FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt
|
|
- Jitka Burešová
- před 9 lety
- Počet zobrazení:
Transkript
1 FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 4: Měření dutých objemů vážením a kompresí plynu Datum měření: Měření Poissonovy konstanty vzduchu Jméno: Jiří Slabý Pracovní skupina: 1 Ročník a kroužek: 2. ročník, 1. kroužek, pátek 13:30 Spolupracovala: Eliška Greplová Hodnocení: Abstrakt Určovali jsme objem lahve dvě metodami metodou vážení V = (1, 024 ± 0, 001)dm 3 a metodou komprese plynu V lahev = (1, 030 ± 0, 009)dm 3. Poté jsme určovali Poissonovu konstantu metodou adiabatické expanze a určili jsme ji jako κ = 1, 31 ± 0, Úvod Měření dutých objemů budeme provádět dvěma metodami. Zvláště užitečná je ta druhá metoda komprese plynu. Dá se použít tam, kde nelze použít metodu první metodu vážení například při měření objemu cisteren. Naším úkolem je i změření Poissonovy konstanty vzduchu. Tato konstanta má velmi zajímavou historii. Siméon Poisson tuto konstantu roku 1823 zvolil tak, aby mu při řešení úloh o šíření zvuku vycházela správně jeho rychlost [1]. Šíření zvuku (jak se později ukázalo) je adiabatický proces. Teprve později se zjistilo, že tato konstanta je charakteristikou plynu. 1.1 Pracovní úkoly Měření dutých objemů vážením a kompresí plynu [2] 1. Jednolitrovou láhev zvažte prázdnou. 2. Jednolitrovou láhev zvažte plnou vody. 3. Z obou výsledků určete objem lahve. 4. Objem prázdné jednotlitrové lahve určete kompresí plynu. 5. Stejným postupem změřte objem hadičky spojující byretu s měřeným prostorem. Tuto hodnotu odečtěte od výsledku podle bodu Měření Poissonovy konstanty vzduchu [3] [4] 1. Změřte kompresí plynu objem baňky systému s kmitajícím pístkem. 2. Změřte Poissonovu konstantu metodou adiabatické expanze a současně metodou kmitajícího pístku. 3. Oba výsledky porovnejte. Výsledek metody kmitajícího pístku považujte za tabulkovou hodnotu Poissonovy konstanty. 2 Experimentální uspořádání a metody 2.1 Měření dutých objemů vážením a kompresí plynu Pomůcky: měřený objem, speciální plynová byreta s porovnávacím ramenem, katetometr, váhy, závaží, teploměr 1
2 2.1.1 Měření objemu vážením Vnitřní prostor nádoby vyplníme kapalinou o určité hustotě, nádobu zvážíme takto naplněnou a poté prázdnou. Vnitřní objem nádoby pak určíme jako V = m v ρ v = m v V v (1) kde ρ v je hustota vody a V v je objem jednotkové hmotnosti vody v odpovídajících jednotkách. Pro 1 g vody (a tudíž objem v cm 3 ) platí pro V v číselný vztah kde t je teplota (ve stupních Celsia) Měření objemu kompresí plynu [ cm 3 ] V v = 0, 9998(1 + 0, 00018t) g, C Lahev o objemu V lahev připojíme ke zvláštní byretě viz obr. 1. Nejprve při zavřeném ventilu 6 a otevřeném ventilu 5 pomocí tlaku zásobníku balónkem 3 nastavíme nulovou hladinu na stupnici a objem V 0. Zavřeme ventil 5 a zvýšujeme tlak až se objem v byretě 1 a přilehlé nádobě zmenší na objem V 1. Rozdíl V 0 V 1 označíme V. Tlaky v kapalině se musí vyrovnávat, takže z rozdílu h hladin v trubici 2 a byretě 1 můžeme určit změnu tlaku uvnitř nádoby p oproti původnímu tlaku atmosférickému p. Z Boyle-Mariottova zákona dostaneme V = (V 0 V 1 ) p (2) p kde změnu tlaku tedy určíme podle vztahu p = hρ v g, kde g je tíhové zrychlení a ρ v hustota vody za daných podmínek. Musíme si ale uvědomit, že v objemu V je započítán i objem trubičky spojující byretu s měřeným objemem a vodou nevyplněný objem byrety. Objem V této části ale můžeme změřit tak, že místo měřené lahve trubici na konci zaslepíme a opakujeme stejnou metodu. Odečtením od objemu V obdržíme výslednou hodnotu V lahev. Pro drobné nastavování úrovně komprese plynu v lze použít místo balónku 3 injekční stříkačku 4 obr. 1. Rozdíly hladin určujeme katetometrem. 2.2 Měření Poissonovy konstanty vzduchu Pomůcky: teploměr, barometr, skleněná báň se dvěma kohouty, otevřený manometr, gumový měch, stopky s optickou branou Poissonova konstanta je poměr měrných tepel při stálém tlaku C p a při stálém objemu C V κ = C p C V Obr. 1: Aparatura k měření objemů kompresí plynů 1 byreta, 2 srovnávací trubice, 3 balónek, 4 injekční stříkačka, 5,6 ventily Měření Poissonovy konstanty vzduchu Clémentovou-Désormesovou metodou Obr. 2: Experimentální uspořádání při Clément- Désormesově metodě Vzduch v báni je pod atmosférickým tlakem b. Manometr je naplněn vodou. Pomocí balónku napojeného na ventil 1 při zavřeném ventilu 2 viz obr. 2 zvýšíme v báni tlak na tlak p 1. V manometru bude rozdíl hladin h. Poté adiabaticky plyn o objemu V 1 expandujeme a to krátkým otevřením ventilu 2. Objem bude V 2, teplota se sníží. Tlak se vyrovná s atmosférickým, takže v nádobě bude p 2 = b. Pak se začne plyn izochoricky oteplovat na původní teplotu. V nádobě pak bude tlak p 3. V manometru bude pak rozdíl hladin h. Z Poissonova zákona plyne p 1 p 2 = ( V1 V 2 ) κ. Pro izotermickou změnu dostaneme z Boyle-Mariottova zákona p 1 p 3 = V 2 V 1. 2
3 Spojíme-li tyto dvě rovnice a použijeme Taylorův vzorec na logaritmus obdržíme konečný výsledek κ = h h h. (3) Pokud se zaměříme na chyby při měření je třeba si všimnou nezanedbatelnosti času přiotevření ventilu. V prvním přiblížení můžeme vzít závislost κ na čase lineární Měření Poissonovy konstanty vzduchu metodou kmitajícího pístku Do baňky na obr. 3 se přivádí plyn, který nadzvedá pístek 1. Když se pístek dostane nad otvor 2, plyn unikne, pístek poklesne a znovu dochází k nadzvedávání pístku. Při vhodném nastavení pumpy 3 bude pístek kmitat kolem otvoru 2. Děj s plynem můžeme považovat za adiabatický. Můžeme pak napsat pohybovou rovnici pístku a vyjádřit změnu tlaku z rovnice adiabaty. Před lineárním členem stojí úhlová frekvence, která se dá vyjádřit i jako 2π T. Teď už dostáváme konečný výraz pro Poissonovu konstantu κ kde κ = 4mV T 2 pr 4 p = b + mg πr 2 m je hmotnost pístku, V objem baňky, T perioda kmitů, p okamžitý tlak v baňce, b atmosférický tlak, r poloměr pístku a g tíhové zrychlení. Obr. 3: Experimentální uspořádání při metodě kmitajícího pístku 1 pístek, 2 otvor, 3 pumpa 3 Výsledky 3.1 Měření objemu vážením Nejdříve jsme vážili lahev prázdnou a poté plnou, vždy včetně víčka. Pro obě varianty jsme provedli dvě měření. Výsledky jsou v tab. 1 Teplota vody byla t = (21, 0 ± 0, 1) C. Vnitřní objem nádoby určený podle (1) V = (1, 024 ± 0, 001)dm 3 m pr [g] m pl [g] 559,6 1580,8 560,3 1580,2 průměr 559,9 1580,6 Tab. 1: Měření objemu vážením 3
4 3.2 Měření objemu kompresí plynu Nejdříve jsme měřili objem trubičky a nenaplněné části byrety. Na konec trubičky jsme přišroubovali zaslepenou malou skleničku. Nastavili jsme počáteční hodnotu na 24 % objemu byrety. Pak jsme zvýšili o jeden dílek na 25 % objemu, jeden procentní bod je tedy roven rozdílu V 0 V 1 a je dle výrobce roven V 0 V 1 = 0, 656 cm 3. Následovalo měření výšky hladiny katetometrem. Výšku hladiny blíže k měřené lahvi jsme označili h 0 a výšku hladiny otevřené do místnosti h 1. Hodnoty naleznete v tab. 2. Atmosférický tlak b jsme změřili barometrem jako 744 torr, což odpovídá zhruba b = Pa. Pro každé měření jsme dopočítali objem hadičky a nevyplněné části byrety V analogicky podle vzorce (2). Po statistickém zpracování obdržíme V = (63, 3 ± 0, 9) cm 3. h 0 [mm] h 1 [mm] h [mm] V [cm 3 ] 168,42 66,00 102,42 64,53 168,27 72,08 96,19 68,71 169,00 73,50 95,50 69,21 168,25 68,21 100,04 66,06 168,60 71,60 97,00 68,14 Tab. 2: Měření objemu hadičky a nevyplněné části byrety kompresní metodou Vyměnili jsme zaslepenou lahvičku za měřenou lahev a tentokrát nastavili počáteční úroveň na nulu. Opět jsme zvyšovali tlak až do hodnoty 25 %. Rozdíl objemů tak byl V 0 V 1 = 16, 4 cm 3. Pro každou hodnotu jsme spočítali celkový objem lahve, trubičky a nevyplněné části byrety V. Data jsou uvedena v tab. 3. Celkově dostáváme V = (1, 097 ± 0, 008) dm 3. Pokud odečteme trubičku a přiléhající prázdnou část byrety dostaneme konečný výsledek V lahev = (1, 030 ± 0, 009)dm 3. h 0 [mm] h 1 [mm] h [mm] V [dm 3 ] 169,99 15,08 154,91 1, ,51 15,09 152,42 1, ,57 17,44 150,14 1, ,47 20,32 148,15 1, ,19 17,51 149,69 1, ,00 14,11 152,89 1, ,80 22,58 146,22 1,130 Tab. 3: Měření objemu lahve kompresní metodou 3.3 Měření Poissonovy konstanty vzduchu Z technických důvodů jsme neměli k dispozici funkční aparaturu k měření metodou kmitajícího pístku. Určíme tedy Poissonovu konstantu pro vzduch pouze metodou Clément-Désormesovou Měření Poissonovy konstanty vzduchu Clémentovou-Désormesovou metodou Nejdříve jsme nádobu natlakovali a chvíli čekali, až se vyrovnají teploty, pak jsme změřili počáteční rozdíl výšek hladin na manometru h. Poté jsme na krátkou dobu t otevřeli ventil a plyn provedl adiabatickou expanzi. Dobu otevření t jsme změřili stopkami s optickou branou. Pak jsme opět čekali až se výška hladin ustálí. Zapsali jsme si jejich rozdíl jako h. Data naleznete v tab. 4. Pro každé měření jsme vypočítali Poissonovu konstantu podle vzorce (3). Tato měření jsme vynesli do obr. 4. V prvním přiblížení lze chybu způsobenou tím, že doba, po kterou je otevřen ventil, není zanedbatelná, odstranit proložením přímkou. Proložíme-li námi změřené hodnoty např. v programu gnuplot, dostanem pro časový okamžik t = 0 hodnotu Poissonovy konstanty včetně chyby κ = 1, 31 ± 0, 02 Ještě jsme zkoušeli, jak těsní měřící aparatura. Natlakovali jsme ji a čekali. Ovšem nedocházelo k výraznějšímu snižování tlaku, a tak jsme se po dohodě s asistentem rozhodli tento jev zanedbat a nedělat žádnou korekci. 4
5 h [cm] h [cm] t [s] κ [ ] 14,4 3,4 0,255 1,31 12,3 2,8 0,140 1,29 14,2 3,2 0,275 1,29 11,2 2,2 0,294 1,24 15,0 3,0 0,117 1,25 19,8 4,1 0,111 1,26 9,5 2,1 0,166 1,28 8,9 2,1 0,146 1,31 22,2 5,6 0,087 1,34 12,9 3,1 0,056 1,32 Tab. 4: Měření Poissonovy konstanty metodou Clément-Désormesovou t κ [ ] t [s] Obr. 4: Závislost Poissonovy konstanty κ na časové délce otevření ventilu t 4 Diskuze 4.1 Měření objemu Určili jsme objem lahve metodou vážení V = (1, 024 ± 0, 001)dm 3 a objem téže lahve metodou komprese plynu V lahev = (1, 030 ± 0, 009)dm 3. V prvním případě ale musíme chybu brát velmi s rezervou, protože je určena pouze z dvojice hodnot. V druhém případě zase musíme brát ohled na pomalý pohyb rozhraní voda-vzduch. Ten mohl být způsoben např. netěstnostmi nebo ohřátím plynu v reservoáru při tlakování. Chybové intervaly obou metod se překrývají. 4.2 Měření Poissonovy konstanty vzduchu Zde jsme bohužel mohli měřit pouze jednou metodou. Poissonova konstanta nám vyšla κ = 1, 31 ± 0, 02. Tabulková hodnota je udávána κ t = 1, 40 [5]. Chyby v měření metodou Clément-Désormesovou můžeme nalézt hlavně v odhadnutí času, kdy je soustava už v rovnováze a tedy v zaznamenání správných hodnot. U metody extrapolace jsme se taktéž snažili, aby hodnoty nebyly pouze v jednom čase kolem cca 0,150 s, ale byly v celém úseku od 0,1 až po 0,25 s, což samozřejmě mohlo naopak zhoršit idealitu provedené adiabatické expanze. Zajímavé je si všimnout, že dvě hodnoty s nejnižším časem se nejvíce přiblížily tabulkové hodnotě. Bohužel se nedá říci, že by se jednalo o trend, protože následující dvě hodnoty jsou pro změnu velmi vzdálené tabulkové hodnotě. 5
6 5 Závěr Objem lahve jsme stanovili nejdříve metodou vážení na V = (1, 024 ± 0, 001)dm 3 a poté metodou komprese V lahev = (1, 030 ± 0, 009)dm 3. Tyto hodnoty jsou si blízké. Poissonovu konstantu pro vzduch jsme určili jako κ = 1, 31 ± 0, 02, což znamená, že tabulková hodnota κ t = 1, 40 je vyšší. 6 Literatura [1] ŠTOLL, I., Dějiny fyziky, 1.vyd., Praha, 584 s, Prometheus, 2009 [2] FJFI ČVUT, Měření dutých objemů vážením a kompresí plynu [online], [cit. 28. října 2009], [3] FJFI ČVUT, Určení Poissonovy konstanty vzduchu [online], [cit. 28. října 2009], [4] FJFI ČVUT, Určení Poissonovy konstanty metodou kmitajícího pístku [online], [cit. 28. října 2009], [5] MIKULČÁK, J., Matematické, fyzikální a chemické tabulky & vzorce pro střední školy, 1. vyd., Praha, 278 s, Prometheus,
plynu, Měření Poissonovy konstanty vzduchu
Úloha 4: Měření dutých objemů vážením a kompresí plynu, Měření Poissonovy konstanty vzduchu FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 2.11.2009 Jméno: František Batysta Pracovní skupina: 11 Ročník
5. Stejným postupem změřte objem hadičky spojující byretu s měřeným prostorem. Tuto hodnotu odečtěte od výsledku podle bodu 4.
FYZIKÁLNÍ PRAKTIKUM I FJFI ČVUT v Praze Úloha #4 Poissonova konstanta a měření dutých objemů Datum měření: 6.12.2013 Skupina: 7 Jméno: David Roesel Kroužek: ZS 5 Spolupracovala: Tereza Schönfeldová Klasifikace:
Fyzikální praktikum 1
Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #9 Základní experimenty akustiky Jméno: Ondřej Finke Datum měření: 3.11.014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě spočítejte,
Měření Poissonovy konstanty a dutých objemů Abstrakt: V této úloze se studenti seznámí s různými metodami
FJFI ČVUT v Praze Fyzikální praktikum I Úloha 5 Verze 171006 Měření Poissonovy konstanty a dutých objemů Abstrakt: V této úloze se studenti seznámí s různými metodami měření Poissonovy konstanty, ty použijí
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 5: Měření Poissonovy konstanty a dutých objemů Datum měření: 10. 12. 2015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: Část I Měření Poissonovy
Měření Poissonovy konstanty a dutých objemů Abstrakt: V této úloze se studenti seznámí s různými metodami
FJFI ČVUT v Praze Fyzikální praktikum I Úloha 5 Verze 160927 Měření Poissonovy konstanty a dutých objemů Abstrakt: V této úloze se studenti seznámí s různými metodami měření Poissonovy konstanty, ty použijí
Kalibrace teploměru, skupenské teplo Abstrakt: V této úloze se studenti seznámí s metodou kalibrace teploměru a na základě svých
Úloha 6 02PRA1 Fyzikální praktikum 1 Kalibrace teploměru, skupenské teplo Abstrakt: V této úloze se studenti seznámí s metodou kalibrace teploměru a na základě svých měření i ověří Gay-Lussacův zákon.
V i s k o z i t a N e w t o n s k ý c h k a p a l i n
V i s k o z i t a N e w t o n s k ý c h k a p a l i n Ú k o l : Změřit dynamickou viskozitu destilované vody absolutní metodou a její závislost na teplotě relativní metodou. P o t ř e b y : Viz seznam
Fyzikální praktikum 1
Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #2 Měření modulu pružnosti v tahu a ve smyku Jméno: Ondřej Finke Datum měření: 15.12.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) DÚ: V domácí
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 0520 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Geometrická optika - Ohniskové vzdálenosti
Název: Měření rychlosti zvuku různými metodami
Název: Měření rychlosti zvuku různými metodami Autor: Doc. RNDr. Milan Rojko, CSc. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: fyzika, biologie Ročník: 4.
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 19.3.2011 Jméno: Jakub Kákona Pracovní skupina: 2 Hodina: Po 7:30 Spolupracovníci: Viktor Polák Hodnocení: Ohniskové vzdálenosti a vady čoček a zvětšení
Praktikum I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. III Název: Proudění viskózní kapaliny Pracoval: Matyáš Řehák stud.sk.: 16 dne: 20.3.2008
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK FYZIKÁLNÍ PRAKTIKUM I Úloha číslo: X Název: Rychlost šíření zvuku Vypracoval: Ondřej Hlaváč stud. skup.: F dne: 7. 3. 00 Odevzdal dne:
Výtok kapaliny otvorem ve dně nádrže (výtok kapaliny z danaidy)
Výtok kapaliny otvorem ve dně nádrže (výtok kapaliny z danaidy) Úvod: Problematika výtoku kapaliny z nádrže se uplatňuje při vyprazdňování nádrží a při nejjednodušším nastavování konstantních průtoků.
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 4: Balmerova série vodíku. Abstrakt
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření:.. 00 Úloha 4: Balmerova série vodíku Jméno: Jiří Slabý Pracovní skupina: 4 Ročník a kroužek:. ročník,. kroužek, pondělí 3:30 Spolupracovala: Eliška Greplová
Měření povrchového napětí kapaliny z kapilární elevace
Měření povrchového napětí kapaliny z kapilární elevace Problém A. Změřit povrchové napětí destilované vody. B. Změřit povrchové napětí lihu. C. Stanovení nejistot změřených veličin. Předpokládané znalosti
1 Pracovní úkoly. 2 Vypracování. Úloha #9 Akustika.
FYZIKÁLNÍ PRAKTIKUM I FJFI ƒvut v Praze Úloha #9 Akustika. Datum m ení: 18.10.2013 Skupina: 7 Jméno: David Roesel Krouºek: ZS 5 Spolupracovala: Tereza Schönfeldová Klasikace: 1 Pracovní úkoly 1. Domácí
Laboratorní práce č. 1: Určení výtokové rychlosti kapaliny
Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 1: Určení výtokové rychlosti kapaliny Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY FYZIKÁLNA 2. ročník šestiletého studia
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 6: Kalibrace teploměru, skupenské teplo Datum měření: 17. 12. 2015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: Část I Kalibrace rtuťového
Fyzikální praktikum 1
Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #12 Stirlingův stroj Jméno: Ondřej Finke Datum měření: 1.12.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě diskutujte rozdíl
17. března 2000. Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický
Úloha č. 6 Ohniskové vzdálenosti a vady čoček, zvětšení optických přístrojů Václav Štěpán, sk. 5 17. března 2000 Pomůcky: Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický
Vakuum turbomolekulární vývěvy
Číslo úlohy: 5 Jméno: Spolupracovali: Vakuová fyzika a technika Vakuum turbomolekulární vývěvy Vojtěch HORNÝ Datum měření: 26. 11. 2010 Jaroslav Zeman, Jiří Slabý Skupina: 3. ročník, pátek 11:45 Klasifikace:
8. TLAKOMĚRY. Úkol měření. Popis přípravků a přístrojů
Úkol měření 8. TLAKOMĚRY 1. Ověřte funkci diferenčního kapacitního tlakoměru pro měření malých tlakových rozdílů. 2. Změřte závislost obou kapacit na tlakovém rozdílu.. Údaje porovnejte s průmyslovým diferenčním
MECHANIKA KAPALIN A PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D07_Z_OPAK_M_Mechanika_kapalin_a_plynu_T Člověk a příroda Fyzika Mechanika kapalin
Měření logaritmického dekrementu kmitů v U-trubici
Měření logaritmického dekrementu kmitů v U-trubici Online: http://www.sclpx.eu/lab2r.php?exp=17 Tento experiment, autorem publikovaný v [31] a [32], je z pohledu středoškolského učiva opět nadstavbový
Kontrolní otázky k 1. přednášce z TM
Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele
PRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: IX Název: Charakteristiky termistoru Pracoval: Pavel Brožek stud. skup. 12 dne 31.10.2008
Změna objemu těles při zahřívání teplotní roztažnost
Změna objemu těles při zahřívání teplotní roztažnost 6. třída - Teplota Změna objemu pevných těles při zahřívání Vezmeme plastové pravítko, prkénko a dva hřebíky. Hřebíky zatlučeme do prkénka tak, aby
Závislost odporu termistoru na teplotě
Fyzikální praktikum pro JCH, Bc Jméno a příjmení: Zuzana Dočekalová Datum: 21.4.2010 Spolupracovník: Aneta Sajdová Obor: Jaderně chemické inženýrství Číslo studenta: 5 (středa 9:30) Ročník: II. Číslo úlohy:
Laboratorní pomůcky, chemické nádobí
Laboratorní pomůcky, chemické nádobí Laboratorní sklo: měkké (tyčinky, spojovací trubice, kapiláry) tvrdé označení SIMAX (většina varného a odměrného skla) Zahřívání skla: Tenkostěnné nádoby (kádinky,
Přijímací zkouška na navazující magisterské studium 2017 Studijní program: Fyzika Studijní obory: FFUM
Přijímací zkouška na navazující magisterské studium 207 Studijní program: Fyzika Studijní obory: FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Nechť (a) Spočtěte lim n x n. (b)
Měření povrchového napětí kapaliny metodou maximální kapky
Měření povrchového napětí kapaliny metodou maximální kapky Online: http://www.sclpx.eu/lab2r.php?exp=3 Tento experiment byl publikován autorem práce v [33] a jedná se o zcela původní metodu pro experimentální
215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI
215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI ÚVOD Rektifikace je nejčastěji používaným procesem pro separaci organických látek. Je široce využívána jak v chemické laboratoři, tak i v průmyslu.
Fyzikální praktikum 1
Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: č. 5 - Kalibrace teploměru, skupenské teplo Jméno: Ondřej Finke Datum měření: 6.10.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly 1.1 - Kalibrace
PRAKTIKUM IV Jaderná a subjaderná fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Jaderná a subjaderná fyzika Úloha č. A5 Název: Spektrometrie záření α Pracoval: Radim Pechal dne 27. října 2009 Odevzdal
CVIČENÍ č. 3 STATIKA TEKUTIN
Rovnováha, Síly na rovinné stěny CVIČENÍ č. 3 STATIKA TEKUTIN Příklad č. 1: Nákladní automobil s cisternou ve tvaru kvádru o rozměrech H x L x B se pohybuje přímočarým pohybem po nakloněné rovině se zrychlením
PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 11 Název: Dynamická zkouška deformace látek v tlaku
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 11 Název: Dynamická zkouška deformace látek v tlaku Pracoval: Jakub Michálek stud. skup. 15 dne:. dubna 009 Odevzdal
L a b o r a t o r n í c v i č e n í z f y z i k y
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZI KY L a b o r a t o r n í c v i č e n í z f y z i k y Jméno TUREČEK Daniel Datum měření 1.11.006 Stud. rok 006/007 Ročník. Datum odevzdání 15.11.006 Stud.
2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5
Obsah 1 Tekutiny 1 2 Tlak 2 2.1 Tlak v kapalině vyvolaný vnější silou.............. 3 2.2 Tlak v kapalině vyvolaný tíhovou silou............. 4 2.3 Tlak v kapalině vyvolaný tíhovou silou............. 4
Úloha č.: XVII Název: Zeemanův jev Vypracoval: Michal Bareš dne 18.10.2007. Posuzoval:... dne... výsledek klasifikace...
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: XVII Název: Zeemanův jev Vypracoval: Michal Bareš dne 18.10.2007 Odevzdal dne:... vráceno:... Odevzdal dne:...
STUDIUM FOTOEFEKTU A STANOVENÍ PLANCKOVY KONSTANTY. 1) Na základě měření vnějšího fotoefektu stanovte velikost Planckovy konstanty h.
Úkol měření: 1) Na základě měření vnějšího fotoefektu stanovte velikost Planckovy konstanty h. 2) Určete mezní kmitočet a výstupní práci materiálu fotokatody použité fotonky. Porovnejte tuto hodnotu s
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 9: Základní experimenty akustiky. Abstrakt
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 9: Základní experimenty akustiky Datum měření: 27. 11. 29 Jméno: Jiří Slabý Pracovní skupina: 1 Ročník a kroužek: 2. ročník, 1. kroužek, pátek 13:3 Spolupracovala:
Proudění viskózní tekutiny. Renata Holubova renata.holubova@upol.cz
Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubova@upol.cz Popis základních zákonitostí v mechanice
RNDr. Božena Rytířová. Základy měření (laboratorní práce)
Autor: Tematický celek: Učivo (téma): Stručná charakteristika: RNDr. Božena Rytířová Základy měření (laboratorní práce) Měření rozměrů tělesa posuvným a mikrometrickým měřidlem Materiál má podobu pracovního
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 5: Kalibrace rtuťového teploměru plynovým teploměrem
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 5: Kalibrace rtuťového teploměru plynovým teploměrem Měření měrného skupenského tepla varu vody Datum měření: 30. 10. 2009 Jméno: Jiří Slabý Pracovní skupina:
Fyzikální veličiny. Převádění jednotek
Fyzikální veličiny Vlastnosti těles, které můžeme měřit nebo porovnávat nazýváme fyzikální veličiny. Značka fyzikální veličiny je písmeno, kterým se název fyzikální veličiny nahradí pro zjednodušení zápisu.
2 MECHANICKÉ VLASTNOSTI SKLA
2 MECHANICKÉ VLASTNOSTI SKLA Pevnost skla reprezentující jeho mechanické vlastnosti nejčastěji bývá hlavním parametrem jeho využití. Nevýhodou skel je jejich poměrně nízká pevnost v tahu a rázu (pevnost
Odhad ve fyzice a v životě
Odhad ve fyzice a v životě VOJTĚCH ŽÁK Katedra didaktiky fyziky, Matematicko-fyzikální fakulta UK, Praha Gymnázium Praha 6, Nad Alejí 195 Úvod Součástí fyzikálního vzdělávání by mělo být i rozvíjení dovednosti
Akustická měření - měření rychlosti zvuku
Akustická měření - měření rychlosti zvuku Úkol : 1. Pomocí přizpůsobené Kundtovy trubice určete platnost vztahu λ = v / f. 2. Určete rychlost zvuku ve vzduchu pomocí Kundtovy a Quinckeho trubice. Pomůcky
Vlny v trubici VUT FSI v Brně
Vlny v trubici VUT FSI v Brně Měření provedeno: Vedoucí práce: Měření provedli: Zpracoval: Úkol: Měřením rezonančních frekvencí podélného vlnění v trubici určit rychlost šíření zvuku ve vzduchu. Teoretická
12. Termomechanika par, Clausius-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par
1/2 1. Určovací veličiny pracovní látky 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 3. Směsi plynů, měrné tepelné kapacity plynů 4. První termodynamický zákon 5. Základní vratné
3. TEKUTINY A TERMIKA 3.1 TEKUTINY
3. TEKUTINY A TERMIKA 3.1 TEKUTINY 3.1.1 TEKUTINY, TLAK, HYDROSTATICKÝ A ATMOSFÉRICKÝ TLAK, VZTLAKOVÁ SÍLA Tekutiny: kapaliny a plyny Statika kapalin a plynů = Hydrostatika a Aerostatika Tlak v tekutině
W = Tření a teplo zvýšení teploty konáním práce. Výukové materiály
Název: Tření a teplo zvýšení teploty konáním práce Autor: Doc. RNDr. Milan Rojko, CSc. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: fyzika, biologie Ročník:
I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Mechanika a molekulová fyzika Úloha č.: XVII Název: Studium otáčení tuhého tělesa Pracoval: Pavel Brožek stud. skup. 12
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 7: Rozšíření rozsahu miliampérmetru a voltmetru. Cejchování kompenzátorem. Abstrakt
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 7: Rozšíření rozsahu miliampérmetru a voltmetru Datum měření: 13. 11. 2009 Cejchování kompenzátorem Jméno: Jiří Slabý Pracovní skupina: 1 Ročník a kroužek: 2.
Laboratorní práce č. 2: Určení povrchového napětí kapaliny
Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 2: Určení povrchového napětí kapaliny G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY G Gymnázium Hranice
Praktikum II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. II Název: Měření odporů Pracoval: Matyáš Řehák stud.sk.: 13 dne: 17.10.2008 Odevzdal dne:...
8 b) POLARIMETRIE. nepolarizovaná vlna
1. TEORETICKÝ ÚVO Rotační polarizace Světlo má zároveň povahu vlnového i korpuskulárního záření. V optických jevech se světlo chová jako příčné vlnění, přičemž světelné kmity probíhají všemi směry a směr
Ztráty tlaku v mikrofluidních zařízeních
Ztráty tlaku v mikrofluidních zařízeních 1 Teoretický základ Mikrofluidní čipy jsou zařízení obsahující jeden nebo více kanálků sloužících k manipulaci a zpracování tutin nebo k detci chemických slož v
Mechanicke kmita nı a vlneˇnı
Fysikální měření pro gymnasia III. část Mechanické kmitání a vlnění Gymnasium F. X. Šaldy Honsoft Liberec 2008 ÚVODNÍ POZNÁMKA EDITORA Obsah. Třetí část publikace Fysikální měření pro gymnasia obsahuje
Laboratorní práce č. 1: Měření délky
Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.
Zeemanův jev. Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov
Zeemanův jev Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov 1 Abstrakt Při tomto experimentu jsme zopakovali pokus Pietera Zeemana (nositel Nobelovy ceny v roce 1902) se
Část 3. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič, MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA
HYDROMECHANIKA HYDROSTATIKA základní zákon hdrostatik Část 3 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič, MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA Hdrostatika - obsah Základn
Měření kinematické a dynamické viskozity kapalin
Úloha č. 2 Měření kinematické a dynamické viskozity kapalin Úkoly měření: 1. Určete dynamickou viskozitu z měření doby pádu kuličky v kapalině (glycerinu, roztoku polysacharidu ve vodě) při laboratorní
Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je 3 m dlouhý.
DDÚ Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je m dlouhý. Na délce válce vůbec nezáleží, záleží na jeho obvodu, poloměr je 110 cm, vypočítám
na tyč působit moment síly M, určený ze vztahu (9). Periodu kmitu T tohoto kyvadla lze určit ze vztahu:
Úloha Autoři Zaměření FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE 2. Měření modulu pružnosti v tahu a modulu pružnosti ve smyku Martin Dlask Měřeno 11. 10., 18. 10., 25. 10. 2012 Jakub Šnor SOFE Klasifikace
Praktická cvičení. Úkol č. 4: Převodní systém srdeční (obr.)
Téma: Kardiovaskulární soustava Úkol č. 1: Stavba srdce (obr.) Praktická cvičení Úkol č.2: Systola a diastola (obr.) Úkol č. 3: Velké cévy (obr.) Úkol č. 4: Převodní systém srdeční (obr.) Úkol č.5 : Poslech
E1 - Měření koncentrace kyslíku magnetickým analyzátorem
E1 - Měření koncentrace kyslíku magnetickým analyzátorem Funkční princip analyzátoru Podle chování plynů v magnetickém poli rozlišujeme plyny paramagnetické a diamagnetické. Charakteristickou konstantou
Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 1
Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 1 Autor prezentace: Ing. Eva Václavíková VY_32_INOVACE_1201_základní_pojmy_1_pwp Název školy: Číslo a název projektu: Číslo a název šablony
Měření hustoty kapaliny z periody kmitů zkumavky
Měření hustoty kapaliny z periody kmitů zkumavky Online: http://www.sclpx.eu/lab1r.php?exp=14 Po několika neúspěšných pokusech se zkumavkou, na jejíž dno jsme umístili do vaty nejprve kovovou kuličku a
Měření indexu lomu kapaliny pomocí CD disku
Měření indexu lomu kapaliny pomocí CD disku Online: http://www.sclpx.eu/lab4r.php?exp=1 Tento experiment vychází svým principem z klasického experimentu měření vlnové délky světla pomocí CD disku, který
Základní experimenty akustiky
Základní experimenty akustiky Jakub Kákona, kaklik@mlab.cz Abstrakt Obsahem je popis několika metod pro měření rychlosti zvuku, rezonančních frekvencí, vlnové délky a shrnutí jejich výsledků. 1 Úvod 1.
PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Měření indexu lomu Jaminovým interferometrem
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III. Úloha č. 19 Název: Měření indexu lomu Jaminovým interferometrem Pracoval: Lukáš Vejmelka obor (kruh) FMUZV (73) dne 17.3.2014
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 11: Termická emise elektronů
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 15.4.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Úloha 11: Termická emise elektronů
Teplota a její měření
Teplota a její měření Teplota a její měření Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_03_01 Teplota, Celsiova a Kelvinova teplotní stupnice, převodní vztahy, příklady. Tepelná výměna, měrná
PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Charakteristiky termistoru. stud. skup.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. Úloha č. IX Název: Charakteristiky termistoru Pracoval: Lukáš Vejmelka stud. skup. FMUZV (73) dne 17.10.2013 Odevzdal
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 2: Měření modulu pružnosti v tahu a ve smyku. Abstrakt
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úoha : Měření moduu pružnosti v tahu a ve smyku Datum měření: 9. 10. 009 Jméno: Jiří Sabý Pracovní skupina: 1 Ročník a kroužek:. ročník, 1. kroužek, pátek 13:30 Spoupracovaa:
Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky
Úloha 6 02PRA2 Fyzikální praktikum II Ohniskové vzdálenosti čoček a zvětšení optických přístrojů Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky a principy optických přístrojů.
Praktikum II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. XI Název: Charakteristiky diod Pracoval: Matyáš Řehák stud.sk.: 13 dne: 17.10.2008 Odevzdal
pv = nrt. Lord Celsius udržoval konstantní tlak plynu v uzavřené soustavě. Potom můžeme napsat T, tedy V = C(t t0) = Ct Ct0, (1)
17. ročník, úloha I. E... absolutní nula (8 bodů; průměr 4,03; řešilo 40 studentů) S experimentálním vybavením dostupným v době Lorda Celsia změřte teplotu absolutní nuly (v Celsiově stupnici). Poradíme
Obrázek 1: Schema čtyřbodového zapojení (převzato z [1]) 2. Změřte odpor šesti drátů Wheatstoneovým a Thomsonovým můstkem Metra - MTW.
Obrázek 1: Schema čtyřbodového zapojení (převzato z [1]) 1 Pracovní úkoly 1. Změřte průměry šesti ů na pracovní desce. 2. Změřte odpor šesti ů Wheatstoneovým a Thomsonovým můstkem Metra - MTW. Vysvětlete
215.1.4 HUSTOTA ROPNÝCH PRODUKTŮ
5..4 HUSTOTA ROPNÝCH PRODUKTŮ ÚVOD Hustota je jednou ze základních veličin, které charakterizují ropu a její produkty. Z její hodnoty lze usuzovat také na frakční chemické složení ropných produktů. Hustota
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 17 Název: Měření absorpce světla Pracoval: Matyáš Řehák stud.sk.: 13 dne: 17. 4. 008 Odevzdal dne:...
8. TLAKOMĚRY. Úkol měření. 8.1. Dynamické měření tlaku. 8.2. Měření tlaků 0-1 MPa
Úkol měření 8. TLAKOMĚRY 1. Proveďte kalibraci polovodičového čidla tlaku 0..0 kpa. Zaznamenejte časový průběh tlaku při zkoušce tlakové odolnosti.. Proveďte kalibraci tenzometrického snímače do 1 MPa
PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Elektrická vodivost elektrolytů. stud. skup.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. Úloha č. 26 Název: Elektrická vodivost elektrolytů Pracoval: Lukáš Vejmelka stud. skup. FMUZV 73) dne 12.12.2013 Odevzdal
Clemův motor vs. zákon zachování energie
Clemův motor vs. zákon zachování energie (c) Ing. Ladislav Kopecký, 2009 V učebnicích fyziky se traduje, že energii nelze ani získat z ničeho, ani ji zničit, pouze ji lze přeměnit na jiný druh. Z této
Experimenty s textilem ve výuce fyziky
Experimenty s textilem ve výuce fyziky LADISLAV DVOŘÁK, PETR NOVÁK katedra fyziky PdF MU, Brno Příspěvek popisuje experimenty s využitím různých vlastností textilií a jejich využití ve fyzice na ZŠ. Soubor
FJFI ČVUT V PRAZE. Úloha 8: Závislost odporu termistoru na teplotě
ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE Datum měření: 29. 4. 2009 Pracovní skupina: 3, středa 5:30 Spolupracovali: Monika Donovalová, Štěpán Novotný Jméno: Jiří Slabý Ročník, kruh:. ročník, 2. kruh
Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory
Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední
Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP. Termodynamika. Příklad 10
Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP Termodynamika Příklad 1 Stláčením ideálního plynu na 2/3 původního objemu vzrostl při stálé teplotě jeho tlak na 15 kpa.
Květina v zrcadle. Řešení: 0,5 + 0,5 + 2 = 3 m
Květina v zrcadle Žena stojí 2 m od velkého zrcadla zavěšeného na stěně a drží malé zrcátko půl metru za hlavou. Jak daleko za velkým zrcadlem je obraz květiny, kterou má ve vlasech. Řešení: 0,5 + 0,5
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 1 Název: Studium rotační disperze křemene a Kerrova jevu v kapalině Pracoval: Matyáš Řehák stud.sk.:
1. Změřte statickou charakteristiku termistoru pro proudy do 25 ma a graficky ji znázorněte.
1 Pracovní úkoly 1. Změřte statickou charakteristiku termistoru pro proudy do 25 ma a graficky ji znázorněte. 2. Změřte teplotní závislost odporu termistoru v teplotním intervalu přibližně 180 až 380 K.
Laboratorní práce č. 1: Přibližné určení průměru molekuly kyseliny olejové
Přírodní vědy moderně a interaktivně FYZIKA 4. ročník šestiletého a 2. ročník čtyřletého studia Laboratorní práce č. 1: Přibližné určení průměru molekuly kyseliny olejové ymnázium Přírodní vědy moderně
3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj
3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj a) tepelný děj přechod plynu ze stavu 1 do stavu tepelnou výměnou nebo konáním práce dále uvaž., že hmotnost plynu m = konst. a navíc
Řešené úlohy ze statistické fyziky a termodynamiky
Řešené úlohy ze statistické fyziky a termodynamiky Statistická fyzika. Uvažujme dvouhladinový systém, např. atom s celkovým momentem hybnosti h v magnetickém ) ) poli. Bázové stavy označme = a =, první
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 4: Cavendishův experiment Datum měření: 3. 1. 015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: V přípravě odvoďte vztah pro
PRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XVIII Název: Přechodové jevy v RLC obvodu Pracoval: Pavel Brožek stud. skup. 12 dne 24.10.2008
I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Mechanika a molekulová fyzika Úloha č.: XVI Název: Studium Brownova pohybu Pracoval: Pavel Brožek stud. skup. 1 dne 4.4.008