Jak se matematika poučila v biologii

Rozměr: px
Začít zobrazení ze stránky:

Download "Jak se matematika poučila v biologii"

Transkript

1 Jak se matematika poučila v biologii René Kalus IT4Innovations, VŠB TUO

2 Role matematiky v (nejen) přírodních vědách

3 Matematika inspirující a sloužící jazyk pro komunikaci s přírodou V 4 3 r 3

4 Matematika inspirující a sloužící jazyk pro komunikaci s přírodou prostředky pro jeho použití V 4 r 3 3 V r 3 3 4

5 Matematika inspirující a sloužící jazyk pro komunikaci s přírodou prostředky pro jeho použití V 4 r 3 3 V r matematika další vědy,

6 Matematika inspirovaná matematika? další vědy,

7 Problém

8 min ( )?, Problém fx ab ab, max fx ( )?

9 Problém

10 Problém maximum

11 Problém maximum minimum (lokální minimum)

12 Problém maximum (další) lokální minimum minimum (lokální minimum)

13 Problém lokální maximum maximum (další) lokální minimum minimum (lokální minimum)

14 Problém rozšíření na ND případ f ( x1, x2,..., x N ) min (,,..., )? f x x x 1 2 N max (,,..., )? f x x x 1 2 N

15 K čemu je to vlastně dobré? tvarová optimalizace

16 K čemu je to vlastně dobré? struktura molekul, nanočástic, krystalů

17 K čemu je to vlastně dobré? (nejen) chemické vazby

18 min ( )?, Problém fx ab ab, max fx ( )?

19 Řešení Spádové metody jedno lokální minimum

20 Řešení Spádové metody jedno lokální minimum

21 Řešení Spádové metody jedno lokální minimum

22 Řešení Spádové metody jedno lokální minimum

23 Řešení Spádové metody jedno lokální minimum

24 Řešení Spádové metody jedno lokální minimum

25 Řešení Spádové metody více lokálních minim

26 Řešení Spádové metody více lokálních minim

27 Řešení Spádové metody více lokálních minim

28 Řešení Spádové metody více lokálních minim

29 Ingredience řešení

30 Ingredience řešení prohledávání

31 Ingredience řešení prohledávání dohledávání

32 Ingredience řešení prohledávání dohledávání

33 Biologická inspirace

34 Biologická evoluce

35 Biologická evoluce CO? hledání maxim(a) fyzické zdatnosti FZ = f(g) [G = kombinace genů] JAK? Změny G mutace dědičnost (křížení) tak, aby f(g) dosáhla maximální hodnoty přírodní výběr (selekce)

36 Biologická evoluce CO? hledání maxim(a) fyzické zdatnosti FZ = f(g) [G = kombinace genů] JAK? Změny G mutace dědičnost (křížení) tak, aby f(g) dosáhla maximální hodnoty přírodní výběr (selekce)

37 Genetická informace DNA CGG TAC GAT

38 Exprese genetické informace geny proteiny organismus G proteiny, FZ = f(g)

39 Exprese genetické informace geny proteiny organismus G proteiny, FZ = f(g) Inspirace x f y = f(x)

40 Jak na to? Změny x: mutace dědičnost (křížení) tak, aby f(x) dosáhla maximální/minimální hodnoty přírodní výběr (selekce)

41 Genetické algoritmy

42 Problém Minimum funkce na (uzavřeném) intervalu min ( ) fx x a, b

43 Biologická reprezentace problému Populace jedinců (geny, chromozomy) x, x,..., x ; x a, b 1 2 N K

44 Biologická reprezentace problému Populace jedinců (geny, chromozomy) x, x,..., x ; x a, b 1 2 N K Binární reprezentace nezávislé proměnné n x {0,1}, např. [1,0,0,1,1], tedy 1, 0,... n b a x a k2 n 2 1 k 1 n k 1 2

45 Biologická reprezentace problému Populace jedinců (geny, chromozomy) x, x,..., x ; x a, b 1 2 N K Binární reprezentace nezávislé proměnné n x {0,1}, např. [1,0,0,1,1], tedy 1, 0,... n b a x a k2 n 2 1 k 1 n k 1 2 Příklad [1,0,0,1,1], a 0, b 1 x 0,

46 Biologická reprezentace problému Evoluce (střídání generací) 0: x, x,..., xn (0) (0) (0) 1 2 1: x, x,..., xn (1) (1) (1) 1 2 N : x, x,..., xn ( N ) ( N ) ( N ) 1 2 1) POTOMSTVO mutace křížení 2) SELEKCE fyzická zdatnost

47 Mutace

48 Křížení rodiče potomci

49 Selekce rodiče + potomci výběr do další generace dle fyzické zdatnosti [hodnoty f(x)] x, x,..., x ; x, x,..., x x, x,..., x ( K) ( K) ( K) ( ) ( K) ( K) ( K 1) ( K 1) ( K 1) 1 2 N 1 2 M 1 2 N

50 Selekce rodiče + potomci výběr do další generace dle fyzické zdatnosti [hodnoty f(x)] x, x,..., x ; x, x,..., x x, x,..., x ( K) ( K) ( K) ( ) ( K) ( K) ( K 1) ( K 1) ( K 1) 1 2 N 1 2 M 1 2 N

51 Ukázka 1 min f ( x) x 2 x 1,1

52 Ukázka 1 min f ( x) x 2 x 1,1

53 Ukázka 1 min f ( x) x 2 x 1,1

54 Ukázka 1 min f ( x) x 2 x 1,1

55 Ukázka 1 min f ( x) x 2 x 1,1

56 Ukázka 1 min f ( x) x 2 x 1,1

57 Ukázka 1 min f ( x) x 2 x 1,1

58 Ukázka 1 min f ( x) x 2 x 1,1

59 Ukázka 1 min f ( x) x 2 x 1,1

60 Ukázka 2 min f( x) x 4 0,1x 3 x 2 x 1,1

61 Ukázka 2 min f( x) x 4 0,1x 3 x 2 x 1,1

62 Ukázka 2 min f( x) x 4 0,1x 3 x 2 x 1,1

63 Ukázka 2 min f( x) x 4 0,1x 3 x 2 x 1,1

64 Ukázka 2 min f( x) x 4 0,1x 3 x 2 x 1,1

65 Ukázka 2 min f( x) x 4 0,1x 3 x 2 x 1,1

66 Ukázka 2 min f( x) x 4 0,1x 3 x 2 x 1,1

67 Ukázka 2 min f( x) x 4 0,1x 3 x 2 x 1,1

68 Ukázka 2 min f( x) x 4 0,1x 3 x 2 x 1,1

69 Ukázka 2 min f( x) x 4 0,1x 3 x 2 x 1,1

70 Take home message(s)

71 Take home message(s) biologie poučila matematiku, jak řešit optimalizační úlohy (minimalizace / maximalizace)

72 Take home message(s) biologie poučila matematiku, jak řešit optimalizační úlohy (minimalizace / maximalizace) genetické (evoluční) algoritmy imitace (zjednodušené) biologické evoluce

73 Take home message(s) biologie poučila matematiku, jak řešit optimalizační úlohy (minimalizace / maximalizace) genetické (evoluční) algoritmy imitace (zjednodušené) biologické evoluce princip: střídání generací dědičnost (křížení), mutace, selekce

74 Take home message(s) biologie poučila matematiku, jak řešit optimalizační úlohy (minimalizace / maximalizace) genetické (evoluční) algoritmy imitace (zjednodušené) biologické evoluce princip: střídání generací dědičnost (křížení), mutace, selekce velmi efektivní pro komplikované problémy (mnoho lokálních extrémů, ND)

75 Take home message(s) biologie poučila matematiku, jak řešit optimalizační úlohy (minimalizace / maximalizace) genetické (evoluční) algoritmy imitace (zjednodušené) biologické evoluce princip: střídání generací dědičnost (křížení), mutace, selekce velmi efektivní pro komplikované problémy (mnoho lokálních extrémů, ND) stochastické algoritmy (náhoda!!!)

76 Konec

77 Přídavek Další (biologií) inspirované algoritmy

78 Příklady stochastických algoritmů BIOLOGIE hejnové algoritmy mravenci, včely, světlušky, netopýři, kukačky

79 Příklady stochastických algoritmů BIOLOGIE hejnové algoritmy mravenci, včely, světlušky, netopýři, kukačky FYZIKA simulované žíhání

80 Příklady stochastických algoritmů BIOLOGIE hejnové algoritmy mravenci, včely, světlušky, netopýři, kukačky FYZIKA simulované žíhání HAZARDNÍ HRY Monte Carlo

81 Konec.

Úvod do optimalizace, metody hladké optimalizace

Úvod do optimalizace, metody hladké optimalizace Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady

Více

PŘEDNÁŠKA 03 OPTIMALIZAČNÍ METODY Optimization methods

PŘEDNÁŠKA 03 OPTIMALIZAČNÍ METODY Optimization methods CW057 Logistika (R) PŘEDNÁŠKA 03 Optimization methods Ing. Václav Venkrbec skupina obecných modelů slouží k nalezení nejlepšího řešení problémů a modelovaných reálií přináší řešení: prvky konečné / nekonečné

Více

Simulované žíhání jako nástroj k hledání optimálního řešení

Simulované žíhání jako nástroj k hledání optimálního řešení Simulované žíhání jako nástroj k hledání optimálního řešení Michael Pokorný - Střední škola aplikované kybernetiky s.r.o. - pokorny.michael@ssakhk.cz 21. června 211 Úvod Nedeterministická metoda optimalizace

Více

1. Úvod do genetických algoritmů (GA)

1. Úvod do genetických algoritmů (GA) Obsah 1. Úvod do genetických algoritmů (GA)... 2 1.1 Základní informace... 2 1.2 Výstupy z učení... 2 1.3 Základní pomy genetických algoritmů... 2 1.3.1 Úvod... 2 1.3.2 Základní pomy... 2 1.3.3 Operátor

Více

Evoluční výpočetní techniky (EVT)

Evoluční výpočetní techniky (EVT) Evoluční výpočetní techniky (EVT) - Nacházejí svoji inspiraci v přírodních vývojových procesech - Stejně jako přírodní jevy mají silnou náhodnou složku, která nezanedbatelným způsobem ovlivňuje jejich

Více

Popis zobrazení pomocí fuzzy logiky

Popis zobrazení pomocí fuzzy logiky Popis zobrazení pomocí fuzzy logiky diplomová práce Ján Fröhlich KM, FJFI, ČVUT 23. dubna 2009 Ján Fröhlich ( KM, FJFI, ČVUT ) Popis zobrazení pomocí fuzzy logiky 23. dubna 2009 1 / 25 Obsah 1 Úvod Základy

Více

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 DOLOVÁNÍ V DATECH (DATA MINING) OBJEVUJE SE JIŽ OD 60. LET 20. ST. S ROZVOJEM POČÍTAČOVÉ TECHNIKY DEFINICE PROCES VÝBĚRU, PROHLEDÁVÁNÍ A MODELOVÁNÍ

Více

Emergence chování robotických agentů: neuroevoluce

Emergence chování robotických agentů: neuroevoluce Emergence chování robotických agentů: neuroevoluce Petra Vidnerová, Stanislav Slušný, Roman Neruda Ústav Informatiky, AV ČR Kognice a umělý život VIII Praha 28. 5. 2008 Evoluční robotika: EA & neuronové

Více

Monte Carlo, genetické algoritmy, neuronové sítě

Monte Carlo, genetické algoritmy, neuronové sítě Monte Carlo, genetické algoritmy, neuronové sítě Monte Carlo a karty Historie Hra solitaire: jaká je pravděpodobnost výhry s dobře promíchanými kartami? Analytické počítání je složité, protože vítězství

Více

MOŽNOSTI OPTIMALIZACE VE STAVEBNICTVÍ

MOŽNOSTI OPTIMALIZACE VE STAVEBNICTVÍ ESKÉ VYSOKÉ U ENÍ TECHNICKÉ V PRAZE Fakulta stavební MOŽNOSTI OPTIMALIZACE VE STAVEBNICTVÍ Studijní program: Stavební inženýrství Studijní obor: Fyzikální a materiálové inženýrství Vypracovala: Ing. Markéta

Více

Genetické algoritmy. Informační a komunikační technologie ve zdravotnictví

Genetické algoritmy. Informační a komunikační technologie ve zdravotnictví Genetické algoritmy Informační a komunikační technologie ve zdravotnictví Přehled přednášky Úvod Historie Základní pojmy Principy genetických algoritmů Možnosti použití Související metody AI Příklad problém

Více

Využití metod strojového učení v bioinformatice David Hoksza

Využití metod strojového učení v bioinformatice David Hoksza Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace

Více

Struktury a vazebné energie iontových klastrů helia

Struktury a vazebné energie iontových klastrů helia Společný seminář 11. června 2012 Struktury a vazebné energie iontových klastrů helia Autor: Lukáš Červenka Vedoucí práce: Doc. RNDr. René Kalus, Ph.D. Technický úvod Existují ověřené optimalizační algoritmy

Více

Biologicky inspirované výpočty. Schématické rozdělení problematiky a výuky

Biologicky inspirované výpočty. Schématické rozdělení problematiky a výuky Biologicky inspirované výpočty Schématické rozdělení problematiky a výuky 1 Biologicky inspirované výpočty - struktura problematiky Evoluční systémy: evoluční algoritmy, evoluční hardware, víceúčelová

Více

ňď Ó Ó Š ť ř ř ř Č ř ť ř Ř Š Ě Č Č ř Č Ý Ě ť Ě ť ř ý ř Ř ť ň Ě Ý ř Ě ř ř ň ť Š Š Š ň ť Ó ť Á ť ř Ů Ú Ě Č ť ň Š ř Ď Č Š ň Ř Ě ň ý řň ř ř ř Č Š ť Š Š Š Ú Š Á Ý Ú Š Š Š Š Š ť Á ť ť Ě ť ť ť ř Ú Ú Ú Š Ů Š ý

Více

Princip optimalizačních metod inspirovaných přírodou

Princip optimalizačních metod inspirovaných přírodou Princip optimalizačních metod inspirovaných přírodou Tomáš Kroupa 20. května 2014 Tento studijní materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Obsah Úkol a

Více

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/ Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Mendelovská genetika - Základy přenosové genetiky Základy genetiky Gregor (Johann)

Více

Evoluční algoritmy. Podmínka zastavení počet iterací kvalita nejlepšího jedince v populaci změna kvality nejlepšího jedince mezi iteracemi

Evoluční algoritmy. Podmínka zastavení počet iterací kvalita nejlepšího jedince v populaci změna kvality nejlepšího jedince mezi iteracemi Evoluční algoritmy Použítí evoluční principů, založených na metodách optimalizace funkcí a umělé inteligenci, pro hledání řešení nějaké úlohy. Populace množina jedinců, potenciálních řešení Fitness function

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)

Více

Metaheuristiky s populacemi

Metaheuristiky s populacemi Metaheuristiky s populacemi 8. března 2018 1 Společné vlastnosti 2 Evoluční algoritmy 3 Optimalizace mravenčí kolonie Zdroj: El-Ghazali Talbi, Metaheuristics: From Design to Implementation. Wiley, 2009.

Více

OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB D24FZS

OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB D24FZS OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb Anotace: Optimalizace objektů pozemních staveb

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován

Více

Modelov an ı biologick ych syst em u Radek Pel anek

Modelov an ı biologick ych syst em u Radek Pel anek Modelování biologických systémů Radek Pelánek Modelování v biologických vědách typický cíl: pomocí modelů se snažíme pochopit, jak biologické systémy fungují model zahrnuje naše chápání simulace ukazuje,

Více

Metoda Monte Carlo, simulované žíhání

Metoda Monte Carlo, simulované žíhání co byste měli umět po dnešní lekci: integrovat pomocí metody Monte Carlo modelovat jednoduché mnočásticové systémy (Brownův pohyb,...) nalézt globální minimum pomocí simulovaného žíhání Určení čísla metodou

Více

Genetické algoritmy. a jejich praktické využití. Pavel Šturc. průmyslu, stejně tak je zde uvedeno i několik případů jejich úspěšné implementace.

Genetické algoritmy. a jejich praktické využití. Pavel Šturc. průmyslu, stejně tak je zde uvedeno i několik případů jejich úspěšné implementace. Genetické algoritmy a jejich praktické využití Pavel Šturc Úvod Cílem této práce je seznámit čtenáře se základním principem funkce genetických algoritmů a nastínit jejich možné aplikování do různých odvětví

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

Více

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky

Více

Ukázka knihy z internetového knihkupectví www.kosmas.cz

Ukázka knihy z internetového knihkupectví www.kosmas.cz Ukázka knihy z internetového knihkupectví www.kosmas.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w. k o s m a s. c z, U I D : K O S 1 8 0 7 8 4 U k á z k a k n i h

Více

A0M33EOA: Evoluční optimalizační algoritmy

A0M33EOA: Evoluční optimalizační algoritmy A0M33EOA: Evoluční optimalizační algoritmy Zkouškový test Pátek 8. února 2011 Vaše jméno: Známka, kterou byste si z předmětu sami dali, a její zdůvodnění: Otázka: 1 2 3 4 5 6 7 8 Celkem Body: 1 3 2 1 4

Více

Bioinformatika a výpočetní biologie KFC/BIN. I. Přehled

Bioinformatika a výpočetní biologie KFC/BIN. I. Přehled Bioinformatika a výpočetní biologie KFC/BIN I. Přehled RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Definice bioinformatiky (Molecular) bio informatics: bioinformatics is conceptualising biology

Více

OPTIMALIZACE. (přehled metod)

OPTIMALIZACE. (přehled metod) OPTIMALIZACE (přehled metod) Typy optimalizačních úloh Optimalizace bez omezení Nederivační metody Derivační metody Optimalizace s omezeními Lineární programování Nelineární programování Globální optimalizace

Více

Algoritmy pro spojitou optimalizaci

Algoritmy pro spojitou optimalizaci Algoritmy pro spojitou optimalizaci Vladimír Bičík Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze 10.6.2010 Vladimír Bičík (ČVUT Praha) Algoritmy pro spojitou optimalizaci

Více

OSA. maximalizace minimalizace 1/22

OSA. maximalizace minimalizace 1/22 OSA Systémová analýza metodika používaná k navrhování a racionalizaci systémů v podmínkách neurčitosti vyšší stupeň operační analýzy Operační analýza (výzkum) soubor metod umožňující řešit rozhodovací,

Více

Zesouladení ( sjednocení ) poznatků genetiky a evolucionistických teorií

Zesouladení ( sjednocení ) poznatků genetiky a evolucionistických teorií Obecná genetika Zesouladení ( sjednocení ) poznatků genetiky a evolucionistických teorií Ing. Roman Longauer, CSc. Ústav zakládání a pěstění lesů, LDF MENDELU Brno Tento projekt je spolufinancován Evropským

Více

Numerické metody 6. května FJFI ČVUT v Praze

Numerické metody 6. května FJFI ČVUT v Praze Extrémy funkcí Numerické metody 6. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod 1D Více dimenzí Kombinatorika Lineární programování Programy 1 Úvod Úvod - Úloha Snažíme se najít extrém funkce, at už jedné

Více

6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života?

6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života? 6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života? Pamatujete na to, co se objevilo v pracích Charlese Darwina a Alfreda Wallace ohledně vývoje druhů? Aby mohl mechanismus přírodního

Více

Těsně před infarktem. Jak předpovědět infarkt pomocí informatických metod. Jan Kalina, Marie Tomečková

Těsně před infarktem. Jak předpovědět infarkt pomocí informatických metod. Jan Kalina, Marie Tomečková Těsně před infarktem Jak předpovědět infarkt pomocí informatických metod Jan Kalina, Marie Tomečková Program, osnova sdělení 13,30 Úvod 13,35 Stručně o ateroskleróze 14,15 Měření genových expresí 14,00

Více

PRAKTIKUM Z OBECNÉ GENETIKY

PRAKTIKUM Z OBECNÉ GENETIKY RNDr. Pavel Lízal, Ph.D. Přírodovědecká fakulta MU Ústav experimentální biologie Oddělení genetiky a molekulární biologie lizal@sci.muni.cz 1) Praktikum z obecné genetiky 2) Praktikum z genetiky rostlin

Více

Numerické metody a programování. Lekce 8

Numerické metody a programování. Lekce 8 Numerické metody a programování Lekce 8 Optimalizace hledáme bod x, ve kterém funkce jedné nebo více proměnných f x má minimum (maximum) maximalizace f x je totéž jako minimalizace f x Minimum funkce lokální:

Více

Obsah. Obsah. Předmluva...9. 1. Úvod...13. Část I: Genetické algoritmy...17. 2. Genetický algoritmus krok za krokem...19

Obsah. Obsah. Předmluva...9. 1. Úvod...13. Část I: Genetické algoritmy...17. 2. Genetický algoritmus krok za krokem...19 GENETICKÉ ALGORITMY A GENETICKÉ PROGRAMOV N 5 Obsah Předmluva...9 1. Úvod...13 Část I: Genetické algoritmy...17 2. Genetický algoritmus krok za krokem...19 3. Proč genetické algoritmy fungují?...27 4.

Více

Registrační číslo projektu: CZ.1.07/1.5.00/34.0649

Registrační číslo projektu: CZ.1.07/1.5.00/34.0649 Výukový materiál zpracován v rámci projektu EU peníze školám Název školy: Střední zdravotnická škola a Obchodní akademie, Rumburk, příspěvková organizace Registrační číslo projektu: CZ.1.07/1.5.00/34.0649

Více

"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Molekulární základy genetiky

Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT . Molekulární základy genetiky "Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Molekulární základy genetiky 1/76 GENY Označení GEN se používá ve dvou základních významech: 1. Jako synonymum pro vlohu

Více

Obsah. Obsah. Předmluva Úvod Část I: Genetické algoritmy Genetický algoritmus krok za krokem...19

Obsah. Obsah. Předmluva Úvod Část I: Genetické algoritmy Genetický algoritmus krok za krokem...19 GENETICKÉ ALGORITMY A GENETICKÉ PROGRAMOV N 5 Obsah Předmluva...9 1. Úvod...13 Část I: Genetické algoritmy...17 2. Genetický algoritmus krok za krokem...19 3. Proč genetické algoritmy fungují?...27 4.

Více

2015 http://excel.fit.vutbr.cz Kartézské genetické programování s LUT Karolína Hajná* Abstract Tato práce se zabývá problematikou návrhu obvodů pomocí kartézského genetického programování na úrovni třívstupových

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním

Více

OPTIMALIZAČNÍ ÚLOHY. Modelový příklad problém obchodního cestujícího:

OPTIMALIZAČNÍ ÚLOHY. Modelový příklad problém obchodního cestujícího: OPTIMALIZAČNÍ ÚLOHY Problém optimalizace v různých oblastech: - minimalizace času, materiálu, - maximalizace výkonu, zisku, - optimalizace umístění komponent, propojení,... Modelový příklad problém obchodního

Více

Základy umělé inteligence 4. Evoluční výpočetní techniky Jiří Kubaĺık Katedra kybernetiky, ČVUT-FEL http://cw.felk.cvut.cz/doku.php/courses/y33zui/start ppřírodní motivace EVT :: Stochastické optimalizacní

Více

1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním

1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním 1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním školám Genetika - shrnutí TL2 1. Doplň: heterozygot,

Více

MENDELOVSKÁ DĚDIČNOST

MENDELOVSKÁ DĚDIČNOST MENDELOVSKÁ DĚDIČNOST Gen Část molekuly DNA nesoucí genetickou informaci pro syntézu specifického proteinu (strukturní gen) nebo pro syntézu RNA Různě dlouhá sekvence nukleotidů Jednotka funkce Genotyp

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. 8 Ing. Petra Schreiberová, Ph.D. Ostrava 01 Ing. Petra Schreiberová, Ph.D. Vysoká škola báňská Technická

Více

Biologie - Oktáva, 4. ročník (přírodovědná větev)

Biologie - Oktáva, 4. ročník (přírodovědná větev) - Oktáva, 4. ročník (přírodovědná větev) Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k

Více

Numerické metody optimalizace - úvod

Numerické metody optimalizace - úvod Numerické metody optimalizace - úvod Petr Tichý 16. února 2015 1 Organizace přednášek a cvičení 13 přednášek a cvičení. Zápočet: úloha programování a testování úloh v Matlabu. Další informace na blogu

Více

Umělá inteligence a rozpoznávání

Umělá inteligence a rozpoznávání Václav Matoušek KIV e-mail: matousek@kiv.zcu.cz 0-1 Sylabus předmětu: Datum Náplň přednášky 11. 2. Úvod, historie a vývoj UI, základní problémové oblasti a typy úloh, aplikace UI, příklady inteligentních

Více

4. Na obrázku je rozdělovací funkce (hustota pravděpodobnosti) náhodné veličiny X. Jakou hodnotu musí mít parametr k?

4. Na obrázku je rozdělovací funkce (hustota pravděpodobnosti) náhodné veličiny X. Jakou hodnotu musí mít parametr k? A 1. Stanovte pravděpodobnost, že náhodná veličina X nabyde hodnoty menší než 6: P( X 6). Veličina X má rozdělení se střední hodnotou 6 a směrodatnou odchylkou 5: N(6,5). a) 0 b) 1/3 c) ½ 2. Je možné,

Více

= 2x + y, = 2y + x 3. 2x + y = 0, x + 2y = 3,

= 2x + y, = 2y + x 3. 2x + y = 0, x + 2y = 3, V. Lokální extrémy. Příklad 1: Určete lokální extrémy zadané funkce. 1. f(x, y) = x 2 + y 2 + xy 3y 2. Definičním oborem funkce je množina Df = R 2 a funkce f má spojité parciální = 2x + y, = 2y + x 3.

Více

"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy

Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT . Základy genetiky, základní pojmy "Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy 1/75 Genetika = věda o dědičnosti Studuje biologickou informaci. Organizmy uchovávají,

Více

Biologie - Oktáva, 4. ročník (humanitní větev)

Biologie - Oktáva, 4. ročník (humanitní větev) - Oktáva, 4. ročník (humanitní větev) Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti

Více

Masarykova univerzita. Fakulta informatiky. Evoluce pohybu

Masarykova univerzita. Fakulta informatiky. Evoluce pohybu Masarykova univerzita Fakulta informatiky Evoluce pohybu IV109 Tomáš Kotula, 265 287 Brno, 2009 Úvod Pohyb je jedním ze základních projevů života. Zdá se tedy logické, že stejně jako ostatní vlastnosti

Více

Princip gradientních optimalizačních metod

Princip gradientních optimalizačních metod Princip gradientních optimalizačních metod Tomáš Kroupa 20. května 2014 Tento studijní materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Obsah Úkol a základní

Více

Úvod do stochastických optimalizačních metod (metaheuristik) Moderní metody optimalizace 1

Úvod do stochastických optimalizačních metod (metaheuristik) Moderní metody optimalizace 1 Úvod do stochastických optimalizačních metod (metaheuristik) Moderní metody optimalizace 1 Efektivita optimalizačních metod Robustní metoda Efektivita Specializovaná metoda Enumerace nebo MC kombinatorický

Více

Moderní systémy pro získávání znalostí z informací a dat

Moderní systémy pro získávání znalostí z informací a dat Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:

Více

EVOLUČNÍ ALGORITMY A NEURONOVÉ SÍTĚ

EVOLUČNÍ ALGORITMY A NEURONOVÉ SÍTĚ EVOLUČNÍ ALGORITMY A NEURONOVÉ SÍTĚ URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH EVA VOLNÁ ČÍSLO OPERAČNÍHO PROGRAMU: CZ.1.7 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

Více

Genotypy absolutní frekvence relativní frekvence

Genotypy absolutní frekvence relativní frekvence Genetika populací vychází z: Genetická data populace mohou být vyjádřena jako rekvence (četnosti) alel a genotypů. Každý gen má nejméně dvě alely (diploidní organizmy). Součet všech rekvencí alel v populaci

Více

Základní škola a Mateřská škola G.A.Lindnera Rožďalovice. Za vše mohou geny

Základní škola a Mateřská škola G.A.Lindnera Rožďalovice. Za vše mohou geny Základní škola a Mateřská škola G.A.Lindnera Rožďalovice Za vše mohou geny Jméno a příjmení: Sandra Diblíčková Třída: 9.A Školní rok: 2009/2010 Garant / konzultant: Mgr. Kamila Sklenářová Datum 31.05.2010

Více

Navrženy v 60. letech jako experimentální optimalizační metoda. Velice rychlá s dobrou podporou teorie

Navrženy v 60. letech jako experimentální optimalizační metoda. Velice rychlá s dobrou podporou teorie Evoluční strategie Navrženy v 60. letech jako experimentální optimalizační metoda Založena na reálných číslech Velice rychlá s dobrou podporou teorie Jako první zavedla self-adaptation (úpravu sebe sama)

Více

Genetické algoritmy a jejich praktické využití

Genetické algoritmy a jejich praktické využití Genetické algoritmy a jejich praktické využití Pavel Šturc PB016 Úvod do umělé inteligence 21.12.2012 Osnova Vznik a účel GA Princip fungování GA Praktické využití Budoucnost GA Vznik a účel GA Darwinova

Více

GENETIKA Monogenní dědičnost (Mendelovská) Polygenní dědičnost Multifaktoriální dědičnost

GENETIKA Monogenní dědičnost (Mendelovská) Polygenní dědičnost Multifaktoriální dědičnost GENETIKA vědecké studium dědičnosti a jejich variant studium kontinuity života ve vztahu ke konečné délce života individuálních organismů Monogenní dědičnost (Mendelovská) Polygenní dědičnost Multifaktoriální

Více

GENETIKA 1. Úvod do světa dědičnosti. Historie

GENETIKA 1. Úvod do světa dědičnosti. Historie GENETIKA 1. Úvod do světa dědičnosti Historie Základní informace Genetika = věda zabývající se dědičností a proměnlivostí živých soustav sleduje variabilitu (=rozdílnost) a přenos druhových a dědičných

Více

Nové směry v evoluční biologii. Jaroslav Flegr Katedra filosofie a dějin přírodních věd Přírodovědecká Fakulta UK Praha

Nové směry v evoluční biologii. Jaroslav Flegr Katedra filosofie a dějin přírodních věd Přírodovědecká Fakulta UK Praha Nové směry v evoluční biologii Jaroslav Flegr Katedra filosofie a dějin přírodních věd Přírodovědecká Fakulta UK Praha 2014 Genetika věda o dědění znaků Mendelismus původně spíše antidarwinistický

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická Odborná biologie, část biologie Společná pro

Více

Doprovodný materiál k práci s přípravným textem Biologické olympiády 2014/2015 pro soutěžící a organizátory kategorie B

Doprovodný materiál k práci s přípravným textem Biologické olympiády 2014/2015 pro soutěžící a organizátory kategorie B Doprovodný materiál k práci s přípravným textem Biologické olympiády 2014/2015 pro soutěžící a organizátory kategorie B Níže uvedené komentáře by měly pomoci soutěžícím z kategorie B ke snazší orientaci

Více

Pokročilé operace s obrazem

Pokročilé operace s obrazem Získávání a analýza obrazové informace Pokročilé operace s obrazem Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 (BFÚ LF MU) Získávání

Více

Markov Chain Monte Carlo. Jan Kracík.

Markov Chain Monte Carlo. Jan Kracík. Markov Chain Monte Carlo Jan Kracík jan.kracik@vsb.cz Princip Monte Carlo integrace Cílem je (přibližný) výpočet integrálu I(g) = E f [g(x)] = g(x)f (x)dx. (1) Umíme-li generovat nezávislé vzorky x (1),

Více

Optimalizační metody v CFD diferenciální evoluce

Optimalizační metody v CFD diferenciální evoluce Fakulta strojní ČVUT, Ú 12107.1 - Odbor mechaniky tekutin a termodynamiky Optimalizační metody v CFD diferenciální evoluce Ondřej Suchomel, ing. Tomáš Hyhlík Abstrakt Příspěvek popisuje využití jednokriteriální

Více

Optimalizační metody v CFD

Optimalizační metody v CFD Optimalizační metody v CFD diferenciální evoluce 20.dubna 2006 Ondřej Suchomel, FS ČVUT 4.ročník, obor IMM úvod předmět: cíl: popis: optimalizační metoda: programy: Projekt II., Počítačová mechanika tekutin

Více

Výsledky Př.1. Určete intervaly monotónnosti a lokální extrémy funkce a) ( ) ( ) ( ) Stacionární body:

Výsledky Př.1. Určete intervaly monotónnosti a lokální extrémy funkce a) ( ) ( ) ( ) Stacionární body: Výsledky Př.. Určete intervaly monotónnosti a lokální extrémy funkce a) y < y > y < y > -2 0 3 Funkce je rostoucí v intervalech. Funkce je klesající v intervalech b) y < y > y < - Funkce je rostoucí v

Více

7.1 Extrémy a monotonie

7.1 Extrémy a monotonie KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x

Více

Genetika BIOLOGICKÉ VĚDY EVA ZÁVODNÁ

Genetika BIOLOGICKÉ VĚDY EVA ZÁVODNÁ BIOLOGICKÉ VĚDY EVA ZÁVODNÁ Genetika - věda studující dědičnost a variabilitu organismů - jako samostatná věda vznikla na počátku 20. století - základy položil J.G. Mendel již v druhé polovině 19. století

Více

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21.

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21. Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 21. září 2018 Jiří Dvorský (VŠB TUO) Vyhledávání 242 / 433 Osnova přednášky

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE

Více

APLIKACE. Poznámky Otázky

APLIKACE. Poznámky Otázky APLIKACE Následující úlohy lze zhruba rozdělit na geometrické, algebraické a úlohy popisující různé stavy v některých oblastech jiných věd, např. fyziky nebo ekonomie. GEOMETRICKÉ ÚLOHY Mezi typické úlohy

Více

http://vtm.zive.cz/aktuality/vzorek-dna-prozradi-priblizny-vek-pachatele

http://vtm.zive.cz/aktuality/vzorek-dna-prozradi-priblizny-vek-pachatele http://vtm.zive.cz/aktuality/vzorek-dna-prozradi-priblizny-vek-pachatele Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Eva Strnadová. Dostupné z Metodického portálu www.rvp.cz ;

Více

Nelineární optimalizace a numerické metody (MI NON)

Nelineární optimalizace a numerické metody (MI NON) Nelineární optimalizace a numerické metody (MI NON) Magisterský program: Informatika Obor: Teoretická informatika Katedra: 18101 Katedra teoretické informatiky Jaroslav Kruis Evropský sociální fond Praha

Více

Výuka genetiky na Přírodovědecké fakultě UK v Praze

Výuka genetiky na Přírodovědecké fakultě UK v Praze Výuka genetiky na Přírodovědecké fakultě UK v Praze Studium biologie na PřF UK v Praze Bakalářské studijní programy / obory Biologie Biologie ( duhový bakalář ) Ekologická a evoluční biologie ( zelený

Více

Evoluční genetika KBI/GENE Mgr. Zbyněk Houdek Evoluční teorie Evoluční teorii vyslovil Ch. Darwin v díle O původu druhů (1859), kde ukazoval, že druhy se postupně měnily v dlouhých časových periodách.

Více

Přijímací zkouška na navazující magisterské studium 2014

Přijímací zkouška na navazující magisterské studium 2014 Přijímací zkouška na navazující magisterské studium 4 Studijní program: Studijní obory: Příklad (5 bodů) Spočtěte Matematika MA, MMIB, MMFT, MSTR, NVM, PMSE, MDU Varianta A M xy dxdy, kde M = {(x, y) R

Více

Úvod do studia biologie vyučující: RNDr. Zdeňka Lososová, Ph.D. Mgr. Robert Vlk, Ph.D. Mgr. Martina Jančová, Ph.D. Doc. RNDr. Boris Rychnovský, CSc.

Úvod do studia biologie vyučující: RNDr. Zdeňka Lososová, Ph.D. Mgr. Robert Vlk, Ph.D. Mgr. Martina Jančová, Ph.D. Doc. RNDr. Boris Rychnovský, CSc. Úvod do studia biologie vyučující: RNDr. Zdeňka Lososová, Ph.D. Mgr. Robert Vlk, Ph.D. Mgr. Martina Jančová, Ph.D. Doc. RNDr. Boris Rychnovský, CSc. studijní literatura: Nečas O. et al.: Obecná biologie

Více

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/ Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Genetika populací Studium dědičnosti a proměnlivosti skupin jedinců (populací)

Více

Přírodou inspirované metody umělé inteligence

Přírodou inspirované metody umělé inteligence Přírodou inspirované metody umělé inteligence Roman Neruda Ústav informatiky AVČR roman@cs.cas.cz Nové Hrady, červenec 2012 Od Darwina a Mendela... ... k inteligentním agentům. Umělá inteligence 2 přístupy

Více

Osnova přednášky volitelného předmětu Evoluční vývoj a rozmanitost lidských populací, letní semestr

Osnova přednášky volitelného předmětu Evoluční vývoj a rozmanitost lidských populací, letní semestr Osnova přednášky volitelného předmětu Evoluční vývoj a rozmanitost lidských populací, letní semestr Evoluční teorie Základy evoluce, adaptace na životní podmínky - poskytuje řadu unifikujících principů

Více

Buněčné automaty a mřížkové buněčné automaty pro plyny. Larysa Ocheretna

Buněčné automaty a mřížkové buněčné automaty pro plyny. Larysa Ocheretna Buněčné automaty a mřížkové buněčné automaty pro plyny Larysa Ocheretna Obsah Buněčný automat: princip modelu, vymezení pojmů Mřížkový buněčný automat pro plyny Příklady aplikace principů mřížkových buněčných

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)

Více

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12.

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12. Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 12. září 2016 Jiří Dvorský (VŠB TUO) Vyhledávání 201 / 344 Osnova přednášky

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF POWER ELECTRICAL AND ELECTRONIC

Více

Seminář z umělé inteligence. Otakar Trunda

Seminář z umělé inteligence. Otakar Trunda Seminář z umělé inteligence Otakar Trunda Plánování Vstup: Satisficing task: počáteční stav, cílové stavy, přípustné akce Optimization task: počáteční stav, cílové stavy, přípustné akce, ceny akcí Výstup:

Více

Genetická diverzita masného skotu v ČR

Genetická diverzita masného skotu v ČR Genetická diverzita masného skotu v ČR Mgr. Jan Říha Výzkumný ústav pro chov skotu, s.r.o. Ing. Irena Vrtková 26. listopadu 2009 Genetická diverzita skotu pojem diverzity Genom skotu 30 chromozomu, genetická

Více

Schopnost organismů UCHOVÁVAT a PŘEDÁVAT soubor informací o fyziologických a morfologických (částečně i psychických) vlastnostech daného jedince

Schopnost organismů UCHOVÁVAT a PŘEDÁVAT soubor informací o fyziologických a morfologických (částečně i psychických) vlastnostech daného jedince Genetika Genetika - věda studující dědičnost a variabilitu organismů - jako samostatná věda vznikla na počátku 20. století - základy položil J.G. Mendel již v druhé polovině 19. století DĚDIČNOST Schopnost

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním

Více

FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY

FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE

Více