Zase zlomky. Předpoklady: = = = = = = = = 1+ +
|
|
- Martin Musil
- před 6 lety
- Počet zobrazení:
Transkript
1 ..8 Zase zlomky Předpoklady: 00 Př. : 8 b) + = = = 8 8 b) 8 = = = = = + + Př. : Myš má krk tvořený sedmi obratli. Délka krku myši je rovna /0 délky krku žirafy. Kolik obratlů tvoří krk žirafy? Matematický výpočet: obratlů = 0 obratlů, což je však zjevně nesmyslný výsledek. Počet obratlů není úměrný délce krku, ve skutečnosti má žirafa 8 krčních obratlů. Příklad není možné správně spočítat, protože má nesmyslné zadání. Pedagogická poznámka: Předchozí příklad jsem objevil na dumy.cz. Nebyla u něj žádná poznámka o tom, že je schválně špatně. Minimálně někteří žáci by se však měli poznat, že jde o nesmysl, protože počet obratlů není svázán s délkou krku (žirafa má podle posledních výzkumů osm krčních obratlů). Žáci se snažili situaci zachránit tím, že by správným výsledkem mohlo být, že žirafí krk tvoří 0 myších krčních obratlů, což je samozřejmě také nesmysl, žirafa nemá myší, ale žirafí obratle. Předchozí příklad je sice možné spočítat, ale rozhodně není možné získat správný výsledek, protože jde o naprostý nesmysl. Mimochodem, zjevně nesprávný je i poměr /0, myší krk je těžko delší než cm, žirafí pak se určitě blíží m. Př. : Jirka měl jedenáct třetinkových lahví limonády. Do kolika sklenic o objemu 0, l je může rozlít? Množství limonády: = litru. Objem jedné sklenice: 0, = = litru. 0
2 Počet lahví : = : = = = 8. Jirka může limonádu rozlít do 8 sklenic a ještě mu zbude třetina litru. Pedagogická poznámka: Žákům, kteří si s předchozím příkladem nevědí rady, doporučuji vymyslet podobný příklad s přirozenými čísly (například: Jirka měl litrů limonády, do kolika dvou litrových lahví ji mohl rozlít?). Pedagogická poznámka: Sleduji, kolik žáků si všimne, že jde o řešení posledního příkladu předminulé hodiny. Př. : Vývoj nových léků je velmi drahou a časově náročnou záležitostí. Z přibližně 700 zkoumaných látek se pouze dostane do stádia preklinického testování (testy na zvířatech,...). Pouze polovina preklinicky testovaných látek je připuštěna ke klinickému testování na nemocných pacientech. Pouze každá pátá klinicky testovaná látka je schválena k použití. Jaká část zkoumaných látek se dostane do stádia preklinického testování? Jaká část klinicky testovaných látek je schválena k použití? Jaká část zkoumaných látek je schválena k použití? Kolik látek je třeba začít zkoumat, aby bylo možné nakonec připravit jeden schválený lék? Zkoumané látky 700, do preklinického testování do stádia preklinického testování se dostane = = = Každá pátá klinicky testovaná je schválena schválena je klinicky testovaných látek. Zkoumané látky 00 je preklinicky testována, z nich je klinicky testována, z nich schválena k použití ze zkoumaných látek je schváleno k použití = látek Je třeba začít zkoumat 000 látek, aby byla rozumná pravděpodobnost, že se podaří vyvinout jeden schválený lék. Pedagogická poznámka: Při hodině se snažím vysvětlit, že jde o průměrná čísla, která mohou být v konkrétním případě větší i menší. Př. : Tři pětiny účastníků školního přeboru v Tetrisu již dokončily první úroveň (a tak postoupili do druhé), devítina z nich pak i druhou. Na druhé úrovni se tak trápí soutěžících. Kolik má přebor účastníků? Jaká část z původního počtu jich je v tomto okamžiku na třetí úrovni? Kolik hráčů úspěšně zvládlo druhou úroveň? První zvládlo...
3 Druhou zvládlo... z : = (jsou na třetí úrovni) Nyní na druhé úrovni: = = :8 =... = účastníků. Druhou zvládlo ze : = Přebor má účastníků, na třetí úrovni v tomto okamžiku hraje hráči. účastníků, což jsou tři Dodatek: Příklad je možné spočítat i z počtu účastníků na druhé úrovni. Na druhé úrovni je nyní 8 z těch, kteří postoupili z první úrovně účastníků Všichni účastníci:... :8 =... = : = =. Př. : Třetina studentů v ročníku jsou kluci. Z nich se tři čtvrtiny přihlásily do školního kurzu na řidičský průkaz. Z dívek se přihlásilo pouze pět osmin, takže kurz navštěvovalo jen o deset dívek víc než kluků. Kolik studentů chodí do kurzu? Kolik jich chodí do ročníku. Kluci na kurzu: tři čtvrtiny ze třetiny: = ze všech studentů. Dívky na kurzu: pět osmi ze dvou třetin: = = ze všech studentů. 8 Dívek je více než kluků o = = = studentů... 0 = 0 studentů Do kurzu chodí: + + = = 8 = všech studentů.
4 0 0 = studentů. Do kurzů chodí 0 studentů, do ročníku 0. Př. 7: Převeď smíšená čísla na zlomky a zlomky na smíšená čísla. b) 7 = + = b) 8 = + = = + = = 8 + = Př. 8: + b) = + + = + = b) = = + = = + = + = + = = + = + = = = 8 8 Pedagogická poznámka: Předchozí příklad je možné řešit podobně jako je řešena většina bodů v následujícím příkladu - převedením smíšeného čísla na zlomky a výpočtem ve formě zlomků: + = + = = Př. : b) 8 : = + = + = + = b) = = 7 = 7 7 = = = : = : = = =
5 Pedagogická poznámka: Pokud někdo spočte bod takto: = + + = + = chybu opravíme, ale dál zatím neřešíme. Dodatek: Zdroj pro příklad : MUDr. Martin Votava PhD Vývoj nového léčiva. LF UK Praha. Shrnutí:
Převrácená čísla
..0 Převrácená čísla Předpoklady: 007 Př. : Vypočti. Výsledek uveď v základním tvaru. a) 5 7 b) c) 0 9 d) 4 0 8 7 0 6 6 5 8 a) 5 7 5 = 7 = 4 0 7 5 4 b) 6 = = 8 6 c) 0 9 0 9 = = 7 0 9 0 d) 6 6 8 4 = = 5
2.5.1 Opakování - úměrnosti se zlomky
.. Opakování - úměrnosti se zlomky Př. : Spočti: a) b) c) 6 0 0 : 7 9 a) 0 6 = = = 7 7 b) 9 = = 6 0 c) 0 0 0 9 0 9 : = = = 7 9 7 0 9 0 6 Př. : Přímá úměrnost má předpis y = x. Doplň tabulku této přímé
2.5.17 Dvojitá trojčlenka
2..1 Dvojitá trojčlenka Předpoklady: 020 Př. 1: Čerpadlo o výkonu 1, kw vyčerpá ze sklepa vodu za hodiny. Za jak dlouho by vodu ze sklepa vyčerpalo čerpadlo o výkonu 2,2 kw? Čím výkonnější čerpadlo, tím
Pedagogická poznámka: V následujícím příkladu nemusí všichni spočítat všechno. Pomalejší žáky je třeba přerušit, aby stihli spočítat příklad 6. Př.
2.5.3 Rozšiřování a krácení poměru Předpoklady: 020503 Př. 1: Děti zjišťovaly poměr mezi výškou a šířkou papíru A4. Které z následujících poměrů jsou správné? Které jsou přibližně správné? Které jsou špatně?
Přepočet přes jednotku - podruhé I
1.2.25 Přepočet přes jednotku - podruhé I Předpoklady: 010224 Pedagogická poznámka: Tato a následující hodina navazují na poslední hodinu úvodní kapitoly. Jde v podstatě o stejné problémy, ale s desetinnými
Úloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie.
Slovní úlohy - řešené úlohy Úměra, poměr Úloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie. Každý rozměr zvětšíme tak, že jeho
čitatel jmenovatel 2 5,
. ZLOMKY Zlomek má následující tvar čitatel jmenovatel Příkladem zlomku může být například zlomek, tedy dvě pětiny. Jmenovateli se říká jmenovatel proto, že pojmenovává zlomek. Pětina, třetina, šestina
celek jsme rozdělili na 8 dílů, ale žádný jsme si nevzali celek na nulka dílů rozdělit nelze!!!
. Dělení celku zlomek 0 zlomek zlomková čár čittel udává z kolik stejných částí se zlomek skládá ( z ) jmenovtel udává n kolik stejných částí je celek rozdělen () Vlstnosti: Je-li v čitteli zlomku nul
úč úč ž ů ž Č Č č č ů ž úč č úč ť Ň č ú Ý č č Ú Ú ť ú č ď ů ž š úč ž úč úč ž ť ď ť ď ž ú č č úč š ž Ů č č ú úč ž ů ť úč ž ž ž Ů č ž ú č Š úč č Úč Č Č š ď š Š š Ó Ó ž ůč ú Ď ť ž ů ů č ů Č ů ž úč Ý č ž úč
č ů š ň č č Ú č č č Ú ů Ú č ž ú š š ý č ú ó ó ž č ý ý ý č ž č ý ž ý č ý ž ž č ý ý ý ž ý ý ý ý š ý š ů ů č č ý ž č ý ů š ž ý Ú Ú úč š ů ž ů ů Úč ž č ý č š ý ů č š ý ý ý ů č č ž ů š ů ů š ý ý ů ů č č ž ú
Á Ě Í Ě Á Á ó č ž č ž č Í š úč é úč š ž č é ů č é č é é ů č ů č č ů é Ž š ů ů š č é Ž č é Ž č Í ž Ž Ž é é Ů é Ř ů ť š é é č é é é š č č é č č č č š č š é č é č ů č č š ú é č é š é Ž Ž é é ú č č é ů č š
Slovní úlohy I
..1 Slovní úlohy I Předpoklady: 0008 Pedagogická poznámka: Slovní úlohy jsou problém, hlavně pro to, že neexistuje jednoznačný algoritmus na jejich řešení. Této první hodiny se však problémy netýkají,
Úměrnosti - opakování
.. Úměrnosti - opakování Předpoklady: 00 Př. 1: Auto ujede za a hodin vzdálenost b km. Kolik km by ujelo za c hodin? Čím déle auto jede, tím větší vzdálenost ujede přímá úměrnost. a hodin b km c hodin
1.1.3 Převody jednotek
.. Převody jednotek Předpoklady: 000 Pomůcky: Př. : Převeď ze základní jednotky na jednotku v závorce. a) 500 m[ km ] b) 0,05A [ µa ] c) 0, N[ kn ] d) 0,000 0045m[ nm ] e) 450 000J[ GJ ] f) 0,00 F[ nf
Svobodná chebská škola, základní škola a gymnázium s.r.o. Zlomky souhrnný test. Dušan Astaloš. samostatná práce. ověření dosažených znalostí
METODICKÝ LIST DA Název tématu: Autor: Předmět: Zlomky souhrnný test Dušan Astaloš Matematika Ročník:. Učebnice: Kapitola, oddíl: Ne Ne Metody výuky: Formy výuky: Cíl výuky: samostatná práce ověření dosažených
Napsali: Mgr. Michaela Jedličková; RNDr. Peter Krupka, Ph.D.; RNDr. Jana Nechvátalová Recenzenti:
Použité symboly: Motivace k probíranému učivu na praktickém příkladu Úvahové úlohy nebo otázky poukazující na další souvislosti probírané látky s běžným životem Připomenutí učiva, na které nová látka navazuje
VY_32_INOVACE_MIK_I-1_1. Šablona č. I, sada č. 1. Ročník 6. Materiál slouží k procvičení a upevnění učiva o procentech.
Šablona č. I, sada č. 1 Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Matematika a její aplikace Matematika a její aplikace Číslo a proměnná Procenta Ročník 6. Materiál slouží k procvičení a upevnění
Poměry a úměrnosti II
1.1.12 Poměry a úměrnosti II Předpoklady: 010111 U následujících úloh je nutné poznat, zda jde o přímou nebo nepřímou úměrnost případně příklad, který není možné řešit ani jedním z obou postupů. Pedagogická
1.3.5 Siloměr a Newtony
1.3.5 Siloměr a Newtony Předpoklady: 010305 Pomůcky: siloměry, Vernier měřič tlakové síly rukou, Př. 1: Na obrázku je nakreslen kvádřík, který rovnoměrně táhneme po stole. Zakresli do obrázku síly, které
2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují.
.. Funkce, definiční obor funkce Předpoklady: 03 Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. Uděláme si na tabuli jenom krátký seznam: S = a, y = x, s = vt, výška lidí v
Desetinná čísla pracovní listy pro ročník stupňované podle náročnosti Irena Budínová Pedagogická fakulta MU
Desetinná čísla pracovní listy pro 6. 7. ročník stupňované podle náročnosti Irena Budínová Pedagogická fakulta MU irena.budinova@seznam.cz Moderní výuka by se měla co nejvíce orientovat na individualitu
SOUBOR OTÁZEK. 7.ročník
2015 SOUBOR OTÁZEK 7.ročník Co je Pangea a jaká je její filozofie? V dávných dobách prvohor a druhohor, tedy přibližně před 300 miliony let, nebyly jednotlivé kontinenty na naší planetě ještě rozdělené,
2.5.27 Promile. Předpoklady: 020526
2.5.27 Promile Předpoklady: 020526 Pedagogická poznámka: Na odhady nechávám jen chvíli cca 2 minut. Pak si kontrolujeme výsledky (2, 1, 0, -1 bod) a říkáme si, jak k odhadu dospět. Pak si žáci zjistí přesné
Vývoj nových léčiv. Preklinický výzkum Klinický výzkum
Vývoj nových léčiv Preklinický výzkum Klinický výzkum Úvod Léčivo = nejprověřenější potravina vstupující do organismu Ideální léčivo kvalitní, účinné, bezpečné a dostupné Financování výzkumu léčiv souvislost
{ 4} 2.2.7 Krácení a rozšiřování zlomků. Předpoklady: 010217. Zlomky 1 2 ; 2 4 ; 3 6 ; 4 8 ; 5. představují stejné číslo.
..7 Krácení a rozšiřování zlomků Předpoklady: 007 Zlomky ; ; ; 8 ; 0 ; 7 ; zlomky ; ; ; 8 ; zlomky ; ; ; 8 ; 0 ; představují stejné číslo. Říkáme: 0 ; 7 ; mají stejnou hodnotu, 7 ; se rovnají. Proč je
Název projektu: Poznáváme sebe a svět, chceme poznat více
Název projektu: Poznáváme sebe a svět, chceme poznat více Registrační číslo projektu: CZ.1.07/1.4.00/21.2970 Identifikátor materiálu Název klíčové aktivity Vzdělávací oblast Vzdělávací předmět / obor Tematický
Hodnocení pracovišť a principy tvorby rozpočtů pracovišť
Publikováno z 2. lékařská fakulta Univerzity Karlovy (https://www.lf2.cuni.cz) LF2 > Hodnocení výkonu pracovišť Hodnocení pracovišť a principy tvorby rozpočtů pracovišť Jiné úspěchy klinik a ústavů (pravidelně
( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209
9..1 Binomické rozdělení Předpoklady: 99 Př. 1: Basketbalista hází trestný hod (šestku) s pravděpodobností úspěchu,9. Urči pravděpodobnosti, že z pěti hodů: a) dá košů; b) dá alespoň jeden koš; c) dá nejdříve
rok počet obyvatel 27,1 30,9 34,8 38,6 43,4 49,4 56,4 62,4 68,3 74,9 82,0
4.5.5 Trendy I Předpoklady: 040503 Pedagogická poznámka: Pokud nechcete zbytečně ztrácet čas tím, že žáci přepisují tabulku do sešitu, je lepší je vytisknout a rozdat. Pedagogická poznámka: Grafy pro příklady
1.1.4 Převody jednotek II
..4 Převody jednotek II Předpoklady: 000 Pomůcky: voda, olej, trychtýř, dvě stejné kádinky. Pedagogická poznámka: Druhou částí hodiny je třeba začít nejpozději 5 minut před koncem. Př. : Převeď na jednotky
1.1.3 Převody jednotek
.. Převody jednotek Předpoklady: 0 Pomůcky: Pedagogická poznámka: Občas se převádění jednotek pojímá jako exhibice mířící do co největších mocnin. Snažím se takovému přístupu vyhnout. Nejde o základ fyziky,
Procenta. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz.
Variace 1 Procenta Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Procenta U příkladů, kde se vyskytují procenta,
Vývoj nového léčiva. as. MUDr. Martin Votava, PhD.
Vývoj nového léčiva as. MUDr. Martin Votava, PhD. Příprava na vývoj a registraci LP Náklady na vývoj: 800 mil USD Doba vývoje: 10 let Úspěšnost: 0,005% - 0,001% Vývoj nového léčivého přípravku IND NDA
BIOMEDICÍNSKÁ INFORMATIKA A JEJÍ ÚLOHA V PERSONALIZOVANÉ MEDICÍNĚ
BIOMEDICÍNSKÁ INFORMATIKA A JEJÍ ÚLOHA V PERSONALIZOVANÉ MEDICÍNĚ Petr Lesný 1, Kryštof Slabý 1, Tomáš Holeček 2, Jan Vejvalka 1 1 Fakultní nemocnice v Motole, Praha 2 Fakulta humanitních studií UK, Praha
7.1.3 Vzdálenost bodů
7.. Vzdálenost bodů Předpoklady: 70 Př. : Urči vzdálenost bodů A [ ;] a B [ 5;] obecný vzorec pro vzdálenost bodů A[ a ; a ] a [ ; ]. Na základě řešení příkladu se pokus sestavit B b b. y A[;] B[5;] Z
( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204
9.2.7 Nezávislé jevy I Předpoklady: 9204 Př. : Předpokládej, že pravděpodobnost narození chlapce je stejná jako pravděpodobnost narození dívky (a tedy v obou případech rovna 0,5) a není ovlivněna genetickými
Přijímačky nanečisto - 2011
Přijímačky nanečisto - 2011 1. Vypočtěte: 0,5 2 + (-0,5) 2 (- 0,1) 3 = a) 0,001 b) 0,51 c) 0,499 d) 0,501 2. Vypočtěte: a) 0,4 b) - 0,08 c) 2 3 d) 2 3. Určete číslo s tímto rozvinutým zápisem v desítkové
Protokol č. 5. Vytyčovací údaje zkusných ploch
Protokol č. 5 Vytyčovací údaje zkusných ploch Zadání: Ve vybraném porostu bylo prováděno zjišťování zásob za použití reprezentativní metody kruhových zkusných ploch. Na těchto zkusných plochách byl zjišťován
( ) ( ) Binomické rozdělení. Předpoklady: 9209
9..1 Binomické rozdělení Předpoklady: 99 Př. 1: Basketbalista hází trestný hod (šestku) s pravděpodobností úspěchu,9. Urči pravděpodobnosti, že z pěti hodů: a) dá košů b) dá alespoň jeden koš c) dá nejdříve
Slovní úlohy o pohybu I
.2. Slovní úlohy o pohybu I Předpoklady: 0024 Př. : Běžec na lyžích se pohybuje na celodenním výletu průměrnou rychlostí km/h. Jakou vzdálenost ujede za hodinu? Za hodiny? Za hodin? Za t hodin? Najdi vzorec,
Téma 1: Numerické výpočty (číselné množiny, druhy čísel, absolutní hodnota, zaokrouhlování, dělitelnost čísel, společný násobek a dělitel čísel)
Téma : Numerické výpočty (číselné množiny, druhy čísel, absolutní hodnota, zaokrouhlování, dělitelnost čísel, společný násobek a dělitel čísel) Příklady Číselná osa ) Která z následujících čísel neleží
2.5.21 Nepřímá úměrnost III
.5.1 Nepřímá úměrnost III Předpoklady: 0050 Př. 1: Porovnej do dvou sloupců přímou a nepřímou úměrnost (předpis, základní vlastnost, postup při řešení příkladů,...). Přímá úměrnost Nepřímá úměrnost předpis
( 4) 2.2.12 Slovní úlohy vedoucí na lineární rovnice III. Předpoklady: 2211
2.2.2 Slovní úlohy vedoucí na lineární rovnice III Předpoklady: 22 Pedagogická poznámka: Většina příkladů z této hodiny patří do skupiny příkladů na společnou práci. Termín nezavádím. Existují příklady,
1.1.5 Poměry a úměrnosti II
1.1.5 Poměry a úměrnosti II Předpoklady: 1104 U následujících úloh je nutné poznat, zda jde o přímou nebo nepřímou úměrnost případně příklad, který není možné řešit ani jedním z obou postupů. Pedagogická
Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11
Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:
Práce s kalkulátorem
..8 Práce s kalkulátorem Předpoklady: 007 Ke koupi kalkulátoru: Myslím, že každý student by si kalkulačku koupit měl. V současnosti sice existují dvě možné náhrady, které buď má (mobilní telefon) nebo
Kvadratické rovnice (dosazení do vzorce) I
.. Kvadratické rovnice (dosazení do vzorce) I Předpoklady: 000 Rovnicí se nazývá vztah rovnosti mezi hodnotami dvou výrazů obsahujícími jednu nebo více neznámých. V této kapitole se budeme zabývat pouze
2.5.15 Trojčlenka III
.5.15 Trojčlenka III Předpoklady: 0051 Př. 1: Doplň tabulku, která udává vzdálenost, kterou je možné ujít za různé doby velmi rychlou chůzi. Kolik kilometrů ujdeme touto rychlostí za 1 hodinu? doba chůze
Odhady úměrností
.. y úměrností Předpoklady: 000 Pedagogická poznámka: V hodině nejdříve nechám žáky zapsat do sešitu odhady (cca minut jeden odhad za minuty), pak si je kontrolujeme. Hodnotíme body pokud je chyba odhadu
Název projektu: Poznáváme sebe a svět, chceme poznat více
Název projektu: Poznáváme sebe a svět, chceme poznat více Registrační číslo projektu: CZ.1.07/1.4.00/21.2970 Identifikátor materiálu Název klíčové aktivity IV/2-1/21 Inovace a zkvalitnění výuky směřující
POKROK V LÉČBĚ VZÁCNÝCH ONEMOCNĚNÍ. 25. února 2016
POKROK V LÉČBĚ VZÁCNÝCH ONEMOCNĚNÍ 25. února 2016 STATISTICKÁ DATA Celosvětově 350 mil. pacientů Pos;hují 5 z 10 000 obyvatel. Způsobují 8 % všech úmrd v EU. Celkem existuje cca 7 000 druhů, polovina z
ZLOMKY A DESETINNÁ ČÍSLA. Růžena Blažková
ZLOMKY A DESETINNÁ ČÍSLA Růžena Blažková Úvod Se zlomky a s desetinnými čísly se setkává každý člověk, jak v běžném životě, tak v pracovních či zájmových činnostech. Z matematického hlediska není rozdíl
1.2.3 Racionální čísla I
.2. Racionální čísla I Předpoklady: 002 Racionální jsou všechna čísla, která můžeme zapsat ve tvaru zlomku p q, kde p Z, q N. Například 2 ; ; 2 ; 6 ; umožňují počítat s částmi celků (třeba polovina dortu),
2.5.11 Přímá úměrnost II
.5.11 Přímá úměrnost II Předpoklady: 00510 Př. 1: Jirka odebral za celý rok na zahradě pouze 300 kwh a zaplatil za 1575 Kč. Platí za kwh více nebo méně než je typická cena? Doplň pro jeho cenu za kwh tabulku.
Petr Husar, www.e-matematika.cz nesnesitelně snadná matematika! Test z matematiky základní školy úroveň 2 řešení
Test z matematiky základní školy úroveň 2 řešení Každá otázka je za 1 bod, celkový počet bodů je 20. 1. Tři podnikatelé srovnávali své výdaje za měsíc listopad. Novákovy výdaje byly dvakrát větší než Šindelářovy
2.7.3 Použití grafů základních mocninných funkcí
.7.3 Použití grafů základních mocninných funkcí Předpoklady: 70, 70 Pedagogická poznámka: Jedním z nejdůležitějších cílů hodiny je, aby si studenti kreslili obrázky, které jim při řešení příkladů doopravdy
[ ] ( ) ( )( ) Výrazy s proměnnou II. Předpoklady: Vypočti. a) ( ) ( ) Př. 1: = + = = = = 152
3..3 Výrazy s proměnnou II Předpoklady: 0300 Př. 1: Vypočti. { 3 + 4 7 5 + 3 + 3} ( 3) a) ( ) ( ) b) ( 5 3) 6 3 8 + 4 ( 7 10) 3 ( )( 5 7) a) { 3 4 7 ( 5 ) ( ) 3 3} ( 3) { [ 3 + 4 6] + 6} + 6 = { 5 + 6}
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Projekt: Registrační číslo projektu: Každý máme
OPVK CZ.1.07/2.2.00/
OPVK CZ.1.07/2.2.00/28.0184 Základy ADME a toxického hodnocení léčiv v preklinickém vývoji OCH/ADME LS 2012/2013 Základní farmakokinetické parametry, výpočet a praktický význam ve farmakoterapii Farmakokinetická
0,2 0,20 0, Desetinná čísla II. Předpoklady:
1.2.2 Desetinná čísla II Předpoklady: 010201 Pedagogická poznámka: Je třeba zahájit tak, aby se stihl ještě společný začátek příkladu 7 (pokud někdo příklad 7 začne s předstihem, nevadí to, ale jde o to,
Rozšiřování = vynásobení čitatele i jmenovatele stejným číslem různým od nuly
Rozšiřování a krácení zlomků Rozšiřování vynásobení čitatele i jmenovatele stejným číslem různým od nuly rozšířený zlomek vznikl tak, že jsme čitatel i jmenovatel původního zlomku vynásobili číslem rozšířený
Obr. 1: Vizualizace dat pacientů, kontrolních subjektů a testovacího subjektu.
Řešení příkladu - klasifikace testovacího subjektu pomocí Bayesova klasifikátoru: ata si vizualizujeme (Obr. ). Objem mozkových komor 9 8 7 6 5 pacienti kontroly testovací subjekt 5 6 Objem hipokampu Obr.
2.5.12 Přímá úměrnost III
.5.1 Přímá úměrnost III Předpoklady: 00511 Př. 1: Narýsuj milimetrový papír grafy přímých úměrností. a) y = x b) y = x. U každé přímé úměrnosti si můžeme spočítat několik bodů (ve skutečnosti stačí jeden
Chirurgická klinika 1. lékařské fakulty Univerzity Karlovy a Thomayerovy nemocnice v Praze
Chirurgická klinika 1. lékařské fakulty Univerzity Karlovy a Thomayerovy nemocnice v Praze Přednosta: Vídeňská 800, 140 59 Praha 4 Krč Tel.: (+420) 261 082 632, Fax: (+420) 261 082 620, e-mail: jaromir.simsa@ftn.cz
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT RNDr. Eva Janoušová INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ HODNOCENÍ ÚSPĚŠNOSTI KLASIFIKACE A SROVNÁNÍ KLASIFIKÁTORŮ ÚVOD Vstupní data Subjekt Objem hipokampu Objem komor Skutečnost
MATEMATIKA. Výrazy a rovnice 1. pracovní sešit
MATEMATIKA Výrazy a rovnice pracovní sešit Napsali: Mgr. Michaela Jedličková; RNDr. Peter Krupka, Ph.D.; RNDr. Jana Nechvátalová Recenzentky: Mgr. Barbora Stušová; doc. RNDr. Naďa Vondrová, Ph.D. OBSAH
1.2.3 Měříme objem I. Předpoklady: Pomůcky: odměrné válce, 8 kostek. Objem - velikost části prostoru, který předmět zaujímá.
1.2. Měříme objem I Předpoklady: 0202 Pomůcky: odměrné válce, 8 kostek Objem - velikost části prostoru, který předmět zaujímá. Pedagogická poznámka: Pojem objemu žáci formulují společně. Snažím se, aby
Složitost Filip Hlásek
Složitost Filip Hlásek Abstrakt. Příspěvek popisuje dva základní koncepty teoretické informatiky, Turingovy stroje a složitost. Kromě definic důležitých pojmů uvádí také několik souvisejících tvrzení,
Občané o vztazích ČR s některými zeměmi prosinec 2018
Tisková zpráva Občané o vztazích ČR s některými zeměmi prosinec 2018 Jak už se zhruba od poloviny minulého desetiletí stalo dobrou tradicí, výrazně nejpříznivěji ze všech okolních, jakož i jiných zemí,
Matematika. Až zahájíš práci, nezapomeò:
9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení
Projekt Vzdělávání pedagogů k realizaci kurikulární reformy (CZ.1.07/1.3.05/11.0026) Manuál č. 15
Manuál č. 15 NÁZEV HODINY/TÉMA: OPERACE S REÁLNÝMI ČÍSLY Časová jednotka (vyuč.hod.): 1h (45min.) Vyučovací předmět: Matematika Ročník: první Obor vzdělání: 3letý Použité metody: Hra s čísly, Práce s textem,
Čtyřúhelníky. Příklad 1: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 2: Sestroj rovnoběžník ABCD, je-li dáno:
Čtyřúhelníky Příklad 1: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 2: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 3: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 4: Sestroj rovnoběžník ABCD, je-li
1.2.3 Racionální čísla I
.2. Racionální čísla I Předpoklady: 002 Pedagogická poznámka: Hodina je trochu netypická, na jejím začátku provedu výklad (spíše opakování), který nechám na tabuli a potom až do konce řeší žáci zbytek
GJP OČIMA UČITELŮ POČET UČITELŮ: 18 MUŽI: 8 ŽENY: 8 NEURČENO: 2 SBĚR DAT: LEDEN, ÚNOR 2015
GJP OČIMA UČITELŮ POČET UČITELŮ: 18 MUŽI: 8 ŽENY: 8 NEURČENO: 2 SBĚR DAT: LEDEN, ÚNOR 2015 Z filmu Obecná škola Zpracovala: Mgr. Veronika Vitošková, Ph.D., školní psycholožka Celkové hodnocení školy Zdroj:
Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková
VY_42_INOVACE_MA1_01-36 Název školy Základní škola Benešov, Jiráskova 888 Číslo projektu CZ.1.07/1.4.00/21.1278 Název projektu Pojďte s námi Číslo a název šablony klíčové aktivity IV/2 Inovace a zkvalitnění
VLIV POUŽITÉ ANESTEZIE NA INCIDENCI POOPERAČNÍ KOGNITIVNÍ DYSFUNKCE. MUDr. Jakub Kletečka KARIM, FN a LF UK Plzeň
VLIV POUŽITÉ ANESTEZIE NA INCIDENCI POOPERAČNÍ KOGNITIVNÍ DYSFUNKCE MUDr. Jakub Kletečka KARIM, FN a LF UK Plzeň Spoluautoři I. Holečková 2, P. Brenkus 3, P. Honzíková 1, S. Žídek 2, J. Beneš 1 a I. Chytra
Metodické pokyny k pracovnímu listu č Povrchy a objemy těles II
Název projektu: Spokojená škola Číslo projektu: OPVK.CZ.1.07/1.2.33/02.0039 Metodické pokyny k pracovnímu listu č. 9.10 Povrchy a objemy těles II Pracovní list je zaměřen především na výpočty povrchů a
Rovnoměrný pohyb II
2.2.12 Rovnoměrný pohyb II Předpoklady: 020210 Pomůcky: Př. 1: Jakou vzdálenost urazí za pět minut automobil jedoucí rychlostí 85 km/h? 5 t = 5min = h, v = 85 km/h 5 s = vt = 85 km = 7,1 km Automobil jedoucí
SMART Notebook verze Aug
SMART Notebook verze 10.6.219.2 Aug 5 2010 Pořadové číslo projektu CZ.1.07/1.4.00/21.3007 Šablona č.: III/2 Datum vytvoření: 3.9.2012 Pro ročník: 6. až 9. Vzdělávací obor předmět: Matematika Klíčová slova:
Projekt FR-TI2/075 MPO příklad spolupráce farmaceutů s komerčním sektorem. Milan Bartoš. Forum veterinarium, Brno 2010
Projekt FR-TI2/075 MPO příklad spolupráce farmaceutů s komerčním sektorem Milan Bartoš Forum veterinarium, Brno 2010 Vývoj farmakogenetické diagnostické soupravy pro stanovení genetických polymorfismů
Výpočet hustoty, práce s tabulkami
Výpočet hustoty, práce s tabulkami Autor: Pavel Broža Datum: 3. 5. 2014 Cílový ročník: 7. Život jako leporelo, reistrační číslo CZ.1.07/1.4.00/21.3763 Výpočet hustoty vzor 1 (bez převodů jednotek) Dřevěné
1. Tři shodné obdélníky jsou rozděleny různými způsoby. První je rozdělen na 4 shodné části, poslední obdélník na 6 shodných částí.
. Tři shodné obdélníky jsou rozděleny různými způsoby. První je rozdělen na 4 shodné části, poslední obdélník na 6 shodných částí. Vyjádřete zlomkem, jakou část druhého obdélníku tvoří zatmavená plocha..
Proč potřebujeme nákupčí zdravotní péče. MUDr. Pavel Hroboň, M.S.
Proč potřebujeme nákupčí zdravotní péče MUDr. Pavel Hroboň, M.S. SHRNUTÍ DNEŠNÍ PREZENTACE Zdravotní pojišťovny mají vedle krytí rizika svých klientů také roli nákupčích zdravotní péče. V této roli působí
Aktuální dostupnost léků v ČR a SR GROUP. Roman Hájek 2.9.2006. Poděbrady
Aktuální dostupnost léků v ČR a SR CZECH CMG M Y E L O M A GROUP ČESKÁ MYELOMOVÁ SKUPINA ČESKÁ MYELOMOVÁ SKUPINA CZECH CMG M Y E L O M A NADAČNÍ FOND GROUP Roman Hájek 2.9.2006 Poděbrady I. OBECNÁ DOPORUČENÍ,
3.2.4 Podobnost trojúhelníků II
3..4 Podobnost trojúhelníků II Předpoklady: 33 Př. 1: V pravoúhlém trojúhelníku s pravým uhlem při vrcholu sestroj výšku na stranu. Patu výšky označ. Najdi podobné trojúhelníky. Nakreslíme si obrázek:
Racionální čísla. Množinu racionálních čísel značíme Q. Zlomky můžeme při počítání s nimi:
Racionální čísla Racionální číslo je číslo vyjádřené ve tvaru zlomku p kde p je celé číslo a q je q číslo přirozené. Tento zápis je jednoznačný pokud čísla p, q jsou nesoudělná, zlomek je v základním tvaru.
273/2015 Sb. VYHLÁŠKA Ministerstva zdravotnictví o stanovení hodnot bodu, výše úhrad hrazených služeb a regulačních omezení pro rok 2016 1
273/2015 Sb. VYHLÁŠKA Ministerstva zdravotnictví ze dne 15. října 2015 o stanovení hodnot bodu, výše úhrad hrazených služeb a regulačních omezení pro rok 2016 Ministerstvo zdravotnictví stanoví podle 17
Jednotky objemu
1.2.16 Jednotky objemu Předpoklady: 0215 Př. 1: Vynásob. a) 2,5 b) 0,042 20 c) 1, 0, d) 0, 08 0,9 a) 2,5 = 7,5 b) 0, 042 20 = 0,840 c) 1, 0, = 0,9 d) 0,08 0,9 = 0,072 Př. 2: Urči objem krychle o hraně:
Návrhy témat diplomových a bakalářských prací pro akademický rok 2014/2015
Mgr. Michaela HŘIVNOVÁ, Ph.D. Vzdělávací obor Výchova ke zdraví na 2. st. základních škol - pohled žáků i pedagogů. PRO VÍCE STUDENTŮ Výzkum osvojeného kurikula žáky ve výchově ke zdraví na konci 9. ročníku
1.1.3 Práce s kalkulátorem
.. Práce s kalkulátorem Výrazy zadáváme do kalkulačky pokud možno vcelku, pozor na závorky a čísla ve jmenovateli u zlomků. Př. : Spočti na kalkulačce s maximální možnou přesností a bez zapisování mezivýsledků:
Studijní obor 7.1.3 normální a patologická fyziologie
Posudek oponenta odborného materiálu na jmenovací řízení profesorem Doc. MUDr. Michala Javorku, Ph.D. Z Fyziologického ústavu Jesseniova Lékařská fakulta UK v Martine Studijní obor 7.1.3 normální a patologická
Poměry a úměrnosti. Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku
Poměry a úměrnosti Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku S poměrem lze pracovat jako se zlomkem a : b = a b porovnávat,
Zn + 2HCl ZnCl 2 + H 2
ZÁKLADNÍ CHEMICKÉ VÝPOČTY autoři, obrázky: Mgr. Hana a Radovan Sloupovi 1. Kluci z chemického kroužku chystají ke dni otevřených dveří balón, který má obsah 10 litrů. Potřebují jej naplnit vodíkem, který
ČT 2 15% ČT 1? nesleduje 42% Nova 13% Prima 10% a. 210 b. 100 c. 75 d. 50
1. Rada pro televizní vysílání prováděla průzkum sledovanosti českých televizních stanic. Průzkumu se zúčastnilo 500 tzv. respondentů. Sledovanost stanic ČT1, ČT2, Nova a Prima je uvedena v diagramu. Kolik
výška (cm) počet žáků
Statistika 1) Ve školním roce 1997/119 bylo v Brně 3 základních škol, ve kterých bylo celkem 1 tříd. Tyto školy navštěvovalo 11 5 žáků. Určete a) kolik tříd průměrně měla jedna ZŠ, b) kolik žáků průměrně
( ) ( ) ( ) x Užití derivace. Předpoklady: 10202, 10209
.. Užití derivace Předpoklad:, 9 Pedagogická poznámka: Hodinu dělíme na dvě polovin jednu na tečn a normál, druhou na L Hospitalova pravidla. Už při zavádění derivace, jsme si ukázali, že hodnota derivace
Copyright 2013 Martin Kaňka;
Copyright 2013 Martin Kaňka; http://dalest.kenynet.cz Popis aplikace Aplikace Bottle design, jak je již z názvu patrné, je aplikace, která umožňuje vytvářet tělesa tvaru lahve. To znamená, že můžeme vytvořit
Doc. MUDr. A. Bartoš, PhD. AD Centrum Národní ústav duševního zdraví (NUDZ), Klecany & Neurologická klinika, UK 3.
Doc. MUDr. A. Bartoš, PhD AD Centrum Národní ústav duševního zdraví (NUDZ), Klecany & Neurologická klinika, UK 3. LF a FNKV, Praha Jak najít hranice mezi stárnutím a Alzheimerovou nemocí? Bartoš, Raisová:
1.7.3 Výšky v trojúhelníku I
1.7.3 Výšky v trojúhelníku I Předpoklady: 010702 Pedagogická poznámka: Měřítka prvních tří obrázků jsou zapsána tak, aby žáci spočítali přibližné výšky skutečných památek. U posledního obrázku se mi nepodařilo
Dělení desetinných čísel desetinným číslem II
1.2.22 Dělení desetinných čísel desetinným číslem II Předpoklady: 1221 Př. 1: Platí: 8 : 4 = 2. Doplň další dvojice tak, aby jsme jejich vydělením získali stejný výsledek jako u podílu 8 : 4. Jak souvisí