15 Pracoviště zkušební laboratoře: 1 Blue Panter Metrology Mezi Vodami 27, 143 00 Praha 4 Kalibrační listy podepisuje: Ing. Jaroslav Smetana Tomáš Kapal vedoucí kalibrační laboratoře zástupce
PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 6. Název: Měření účiníku. dne: 16.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. úloha č. 6 Název: Měření účiníku Pracoval: Jakub Michálek stud. skup. 12 dne: 16.října 2009 Odevzdal dne: Možný počet
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 0520 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Geometrická optika - Ohniskové vzdálenosti
Základní pojmy. T = ϑ + 273,15 [K], [ C] Definice teploty:
Definice teploty: Základní pojmy Fyzikální veličina vyjadřující míru tepelného stavu tělesa Teplotní stupnice Termodynamická (Kelvinova) stupnice je určena dvěma pevnými body: absolutní nula (ustává termický
L a b o r a t o r n í c v i č e n í z f y z i k y
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZI KY L a b o r a t o r n í c v i č e n í z f y z i k y Jméno TUREČEK Daniel Datum měření 1.11.006 Stud. rok 006/007 Ročník. Datum odevzdání 15.11.006 Stud.
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEI VUT BRNO
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEI VUT BRNO Spolupracoval Příprava Název úlohy Šuranský Radek Opravy Jméno Ročník Škovran Jan Předn. skup. B Měřeno dne 4.03.2002 Učitel Stud. skupina 2 Kód Odevzdáno
5. ELEKTRICKÁ MĚŘENÍ
Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - T Ostrava 5. ELEKTCKÁ MĚŘENÍ rčeno pro posluchače všech bakalářských studijních programů FS 5.1 Úvod 5. Chyby měření 5.3 Elektrické
Šetrná jízda. Sborník úloh
Energetická agentura Zlínského kraje, o.p.s. Šetrná jízda Sborník úloh V rámci projektu Energetická efektivita v souvislostech vzdělávání Tato publikace vznikla jako sborník úloh pro vzdělávací program
X. Hallův jev. Michal Krištof. 2. Zjistěte závislost Hallova napětí na magnetické indukci při dvou hodnotách konstantního proudu vzorkem.
X. Hallův jev Michal Krištof Pracovní úkol 1. Zjistěte závislost proudu vzorkem na přiloženém napětí při nulové magnetické indukci. 2. Zjistěte závislost Hallova napětí na magnetické indukci při dvou hodnotách
Digitální multimetr VICTOR VC203 návod k použití
Digitální multimetr VICTOR VC203 návod k použití Všeobecné informace Kapesní číslicový multimetr VC 203 je přístroj který se používá pro měření DCV, ACV, DCA, odporu, diod a testu vodivosti. Multimetr
Technická měření v bezpečnostním inženýrství. Měření teploty, měření vlhkosti vzduchu
Technická měření v bezpečnostním inženýrství Čís. úlohy: 4 Název úlohy: Měření teploty, měření vlhkosti vzduchu Úkol měření a) Změřte teplotu topné desky IR teploměrem. b) Porovnejte měření teploty skleněným
Název: Polovodiče zkoumání závislosti odporu termistoru a fotorezistoru na vnějších podmínkách
Název: Polovodiče zkoumání závislosti odporu termistoru a fotorezistoru na vnějších podmínkách Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové
Studium kladného sloupce doutnavého výboje pomocí elektrostatických sond: jednoduchá sonda
1 Úvod Studium kladného sloupce doutnavého výboje pomocí elektrostatických sond: jednoduchá sonda V této úloze se zaměříme na měření parametrů kladného sloupce doutnavého výboje, proto je vhodné se na
Netradiční měřicí přístroje 4
Netradiční měřicí přístroje 4 LEOŠ DVOŘÁK Katedra didaktiky fyziky MFF UK Praha Příspěvek popisuje jednoduchý měřič napětí s indikací pomocí sloupečku svítivých diod. Přístroj se hodí například pro demonstraci
REE 11/12Z - Elektromechanická přeměna energie. Stud. skupina: 2E/95 Hodnocení: FSI, ÚMTMB - ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY
Předmět: REE 11/12Z - Elektromechanická přeměna energie Jméno: Ročník: 2 Měřeno dne: 29.11.2011 Stud. skupina: 2E/95 Hodnocení: Ústav: FSI, ÚMTMB - ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY Spolupracovali:
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 19.3.2011 Jméno: Jakub Kákona Pracovní skupina: 2 Hodina: Po 7:30 Spolupracovníci: Viktor Polák Hodnocení: Ohniskové vzdálenosti a vady čoček a zvětšení
Fyzikální praktikum č.: 2
Datum: 3.3.2005 Fyzikální praktikum č.: 2 Vypracoval: Tomáš Henych Název: Studium termoelektronové emise Úkoly: 1. Změřte výstupní práci w wolframu pomocí Richardsonovy Dushmanovy přímky. 2. Vypočítejte
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 4: Měření dutých objemů vážením a kompresí plynu Datum měření: 23. 10. 2009 Měření Poissonovy konstanty vzduchu Jméno: Jiří Slabý Pracovní skupina: 1 Ročník
Jan Perný 05.09.2006. využíváme při orientaci pomocí kompasu. Drobná odchylka mezi severním
Měření magnetického pole Země Jan Perný 05.09.2006 www.pernik.borec.cz 1 Úvod Že planeta Země má magnetické pole, je známá věc. Běžně této skutečnosti využíváme při orientaci pomocí kompasu. Drobná odchylka
Tepelně vlhkostní mikroklima. Vlhkost v budovách
Tepelně vlhkostní mikroklima Vlhkost v budovách Zdroje vodní páry stavební vlhkost - vodní pára vázaná v materiálech v důsledku mokrých technologických procesů (chemicky nebo fyzikálně vázaná) zemní vlhkost
Synchronní detektor, nazývaný též fázově řízený usměrňovač, je určen k měření elektrolytické střední hodnoty periodického signálu podle vztahu.
ZADÁNÍ: ) Seznamte se se zapojením a principem činnosti synchronního detektoru 2) Změřte statickou převodní charakteristiku synchronního detektoru v rozsahu vstupního ss napětí ±V a určete její linearitu.
Tabulka I Měření tloušťky tenké vrstvy
Pracovní úkol 1. Změřte tloušťku tenké vrstvy ve dvou různých místech. 2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 3. Okalibrujte
PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jakub Michálek stud. skup. 15 dne: 20. března 2009 Odevzdal dne: Možný
Rozeznáváme tři základní složky vibrací elektrických strojů točivých. Vibrace elektromagnetického původu
Rozeznáváme tři základní složky vibrací elektrických strojů točivých Vibrace elektromagnetického původu Vibrace mechanického původu Vibrace - hluk ventilačního původu Od roku 1985 pozorují fenomén negativního
Měření logaritmického dekrementu kmitů v U-trubici
Měření logaritmického dekrementu kmitů v U-trubici Online: http://www.sclpx.eu/lab2r.php?exp=17 Tento experiment, autorem publikovaný v [31] a [32], je z pohledu středoškolského učiva opět nadstavbový
12 Prostup tepla povrchem s žebry
2 Prostup tepla povrchem s žebry Lenka Schreiberová, Oldřich Holeček Základní vztahy a definice V případech, kdy je třeba sdílet teplo z média s vysokým součinitelem přestupu tepla do média s nízkým součinitelem
Praktikum II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. IV Název: Měření malých odporů Pracoval: Matyáš Řehák stud.sk.: 13 dne: 10.10.2008 Odevzdal
PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. IV Název: Měření fotometrického diagramu. Fotometrické veličiny a jejich jednotky Pracoval: Jan Polášek stud.
ELT1 - Přednáška č. 4
ELT1 - Přednáška č. 4 Statická elektřina a vodivost 2/2 Rozložení elektostatických nábojů Potenciál el. pole, el. napětí, páce Coulombův zákon Bodový náboj - opakování Coulombův zákon - síla, kteou působí
Fyzikální praktikum III
Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum III Úloha č. 19 Název úlohy: Měření indexu lomu Jaminovým interferometrem Jméno: Ondřej Skácel Obor: FOF Datum měření: 24.2.2016 Datum odevzdání:...
BEZDOTYKOVÉ TEPLOMĚRY
Tento dokument je k disposici na internetu na adrese: http://www.vscht.cz/ufmt/kadleck.html BEZDOTYKOVÉ TEPLOMĚRY Bezdotykové teploměry doznaly v poslední době značného pokroku a rozšíření díky pokroku
Úloha 5: Charakteristiky optoelektronických součástek
Petra Suková, 2.ročník, F-14 1 Úloha 5: Charakteristiky optoelektronických součástek 1 Zadání 1. Změřte voltampérové a světelné charakteristiky připravených luminiscenčních diod v propustném směru a určete,
Úloha č.: XVII Název: Zeemanův jev Vypracoval: Michal Bareš dne 18.10.2007. Posuzoval:... dne... výsledek klasifikace...
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: XVII Název: Zeemanův jev Vypracoval: Michal Bareš dne 18.10.2007 Odevzdal dne:... vráceno:... Odevzdal dne:...
PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Seznam použité literatury 0 1. Celkem max.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky M UK PRAKTIKUM... Úloha č. Název: Pracoval: stud. skup. dne Odevzdal dne: Možný počet bodů Udělený počet bodů Práce při měření 5 Teoretická
Fyzikální praktikum 1
Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #9 Základní experimenty akustiky Jméno: Ondřej Finke Datum měření: 3.11.014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě spočítejte,
ELEKTRICKÝ PROUD V KAPALINÁCH, PLYNECH A POLOVODIČÍCH
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D14_Z_OPAK_E_Elektricky_proud_v_kapalinach _plynech_a_polovodicich_t Člověk a příroda
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925
Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Název: Datum vytvoření: 20. 3. 2014
I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Mechanika a molekulová fyzika Úloha č.: XVI Název: Studium Brownova pohybu Pracoval: Pavel Brožek stud. skup. 1 dne 4.4.008
1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku.
1 Pracovní úkoly 1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku. 3. Výsledky měření graficky znázorněte, modul