( ) ( ) ( ) Logaritmické nerovnice I. Předpoklady: 2908, 2917, 2919
|
|
- Patrik Mareš
- před 9 lety
- Počet zobrazení:
Transkript
1 .. Logaritmické nerovnice I Předpoklady: 08, 7, Pedagogická poznámka: Pokud mají studenti pracovat samostatně budou potřebovat na všechny příklady minimálně jeden a půl vyučovací hodiny. Pokud není čas, doporučuji vynechat příklady 5 a 7. Jde o jednu z hodin, kde studenti nemohou být úspěšní, pokud se nedrží v obraze s ohledně řešení nerovnic. Pedagogická poznámka: V hodině je možné postupovat dvěma způsoby. Můžete vynechat úvodní poznámku o očekávaných problémech a pustit studenty do rovnic. Velká většina z nich pak udělá v obou příkladech chyby. Druhou možností je, popovídat si o poznámce a pak teprve zadat příklady. Chybujících bude podstatně méně, ale zmizí efekt překvapení. Pedagogická poznámka: V průběhu hodiny hlavně při řešení problémů v lavicích je třeba neustále kontrolovat, zda studenti chápou, že se neučí nic nového, ale pouze opakují postupy z minula. Na začátku hodiny připomínám, že velká část úspěchu je právě v orientaci uvnitř příkladu a proto není k ničemu se případně učit příklady nazpaměť. Na co budeme muset dávat při řešení logaritmických nerovnic pozor: dodržování podmínek (do logaritmů nemůže na rozdíl od eponenciálních funkcí dosazovat cokoliv), přechod při odlogaritmovávání (logaritmická funkce může být stejně jako funkce eponenciální rostoucí i klesající). log + <. Př. : Vyřeš nerovnici Podmínka: + > 0 > (do logaritmu nemůžeme dosadit cokoliv). log + < ( + ) < log log log + < log - nerovnost logaritmů, základ větší než můžeme odlogaritmovat. ( + ) < < Zdá se, že platí K ( ;) (všechna dosazovaná čísla musí byt větší než ). K ;, ale musíme zohlednit podmínky pro dosazování do logaritmu Pedagogická poznámka: Pokud studenti potřebují na vyhodnocování podmínek číselnou osu, rozhodně jim v tom nebráním, naopak sám ji občas nabízím.
2 Př. : Vyřeš nerovnici log <. Podmínka: > 0 > (do logaritmu nemůžeme dosadit cokoliv). log < log ( ) < log log ( ) < log - nerovnost logaritmů, základ menší než funkce y log je klesající a menší hodnoty y vyrábí z větších hodnot můžeme odlogaritmovat, ale musíme obrátit nerovnost (stejná situace jako u eponenciálních nerovnic). > > > ; K Pedagogická poznámka: Pokud vynecháte úvod hodiny, naprostá většina studentů zkazí oba první příklady. V prvním zapomene zohlednit, že logaritmus je možné určovat pouze z kladných čísel a v druhém nezohlední, že základ logaritmu je menší než. Myslím, že v tomto okamžiku dobré místo připomenout, jak jsou v takových situacích užitečná obecná pravidla ( výsledek obsahuje pouze to, co můžeme dosadit, nerovnice se nemění při úpravách reprezentovaných rostoucí funkcí). Pokud úvod prodiskutujete, bude chyb méně, více pak u druhého příkladu (během řešení prvního mnozí zapomenou, že si mají na něco dávat pozor). Při řešení logaritmických nerovnic musíme dávat pozor na: dodržení podmínek pro dosazení do logaritmu, hodnotu základu, pokud je základ logaritmu menší než, musíme při odlogaritmování obrátit znaménko nerovnosti. Př. : Vyřeš nerovnici log ( ) log ( ) + <. Podmínky: + > 0 >, > 0 >. log + < log - nerovnost logaritmů, základ větší než můžeme odlogaritmovat a nemusíme otáčet nerovnost. + < < <, musíme splnit podmínky >, < Př. : Vyřeš nerovnici ( ) Podmínky: > 0, + > 0 >. log + log + log. 0,5 K ;.
3 Mezi logaritmy je sčítání, uvnitř jsou různé výrazy převedeme na tvar log výraz log výraz + ( + ) log log log 0,5 log + log log + log - nerovnost logaritmů, základ menší než obracíme nerovnost nulové body, grafem je ďolík - Zdá se, že řešením je interval ;, musíme splnit podmínky > 0, > K (0; Př. 5: Vyřeš nerovnici log <. Podmínky: > 0. log < log < log0 - nerovnost logaritmů, základ větší než zachováváme nerovnost < 00 - hledáme čísla, vzdálená od o méně než 00 interval ( 7;0) Musíme splnit podmínku ( 7;) ( ;0) K. Pedagogická poznámka: Někteří studenti si úlohy komplikují tím, že ještě před odstraňováním logaritmu odstraní absolutní hodnotu. Upozorněte je, že jsou tak v rozporu se zásadou KISS, protože odstranění absolutní hodnoty znamená dvojitý postup ve chvíli, kdy ještě není odstraněn logaritmus a nerovnice je sama o sobě dostatečně složitá. Př. 6: Vyřeš nerovnici log <. Podmínky: > 0,. Příklad je možné řešit dvěma způsoby. a) pomocí definice logaritmu log - číslo na které musíme umocnit aby vyšlo přepíšeme pravou stranu rovnice na logaritmus při základu : log < log chceme odlogaritmovat, ale postup při odlogaritmování závisí na hodnotě základu (zda je větší nebo menší než ) oba druhy hodnot jsou povoleny nemůžeme příklad vyřešit najednou, musíme rozdělit do dvou větví. log < log, 0 < < log < log, >
4 (základ logaritmu je menší než obracíme znaménko nerovnosti) > / ( > 0 kvůli podmínce v logaritmu) > < Zdá se, že řešením je interval ( ; ), počítáme s čísly < a 0 K K K 0; ; K 0;. > (základ logaritmu je větší než neobracíme znaménko nerovnosti) < / ( > 0 kvůli podmínce v logaritmu) < > Zdá se, že řešením je interval ( ; ), počítáme s čísly >, taková jsou v intervalu ( ; ) všechna ( ; ) K. b) pomocí vzorce na změnu základu log Nahradíme log podílem logaritmů: log log log. log < log < potřebujeme vynásobit nerovnici číslem log, které může být kladné i záporné nemůžeme příklad vyřešit najednou, musíme rozdělit výpočet do dvou větví. log < 0 < log > 0 > < / log (násobíme záporným log číslem obracíme nerovnost) > log > log log > log - odlogaritmujeme, základ je větší než zachováváme nerovnost. > < Zdá se, že řešením je interval ( ; ), počítáme s čísly < a 0 K K K 0; ; K 0;. > < / log (násobíme kladným číslem log zachováváme nerovnost) < log < log log < log - odlogaritmujeme, základ je větší než zachováváme nerovnost. < > Zdá se, že řešením je interval ( ; ), počítáme s čísly >, taková jsou v intervalu ( ; ) všechna ( ; ) K. Pedagogická poznámka: Studenti takřka výhradně řeší předchozí nerovnici pomocí definice logaritmu. Přesto jim ukazuji i druhý postup, aby viděli, že i naprosto jinou cestou se dostaneme ke stejnému výsledku a dělení na intervaly, které se objeví odlogaritmování kvůli různým hodnotám základů, se ukáže i při jiném postupu na jiném místě z jiných důvodů, ale s naprosto stejnými důsledky.
5 + Př. 7: Vyřeš nerovnici log0, Podmínky: > 0 řešíme nerovnici v podílovém tvaru. Nulové body: + 0, 0. - ( ; ) ; Převedeme nerovnici na tvar log0,5 výraz log0,5 výraz. + log0,5 0 + log0,5 log0,5 - odlogaritmujeme, základ je menší než obracíme nerovnost. + potřebujeme nerovnost vynásobit výrazem ( ), který může být kladný i záporný musíme rozdělit výpočet. < násobíme záporným číslem > násobíme kladným číslem obracíme nerovnost. nerovnost zachováváme. + + Zdá se, že řešením je interval ; ), počítáme Zdá se, že řešením je interval ( ;, počítáme s čísly K K K < K. ; s čísly > K ;. Př. 8: Petáková: strana 8/cvičení b) d) f) strana 8/cvičení 0 c) e) strana 8/cvičení c) strana 8/cvičení a) strana 8/cvičení 7 d) g) Shrnutí: Při řešení logaritmických nerovnic musíme kromě hodnoty základu dávat pozor i na definiční obory výrazů, ze kterých logaritmus počítáme. 5
2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou
.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 40, 4, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli (nejlépe tak, aby se zápis mohl otočit nebo jinak schovat
( ) ( ) Logaritmické nerovnice II. Předpoklady: 2924
5 Logaritmické nerovnice II Předpoklad: Pedagogická poznámka: Většina studentů spočítá pouze první tři příklad, nejlepší se dostanou až k pátému Pedagogická poznámka: U následujících dvou příkladů je opět
( 2 ) ( 8) Nerovnice, úpravy nerovnic. Předpoklady: 2114, Nerovnice například 2x
..5 Nerovnice, úpravy nerovnic Předpoklady:, 03 Nerovnice například 3 < + 5 - zápis nerovnosti hodnot dvou výrazů. Za můžeme dosazovat různá čísla, tím měníme hodnoty obou výrazů. Hledáme takové, aby nerovnost
3.3. EXPONENCIÁLNÍ A LOGARITMICKÁ ROVNICE A NEROVNICE
3.3. EXPONENCIÁLNÍ A LOGARITMICKÁ ROVNICE A NEROVNICE V této kapitole se dozvíte: jak je definována eponenciální a logaritmická rovnice a nerovnice a jaká je základní strategie jejich řešení. Klíčová slova
Nerovnice v podílovém tvaru II. Předpoklady: 2303, x. Podmínky: x x 1, 2 x 0 x 2, 1 3x
.. Nerovnice v podílovém tvaru II Předpoklady: 0, 04 Př. : ( x )( x + ) ( x + )( x)( x) 0. Podmínky: x + 0 x, x 0 x, x 0 x x + je vždy kladný nebudeme se s ním dále zabývat, znaménko neovlivňuje. Člen
Použití substituce pro řešení nerovnic II
.7. Použití substituce pro řešení nerovnic II Předpoklad: 7, 7, 7 Pedagogická poznámka: Platí to samé, co pro předchozí hodinu. Skvělé cvičení na orientaci v příkladu, přehledný zápis a schopnost řešit
Logaritmická rovnice
Ročník:. Logaritmická rovnice (čteme: logaritmus z x o základu a) a základ logaritmu x argument logaritmu Vzorce Použití vzorců a principy počítání s logaritmy jsou stejné jako u logaritmů základních,
2.4.9 Rovnice s absolutní hodnotou I
..9 Rovnice s absolutní hodnotou I Předpoklady: 0, 0, 05 Pedagogická poznámka: Obsah hodiny odpovídá přibližně 5 minutám. Je samozřejmě možné ji spojit s následující hodinou, pak ovšem část příkladů nestihnete
Rovnice s neznámou pod odmocninou I
.7.15 Rovnice s neznámou pod odmocninou I Předpoklady: 711, 71 Pedagogická poznámka: Látka této hodiny vyžaduje tak jeden a půl vyučovací hodiny, pokud nepospícháte, můžete obětovat hodiny dvě a nechat
( ) Absolutní hodnota. π = π. Předpoklady: základní početní operace. 0 = 0 S nezápornými čísly absolutní hodnota nic nedělá
1..9 Absolutní hodnota Předpoklady: základní početní operace = 0 = 0 S nezápornými čísly absolutní hodnota nic nedělá π = π = 3 3 = Záporná čísla absolutní hodnota změní na kladná (vynásobí je 1) 5 5 3
( ) ( )( ) ( x )( ) ( )( ) Nerovnice v součinovém tvaru II. Předpoklady: Př.
.. Nerovnice v součinovém tvaru II Předpoklady: 0 Př. 1: Řeš nerovnici x x 0. Problém: Na levé straně není součin musíme ho nejdříve vytvořit: x x x x x x x x x x + 0. ( ( ( = = + řešíme nerovnici: ( (
2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I
.. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla
2.4.9 Rovnice s absolutní hodnotou I
..9 Rovnice s absolutní hodnotou I Předpoklady: 0, 0, 05 Pedagogická poznámka: Obsah hodiny odpovídá přibližně 5 minutám. Je samozřejmě možné ji spojit s následující hodinou, pak ovšem část příkladů nestihnete
+ 2 = 1 pomocí metody dělení definičního oboru. ( )
..0 Rovnice s absolutní hodnotou II Předpoklady: 09 Pedagogická poznámka: Jenom nejlepší studenti stihnou spočítat obsah celé hodiny. Většina třídy se dostane přibližně k příkladu 7, což stačí na obstojné
4.3.3 Goniometrické nerovnice
4 Goniometrické nerovnice Předpoklady: 40 Pedagogická poznámka: Nerovnice je stejně jako rovnice možné řešit grafem i jednotkovou kružnicí Oba způsoby mají své výhody i nevýhody a jsou v podstatě rovnocenné
= - rovnost dvou výrazů, za x můžeme dosazovat různá čísla, tím měníme
- FUNKCE A ROVNICE Následující základní znalosti je nezbytně nutné umět od okamžiku probrání až do konce kapitoly (většinou do napsání čtvrtletní písemné práce, na výjimky z tohoto pravidla bude upozorněno).
[ 0,2 ] b = 2 y = ax + 2, [ 1;0 ] dosadíme do předpisu Soustavy lineárních nerovnic. Předpoklady: 2206
..7 Soustavy lineárních nerovnic Předpoklady: 06 Pedagogická poznámka: První příklad je opakování, pokud se u někoho objeví problémy, je třeba je řešit před hodinou 0009. Př. : Urči předpis funkce f. Odhadni
( x) ( ) ( ) { } Vzorce pro dvojnásobný úhel II. Předpoklady: Urči definiční obor výrazů a zjednoduš je. 2. x x x
9 Vzorce pro dvojnásobný úhel II Předpoklady: 08 Př : Urči definiční obor výrazů a zjednoduš je a) ( sin cos ) sin x + cos x sin x x + x sin x b) cos x + cos x + sin x + cos x sin x a) x R sin x + cos
KFC/SEM, KFC/SEMA Rovnice, nerovnice
KFC/SEM, KFC/SEMA Rovnice, nerovnice Požadované dovednosti: Řešení lineárních rovnic a nerovnic Řešení kvadratických rovnic Řešení rovnic s odmocninou Řešení rovnic s parametrem Řešení rovnic s absolutní
Logaritmus, logaritmická funkce, log. Rovnice a nerovnice. 3 d) je roven číslu: c) -1 d) 0 e) 3 c) je roven číslu: b) -1 c) 0 d) 1 e)
Logaritmus, logaritmická funkce, log. Rovnice a nerovnice ) Výraz log log +log není správná 0 - žádná z předchozích odpovědí ) Číslo log 8 6 je rovno číslu: ) Výraz log log +log - 0 ) Číslo log 6 6 je
2.6.5 Další použití lineárních lomených funkcí
.6.5 Další použití lineárních lomených funkcí Předpoklady: 60, 603 U předchozích funkcí jsme měli vždy s funkcemi rovnice existují lineární lomené rovnice a nerovnice? Jak by vypadaly? Například takto:
Funkce Arcsin. Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: 4 je číslo, jehož druhá mocnina se rovná 4.
..6 Funkce Arcsin Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: Kvadratická funkce Druhá odmocnina y =, 0; ) y = je číslo, jehož druhá mocnina se rovná. - - - - - - y = y = Eponenciální
2.7.3 Použití grafů základních mocninných funkcí
.7.3 Použití grafů základních mocninných funkcí Předpoklady: 70, 70 Pedagogická poznámka: Jedním z nejdůležitějších cílů hodiny je, aby si studenti kreslili obrázky, které jim při řešení příkladů doopravdy
( ) ( ) Vzorce pro dvojnásobný úhel. π z hodnot goniometrických funkcí. Předpoklady: Začneme příkladem.
Vzorce pro dvojnásobný úhel Předpoklady: 0 Začneme příkladem Př : Pomocí součtových vzorců odvoď vzorec pro sin x sin x sin x + x sin x cos x + cos x sin x sin x cos x Př : Pomocí součtových vzorců odvoď
4.3.2 Goniometrické nerovnice
4 Goniometrické nerovnice Předpoklady: 40 Pedagogická poznámka: Nerovnice je stejně jako rovnice možné řešit grafem i jednotkovou kružnicí Oba způsoby mají své výhody i nevýhody a jsou v podstatě rovnocenné
x 0; x = x (s kladným číslem nic nedělá)
.. Funkce absolutní hodnota Předpoklady: 08, 07 x - zničí znaménko čísla, všechna čísla změní na nezáporná Jak vyjádřit matematicky? Pomocí číselné osy: x je vzdálenost obrazu čísla na číselné ose od počátku.
( ) ( ) Lineární nerovnice II. Předpoklady: Jak je to s problémem z minulé hodiny? Získali jsme dvě řešení nerovnice x < 3 :
.. Lineární nerovnice II Předpoklady: 00 Jak je to s problémem z minulé hodiny? Získali jsme dvě řešení nerovnice x < : Správné řešení. x < / + x 0 < + x / < x K = ( ; ) Test možné správnosti: x = :
Nerovnice. Vypracovala: Ing. Stanislava Kaděrková
Nerovnice Vypracovala: Ing. Stanislava Kaděrková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických předmětů
Kvadratické nerovnice Předpoklady: Př. 1: Úvaha: Pedagogická poznámka:
..10 Kvadratické nerovnice Předpoklady: 01, 0, 0, 07 Př. 1: Vyřeš nerovnici 0. 0 - mohu rozložit na součin není to nic nového + 1 0 ( )( ) Hledám nulové body: 0 ( ) = = ( ) ( ; 1) ( 1; ) ( ; ) ( ) - -
4. Určete definiční obor elementární funkce g, jestliže g je definována předpisem
4 Určete definiční obor elementární funkce g jestliže g je definována předpisem a) g ( x) = x 16 + ln ( x) x 16 ( x + 4 )( x 4) Řešíme-li kvadratickou nerovnice pomocí grafu kvadratické funkce tj paraboly
Absolutní hodnota I. π = π. Předpoklady: = 0 S nezápornými čísly absolutní hodnota nic nedělá.
1..10 Absolutní hodnota I Předpoklady: 01005 = 0 = 0 S nezápornými čísly absolutní hodnota nic nedělá. π = π = = Záporná čísla absolutní hodnota změní na kladná (vynásobí je 1). 5 5 = Absolutní hodnota
Funkce arcsin. Některé dosud probírané funkce můžeme spojit do dvojic: 4 - je číslo, které když dám na druhou tak vyjde 4.
.. Funkce arcsin Některé dosud probírané funkce můžeme spojit do dvojic: Kvadratická funkce Druhá odmocnina y =, 0; ) y = - je číslo, které když dám na druhou tak vyjde - - - - - - y = y = Eponenciální
2.3.1 Rovnice v součinovém tvaru
.. Rovnice v součinovém tvaru Předpoklady: 70, 0 Pedagogická poznámka: Hodina obsahuje poměrně dost příkladů (0). I když je někteří stihli vypočítat, mám trochu obavu, zda postup nebyl příliš rychlý. Pokud
Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou
Funkce jedné reálné proměnné lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou lineární y = ax + b Průsečíky s osami: Px [-b/a; 0] Py [0; b] grafem je přímka (získá se pomocí
2.7.17 Nerovnice s neznámou pod odmocninou
.7.7 Nerovnice s neznámou pod odmocninou Předpoklady: 05, 75 Pedagogická poznámka: Tato hodina patří mezi největší masakry během celého studia. Její obtížnost spočítává hlavně ve dvou věcech: a) Je nutné,
4.3.3 Základní goniometrické vzorce I
4.. Základní goniometrické vzorce I Předpoklady: 40 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě
Mocninná funkce: Příklad 1
Mocninná funkce: Příklad 1 Zadání: Vyšetřete průběh mocninné funkce. Řešení: 1. Jako první si určíme definiční obor: D(f)=R. 2. Nyní si spočítáme zda je daná funkce sudá nebo lichá: Daná funkce je lichá.
6. Lineární (ne)rovnice s odmocninou
@06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou
7.1.3 Vzdálenost bodů
7.. Vzdálenost bodů Předpoklady: 70 Př. : Urči vzdálenost bodů A [ ;] a B [ 5;] obecný vzorec pro vzdálenost bodů A[ a ; a ] a [ ; ]. Na základě řešení příkladu se pokus sestavit B b b. y A[;] B[5;] Z
INTERNETOVÉ ZKOUŠKY NANEČISTO - VŠE: UKÁZKOVÁ PRÁCE
INTERNETOVÉ ZKOUŠKY NANEČISTO - VŠE: UKÁZKOVÁ PRÁCE. Součin 5 4 je roven číslu: a) 4, b), c), d), e) žádná z předchozích odpovědí není správná. 5 5 5 5 + + 5 5 5 5 + + 4 9 9 4 Správná odpověď je a) Počítání
2.9.4 Exponenciální rovnice I
9 Eponenciální rovnice I Předpoklady: 90 Pedagogická poznámka: Eponenciální rovnice a nerovnice jsou roztaženy do celkem sedmi hodin zejména proto, že jsou brány jako nácvik výběru metody Nejprve si v
4.3.4 Základní goniometrické vzorce I
.. Základní goniometrické vzorce I Předpoklady: 0 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě
POŽADAVKY pro přijímací zkoušky z MATEMATIKY
TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy
Kvadratické rovnice (dosazení do vzorce) I
.. Kvadratické rovnice (dosazení do vzorce) I Předpoklady: 000 Rovnicí se nazývá vztah rovnosti mezi hodnotami dvou výrazů obsahujícími jednu nebo více neznámých. V této kapitole se budeme zabývat pouze
2. Řešení algebraické
@016 2. Řešení algebraické Definice: Nechť a, c jsou reálná čísla. Rovnice v R (s neznámou x) daná formulí se nazývá lineární rovnice a ax + c = 0 se nazývají lineární nerovnice. ax + c 0 ax + c < 0 ax
Grafy funkcí s druhou odmocninou
.7.0 Grafy funkcí s druhou odmocninou Předpoklady: 003, 00709 Pedagogická poznámka: V první části hodiny při kreslení grafů nesmí jít o nic nového, studenti musí chápat, že jde znovu o pouhé opakování
Šablona 10 VY_32_INOVACE_0106_0110 Rovnice s absolutní hodnotou
Šablona 10 VY_32_INOVACE_0106_0110 Rovnice s absolutní hodnotou 1 Identifikační údaje školy Číslo projektu Číslo a název šablony Autor Tematická oblast Číslo a název materiálu Anotace VÝUKOVÝ MATERIÁL
( ) ( ) ( ) ( ) Logaritmické rovnice III. Předpoklady: Př. 1: Vyřeš rovnici. Podmínky: Vnitřky logaritmů: x > 0.
.9. Logaritmické rovnice III Předpoklad: 90 Př. : Vřeš rovnici log log. + log + log Podmínk: Vnitřk logaritmů: > 0. Zlomk: + log 0 log 0,00 + log 0 log 0,00 00 Problém: Jednotlivé stran nemůžeme upravit
8.2 GRAFY LINEA RNI CH LOMENY CH FUNKCI
8.2 GRAFY LINEA RNI CH LOMENY CH FUNKCI Počítáme s Jindrou Petákovou 8 Francl Pavel Obsah Příklad č. 9... 2 a)... 2 b)... 3 c)... 4 d)... 5 e)... 6 g)... 8 h)... 9 i)... 10 j)... 11 k)... 12 l)... 13 Příklad
ŘEŠENÍ KVADRATICKÝCH A ZLOMKOVÝCH NEROVNIC V ŠESTI BODECH
(Tento text je součástí výkladu k definičním oborům, tam najdete další příklady a pokud chcete část tohoto textu někde použít, můžete čerpat ze stažené kompletní verze definičních oborů ve formátu.doc.)
Logaritmická funkce I
.9. Logaritmická funkce I Předpoklady: 90 Porovnáváme hodnoty eponenciální a logaritmické funkce. Jak souvisejí dvojice čísel a y u obou funkcí? Eponenciální funkce y = Logaritmická funkce y = log Hodnoty
Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.
Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ
M - Kvadratické rovnice a kvadratické nerovnice
M - Kvadratické rovnice a kvadratické nerovnice Určeno jako učební tet pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.
Vzorce pro poloviční úhel
4.. Vzorce pro poloviční úhel Předpoklady: 409 Chceme získat vzorce pro poloviční úhel vyjdeme ze vzorců pro dvojnásobný úhel: sin = sin cos, cos = cos sin. Výhodnější je vzorec cos = cos sin, obsahuje
2.5.1 Opakování - úměrnosti se zlomky
.. Opakování - úměrnosti se zlomky Př. : Spočti: a) b) c) 6 0 0 : 7 9 a) 0 6 = = = 7 7 b) 9 = = 6 0 c) 0 0 0 9 0 9 : = = = 7 9 7 0 9 0 6 Př. : Přímá úměrnost má předpis y = x. Doplň tabulku této přímé
Jednoduchá exponenciální rovnice
Jednoduchá exponenciální rovnice Z běžné rovnice se exponenciální stává, pokud obsahuje proměnnou v exponentu. Obecně bychom mohli exponenciální rovnici zapsat takto: a f(x) = b g(x), kde a, b > 0. Typickým
4.3.3 Goniometrické nerovnice I
4 Goniometrické nerovnice I Předpoklady: 40 Pedagogická poznámka: Nerovnice je stejně jako rovnice možné řešit grafem i jednotkovou kružnicí Oba způsoby mají své výhody i nevýhody a jsou v podstatě rovnocenné
4.3.8 Vzorce pro součet goniometrických funkcí. π π. π π π π. π π. π π. Předpoklady: 4306
..8 Vzorce pro součet goniometrických funkcí Předpoklady: 06 Vzorce pro součet goniometrických funkcí: sin + sin y = sin cos sin sin y = cos sin cos + cos y = cos cos cos cos y = sin sin Na první pohled
2.7.6 Rovnice vyšších řádů
6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení
) je definovaná pro libovolné kladné reálné číslo x a nabývá všech hodnot ( H f
Exponenciální funkce (daná předpisem Exponenciální a logaritmická funkce a jejich vlastnosti x y a, kde x R, a R 1 libovolné reálné číslo x a nabývá pouze kladných hodnot ( H f R ) je definovaná pro ).
Univerzita Karlova v Praze Pedagogická fakulta
Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z ÚVODU DO MATEMATICKÉ ANLÝZY FUNKCE 999/000 CIFRIK Funkce F a) Zadání: Vyšetřete bez užití limit a derivací funkci : y = { x } f Definice:
Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,
E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................
Určete a graficky znázorněte definiční obor funkce
Určete a grafick znázorněte definiční obor funkce Příklad. z = ln( + ) Řešení: Vpíšeme omezující podmínk pro jednotlivé části funkce. Jmenovatel zlomku musí být 0, logaritmická funkce je definovaná pro
MO-ME-N-T MOderní MEtody s Novými Technologiemi
Projekt: Reg.č.: Operační program: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Škola: Hotelová škola, Vyšší odborná škola hotelnictví a turismu
Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Diferenciální počet VY_32_INOVACE_M0216.
Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek
Logaritmické rovnice a nerovnice
Přírodovědecká fakulta Masarykovy univerzity Logaritmické rovnice a nerovnice Bakalářská práce Brno 008 Lenka Balounová Prohlašuji, že jsem tuto práci vypracovala sama a čerpala jsem pouze z materiálů
Rovnice a nerovnice v podílovém tvaru
Rovnice a nerovnice v podílovém tvaru Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu
Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar
Kvadratická rovnice Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar ax 2 + bx + c = 0. x neznámá; v kvadratické rovnici se vyskytuje umocněná na
LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU
LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU je lineární rovnice, ve které se vyskytuje jeden nebo více výrazů v absolutní hodnotě. ABSOLUTNÍ HODNOTA x reálného čísla x je
Obecnou definici vynecháme. Jednoduše řečeno: složenou funkci dostaneme, když dosadíme za argument funkci g. Potom y f g
Složená funkce Obecnou definici vynecháme Jednoduše řečeno: složenou funkci dostaneme, když do funkce y f dosadíme za argument funkci g Potom y f g Funkce f je vnější složka, funkce g vnitřní složka Pochopitelně
Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.
@083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x
. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0
Příklad 1 Určete definiční obor funkce: a) = b) = c) = d) = e) = 9 f) = Řešení 1a Máme určit definiční obor funkce =. Výraz je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy
( ) ( ) ( ) ( ) Základní goniometrické vzorce III. Předpoklady: 4301, 4305
.. Základní goniometrické vzorce III Předpoklad 0, 0 Pedagogická poznámka Je zřejmé, že samostatně studenti všechn rovnice za jednu hodinu nevřeší. Pokud se objeví větší rozdíl mezi různými částmi tříd
Nerovnice v součinovém tvaru, kvadratické nerovnice
Nerovnice v součinovém tvaru, kvadratické nerovnice Příklad: Pro která x R je součin x x 5 kladný? Řešení: Víme, že součin je kladný, mají-li oba činitelé stejné znaménko. Tedy aby platilo x x 5 0, musí
Lineární funkce IV
.. Lineární funkce IV Předpoklady 0 Pedagogická poznámka Říkám studentům, že cílem hodiny není naučit se něco nového, ale použít to, co už známe (a možná se také přesvědčit o tom, jak se nemůžeme obejít
5. Na množině R řeš rovnici: 5 x 2 2 x Urči všechna reálná čísla n vyhovující nerovnostem: 3 5
I 16 VADRO (váha 80) E 1. Na obrázku vpravo je graf funkce g dané předpisem: y = a + b + c. Urči koeficienty a, b, c.. Zapiš definiční obor a obor hodnot funkce f na obrázku vpravo. f: y = 0,5 4 + 3. Na
Nerovnice, grafy, monotonie a spojitost
Nerovnice, grafy, monotonie a spojitost text pro studenty Fakulty přírodovědně-humanitní a pedagogické TU v Liberci vzniklý za podpory fondu F Martina Šimůnková 29. prosince 2016 1 Úvod Na druhém stupni
Řešené příklady ze starých zápočtových písemek
Řešené příklady ze starých zápočtových písemek Úloha. Najděte všechna reálná řešení rovnice log x log x 3 = log 6. Řešení. Nebot logaritmus je definovaný pouze pro kladné hodnoty dostáváme ihned podmínku
V exponenciální rovnici se proměnná vyskytuje v exponentu. Obecně bychom mohli exponenciální rovnici zapsat takto:
Eponenciální rovnice V eponenciální rovnici se proměnná vyskytuje v eponentu. Obecně bychom mohli eponenciální rovnici zapsat takto: a ( ) f ( ) f kde a > 0, b > 0 b Příkladem velmi jednoduché eponenciální
Logaritmus. Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým. umocníme základ a, abychom dostali číslo.
Logaritmus Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým umocníme základ a, abychom dostali číslo. Platí tedy: logax = y a y = x ( Dekadický logaritmus základ 10 označení
2.7.6 Rovnice vyšších řádů
6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení
2.5.1 Kvadratická funkce
.5.1 Kvadratická funkce Předpoklad: 1 Pedagogická poznámka: Velká většina studentů zvládne hodinu zcela samostatně. Snažím se nezapomenout je pochválit. Slovo kvadratická už známe, začínali jsme s kvadratickou
16. DEFINIČNÍ OBORY FUNKCÍ
6 DEFINIČNÍ OBORY FUNKCÍ 6 Urči definiční obor funkce 7 46 0 7 46 = 0 46 ± 5, = = 7; = 4 7 D ( f ) = ( ; 7 ; ) 7 f : y = 7 46 Funkce odmocnina je definována pro kladná reálná čísla a pro nulu Problematické
O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika
O FUNKCÍCH Obsah Nezbytně nutná kapitola, kterou musíte znát pro studium limit, derivací a integrálů. Základ, bez kterého se neobejdete. Nejprve se seznámíte se všemi typy funkcí, které budete potřebovat,
M - Algebraické výrazy
M - Algebraické výrazy Určeno jako studijní text pro studenty dálkového studia a jako shrnující textpro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu
Logaritmy a věty o logaritmech
Variace 1 Logaritmy a věty o logaritmech Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Logaritmy Definice
( ) ( ) 2.8.2 Lineární rovnice s parametrem II. Předpoklady: 2801
.8. Lineární rovnice s parametrem II Předpoklady: 80 Pedagogická poznámka: Zvládnutí zápisu a obecného postupu (dělení podle hodnot parametru) při řešení parametrických rovnic v této hodině je zásadní
( + ) ( ) f x x f x. x bude zmenšovat nekonečně přesný. = derivace funkce f v bodě x. nazýváme ji derivací funkce f v bodě x. - náš základní zápis
1.. Derivace elementárních funkcí I Předpoklad: 1 Shrnutí z minulé hodin: Chceme znát jakým způsobem se mění hodnot funkce f ( f ( + f ( přibližná hodnota změn = přesnost výpočtu se bude zvětšovat, kdž
Konvexnost, konkávnost
20. srpna 2007 1. f = x 3 12x 2. f = x 2 e x 3. f = x ln x Příklad 1. Určete intervaly, na kterých je funkce konvexní a konkávní a určete inflexní body f = x 3 12x Příklad 1. f = x 3 12x Řešení: Df = R
Exponenciální funkce. a>1, pro a>0 a<1 existuje jiný graf, který bude uveden za chvíli. Z tohoto
Exponenciální funkce Exponenciální funkce je taková funkce, která má neznámou na místě exponentu. Symbolický zápis by tedy vypadal takto: f:y = a x, kde a > 0 a zároveň a 1 (pokud by se a mohlo rovnat
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.7/1.5./34.5 Šablona: III/ Přírodovědné předměty
Grafy relací s absolutními hodnotami
..5 Grafy relací s absolutními hodnotami Předpoklady: 0, 0, 03, 0, 05,, 3 Pedagogická poznámka: Tato hodina nepatří do klasických středoškolských osnov. Je reakcí na fakt, že relace s absolutními hodnotami
Lineární funkce, rovnice a nerovnice
Lineární funkce, rovnice a nerovnice 1. Lineární funkce 1.1 Základní pojmy Pojem lineární funkce Funkce je předpis, který každému číslu x z definičního oboru funkce přiřadí právě jedno číslo y Obecně je
M - Příprava na 1. zápočtový test - třída 3SA
M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento
Nerovnice a nerovnice v součinovém nebo v podílovém tvaru
Variace 1 Nerovnice a nerovnice v součinovém nebo v podílovém tvaru Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz
M - Příprava na pololetní písemku č. 1
M - Příprava na pololetní písemku č. 1 Určeno pro třídy 3SA, 3SB. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete
Průběh funkce I (monotónnost)
0..0 Průěh funkce I (monotónnost) Předpoklad: 00, 009 Pedagogická poznámka: Tato hodina je značně osáhlá, tak je nutné uď přenechat poslední příklad na příští hodinu, neo se příliš nezdržovat úvodní částí.
VZOROVÝ TEST PRO 1. ROČNÍK (1. A, 3. C)
VZOROVÝ TEST PRO. ROČNÍK (. A, 3. C) Zjednodušte daný příklad. (a 2 3 b 3 4) 2 (a 2 b 3 8) 3 max. 3 body 2 Ve které z následujících možností je uveden správný postup usměrnění daného zlomku a správný výsledek?
( 4) 2.2.12 Slovní úlohy vedoucí na lineární rovnice III. Předpoklady: 2211
2.2.2 Slovní úlohy vedoucí na lineární rovnice III Předpoklady: 22 Pedagogická poznámka: Většina příkladů z této hodiny patří do skupiny příkladů na společnou práci. Termín nezavádím. Existují příklady,
2.3.7 Lineární rovnice s více neznámými I
..7 Lineární rovnice s více neznámými I Předpoklady: 01 Pedagogická poznámka: Následující hodinu považuji za velmi důležitou hlavně kvůli pochopení soustav rovnic, které mají více než jedno řešení. Proto