3.5.7 Příklady na posunutí

Rozměr: px
Začít zobrazení ze stránky:

Download "3.5.7 Příklady na posunutí"

Transkript

1 3.5.7 Přídy n posunutí Předpody: 3506 Př. : Je dán ružnice ( S; r ) úseč XY. Sestroj tětivu ružnice shodnou rovnoěžnou s úsečou XY. Kdy je úoh řešitená? Co víme o hedných odech? od eží n ružnici e nevíme de od eží n ružnici e nevíme de sicý příd n spojování dvou inormcí hedáme pojíto mezi ody : tětiv má ýt shodná rovnoěžná s úsečou XY od je orzem odu v posunutí T XY T ( XY ) zorzíme všechny ody teré mohou ýt (ružnici ) v posunutí ( ) zísáme ružnici správný od poznáme t že se zorzí do odu (tedy n ružnici ) od njdeme jo průsečí ružnic. Konstruce: Zápis onstruce: XY S; r S S X Rozor: Úoh má: 2 řešení poud XY < 2r Y řešení poud XY = 2r 0 řešení poud XT > 2r.. ( ) 2. ; ( ) : 3. ( S ; r) S T S S 4. ; 5. ( ) ; T : 6. Př. 2: Jsou dány rovnoěžné přímy od ežící uvnitř pásu terý ohrničují. Njdi všechny ružnice teré se dotýjí příme prochází odem. Njdi řešení teré nevyužívá množiny odů dné vstnosti. Proém: Hedná ružnice musí spňovt příiš mnoho podmíne: doty s přímou doty s přímou průchod odem. Spnění všech podmíne je otížné spníme jen něteré podmíny ze zdání s pomocí řešení teré spňuje něteré podmíny njdeme řešení spňující vše

2 Nrýsovná ružnice spňuje podmíny dotyu s oěm přímmi e neprochází odem správnou ružnici zísáme posunutím ve směru přímy (neo ). Proém: O jou vzdáenost máme ružnici posunout? Kružnici musíme posunout o tovou vzdáenost y se ody n ružnici zorziy do odu nrýsujeme přímu rovnoěžnou s přímou procházející odem. P P 2 Správné řešení njdeme poud ružnici posuneme v posunutí T ( P ) neo T ( 2 ) Konstruce: p s c P S P 2 S2 2 Rozor: Příd má vždy dvě řešení. Zápis onstruce:. ; 2. c; c 3. ; = c; ; = c 4. ; = 5. ( ; ) 6. p; p ; p 7. P P2 ;{ P P2 } p 8. S; T ( P ) : S S ( P2 ) 9. ( S; ); 2 ( S2; ) P. S ; T : S S 2 2 Pedgogicá poznám: I přes posední větu v zdání se ojeví žáci teří udou používt množiny odů. Nedá se čet že y větší část třídy n řešení přiš smosttně. Předchozí příd je první uázou druhého čstého typu úoh n zorzení: máme njít útvr terý spňuje nějé podmíny nresíme podoný (shodný) útvr terý spňuje část podmíne (vyereme tovou část y onstruce y sndná) pomocí zorzení nreseného útvru njdeme útvr terý spňuje všechny podmíny 2

3 Př. 3: Sestroj ichoěžní CD jsou-i déy oou jeho záden c oou úhopříče e. Náčrte: D c C e Úoh je nepoohová. Proém: Zdné veiosti netvoří žádný trojúhení terý ychom mohi zčít sestrojovt zusíme tový trojúhení zíst doresením posuneme úhopříču v posunutí T ( DC ). D c C e c E Řešení: Sestrojíme trojúhení EC od D njedeme pomocí rovnoěžy se strnou CE odem. Př. 4: Vyhedej místo n řece šířy d ve terém y mě stát most ve směru omém n to řey t y cest z oce do oce teré eží n různých strnách řey mimo její řehy y nejrtší. Předpoádej že šíř řey se v odpovídjícím úseu řey nemění. ost můžeme postvit v různých místech. Dé mostu se nemění o výhodnosti rozhoduje dé pozemních cest. Nejrtší spojnicí dvou míst je přím e mezi cestmi se nchází most cestu z odu do odu můžeme rozděit n tři části ceová dé se nezmění dyž změníme jejich pořdí posuneme od odu o déu mostu oě části cesty se ncházejí vede see ody můžeme spojit přímou. 3

4 d Př. 5: Njdi jiný způso řešení přídu pomocí posunutí. Při tomto hedání využij iosoii řešení z přídu 2. S; r úseč XY. Sestroj tětivu ružnice shodnou Je dán ružnice ( ) rovnoěžnou s úsečou XY. Kdy je úoh řešitená? Fiosoie přídu 2: Když je těžé spnit všechny podmíny njednou spním jen něteré výsede posunu n poždovné místo nemusím nresit řešení přesně tm de má ýt stčí že ho nresím n jiné místo odud ho přesunu. Kresit úsečy s jedním odem n ružnici vš nepomáhá stejně nevím j od posunout. Jiný nápd: Když nejde nresit úseču do ružnice nresíme ružnici ooo úsečy p posuneme úsečy v opčném posunutí než se posunu ružnice. Konstruce: Zápis onstruce:. XY ( S; r ) S X S Rozor: Úoh má: 2 řešení poud XY < 2r Y S řešení poud XY = 2r 0 řešení poud XT > 2r. o 2. ( X ; r ) 3. o XY 4. S S ; S S = oxy ; T S S : XY 5. ( ) 6. ( S S ) ; T : XY Druhým čstým typem úoh řešených pomocí zorzení jsou úohy ve terých spníme pouze část podmíne ze zdáním vhodným shodným zorzením p úo doončíme. Př. 6: Petáová: strn 79/cvičení 36 strn 79/cvičení 4 strn 79/cvičení 47 4

5 Shrnutí: Při řešení něterých přídů můžeme nejdříve spnit pouze část zdných podmíne poté vhodným posunutím přesunout tento oráze n správné místo. 5

3.4.6 Konstrukce trojúhelníků II

3.4.6 Konstrukce trojúhelníků II 346 Konstrue trojúheníů II Předpody: 345 Př : Je dán úseč, = 5m Nrýsuj všehny trojúheníy, pro teré je úseč těžnií t pro teré ptí v = 4,5m = 5,5 m v t Úoh je poohová, zčínáme úsečou Proém: Všehny tři známé

Více

5.2.3 Kolmost přímek a rovin I

5.2.3 Kolmost přímek a rovin I 5.2.3 Kolmost římek rovin I ředokldy: 5202 vě římky jsou k soě kolmé rávě tehdy, když jejich odchylk je 90. Nvzájem kolmé mohou ýt i mimoěžky. vě úsečky jsou kolmé, rávě když leží n kolmých římkách. íšeme:

Více

Rostislav Horčík. 13. října 2006

Rostislav Horčík. 13. října 2006 3. přednáška Rostislav Horčík 13. října 2006 1 Lineární prostory Definice 1 Lineárním prostorem nazýváme každou neprázdnou množinu L, na které je definováno sčítání + : L L L a násobení reálným číslem

Více

10.1.13 Asymptoty grafu funkce

10.1.13 Asymptoty grafu funkce .. Asmptot grafu funkce Předpoklad:, Asmptot grafu už známe kreslili jsme si je jako přímk, ke kterým se graf funkce přibližuje. Nakreslení asmptot, pak umožňuje přesnější kreslení grafu. Například u hperbol

Více

2.6.4 Lineární lomené funkce s absolutní hodnotou

2.6.4 Lineární lomené funkce s absolutní hodnotou .6. Lineární lomené funkce s absolutní hodnotou Předpoklady: 60, 603 Pedagogická poznámka: Hlavním cílem hodiny je nácvik volby odpovídajícího postupu. Proto je dobré nechat studentům chvíli, aby si metody

Více

1 Měření kapacity kondenzátorů

1 Měření kapacity kondenzátorů . Zadání úlohy a) Změřte kapacitu kondenzátorů, 2 a 3 LR můstkem. b) Vypočítejte výslednou kapacitu jejich sériového a paralelního zapojení. Hodnoty kapacit těchto zapojení změř LR můstkem. c) Změřte kapacitu

Více

2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic

2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic .3.19 Grafické řešení soustav lineárních rovnic a nerovnic Předpoklad: 307, 311 Př. 1: Vřeš soustavu rovnic + =. Pokud se také o grafické řešení. = 5 Tak jednoduchou soustavu už jsme dlouho neměli: + =

Více

Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel.

Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel. Výrazy. Rovnice a nerovnice. Výraz je matematický pojem používaný ve školské matematice. Prvním druhem matematických ů jsou konstanty. Konstanty označují právě jedno číslo z množiny reálných čísel. Například

Více

( ) ( ) 7.2.2 Sčítání vektorů. Předpoklady: 7201

( ) ( ) 7.2.2 Sčítání vektorů. Předpoklady: 7201 7.. Sčítání ektorů Předpoklady: 70 Pedagogická poznámka: Stdenti ětšino necítí potřeb postpoat při definici sčítání ektorů (obecně při zaádění jakékoli operace) tak striktně, jak yžadje matematika. Upozorňji

Více

Druhá mocnina. Druhá odmocnina. 2.8.5 Druhá odmocnina. Předpoklady: 020804. V této hodině jsou kalkulačky zakázány.

Druhá mocnina. Druhá odmocnina. 2.8.5 Druhá odmocnina. Předpoklady: 020804. V této hodině jsou kalkulačky zakázány. .8.5 Druhá odmocnina Předpoklady: 0080 V této hodině jsou kalkulačky zakázány. Druhá mocnina nám umožňuje určit z délky strany plochu čtverce. Druhá mocnina 1 1 9 11 81 11 délky stran čtverců obsahy čtverců

Více

2.7.15 Rovnice s neznámou pod odmocninou I

2.7.15 Rovnice s neznámou pod odmocninou I .7.15 Rovnice s neznámou pod odmocninou I Předpoklady: 711, 71 Pedagogická poznámka: Látka této hodiny vyžaduje tak jeden a půl vyučovací hodiny, pokud nepospícháte můžete obětovat hodiny dvě a nechat

Více

7. Silně zakřivený prut

7. Silně zakřivený prut 7. Silně zakřivený prut 2011/2012 Zadání Zjistěte rozložení napětí v průřezu silně zakřiveného prutu namáhaného ohybem analyticky a experimentálně. Výsledky ověřte numerickým výpočtem. Rozbor Pruty, které

Více

Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY

Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY INDIVIDUÁLNÍ VÝUKA Matematika METODIKA Soustavy rovnic Mgr. Marie Souchová květen 2011 Tato část učiva následuje po kapitole Rovnice. Je rozdělena do částí

Více

Jan Březina. Technical University of Liberec. 17. března 2015

Jan Březina. Technical University of Liberec. 17. března 2015 TGH03 - stromy, ukládání grafů Jan Březina Technical University of Liberec 17. března 2015 Kružnice - C n V = {1, 2,..., n} E = {{1, 2}, {2, 3},..., {i, i + 1},..., {n 1, n}, {n, 1}} Cesta - P n V = {1,

Více

2.8.8 Kvadratické nerovnice s parametrem

2.8.8 Kvadratické nerovnice s parametrem .8.8 Kvadratické nerovnice s arametrem Předoklady: 806 Pedagogická oznámka: Z hlediska orientace v tom, co studenti očítají, atří tato hodina určitě mezi nejtěžší během celého středoškolského studia. Proto

Více

Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2.

Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2. Výklad Dalším typem extrémů, kterým se budeme zabývat jsou tzv. vázané extrémy. Hledáme extrémy nějaké funkce vzhledem k předem zadaným podmínkám. Definice 6.2.1. Řekneme, že funkce f : R n D f R má v

Více

Kružnice. Kruh. Kruh K(S; r) je množina všech bodů roviny, které mají. od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice.

Kružnice. Kruh. Kruh K(S; r) je množina všech bodů roviny, které mají. od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice. Kružnice Kružnice k(s; r) je množina všech bodů roviny, které mají d od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice. S r Délka spojnice dvou bodů kružnice, která prochází středem

Více

VY_52_INOVACE_2NOV70. Autor: Mgr. Jakub Novák. Datum: 19. 3. 2013 Ročník: 8. a 9.

VY_52_INOVACE_2NOV70. Autor: Mgr. Jakub Novák. Datum: 19. 3. 2013 Ročník: 8. a 9. VY_52_INOVACE_2NOV70 Autor: Mgr. Jakub Novák Datum: 19. 3. 2013 Ročník: 8. a 9. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Elektromagnetické a světelné děje Téma: Zapojení

Více

Název projektu: Spokojená škola Číslo projektu: OPVK.CZ.1.07/1.2.33/02.0039 Metodické pokyny k pracovnímu listu č. 1 Význam slov

Název projektu: Spokojená škola Číslo projektu: OPVK.CZ.1.07/1.2.33/02.0039 Metodické pokyny k pracovnímu listu č. 1 Význam slov Název projektu: Spokojená škola Číslo projektu: OPVK.CZ.1.07/1.2.33/02.0039 Metodické pokyny k pracovnímu listu č. 1 Význam slov Pracovní list slouží žákům s SPU k osvojení významu slov. Slova jednoznačná

Více

(k 1)x k + 1. pro k 1 a x = 0 pro k = 1.

(k 1)x k + 1. pro k 1 a x = 0 pro k = 1. . Funkce dvou a více proměnných. Úvod. Určete definiční obor funkce a proveďte klasifikaci bodů z R vzhledem k a rozhodněte zda je množina uzavřená či otevřená. Určete a načrtněte vrstevnice grafu funkce

Více

5.1.2 Volné rovnoběžné promítání

5.1.2 Volné rovnoběžné promítání 5.1.2 Volné rovnoběžné promítání Předpoklady: 5101 Základní stereometrický problém: zabýváme se trojrozměrnými objekty, ale k práci používáme dvojrozměrný papír musíme najít způsob, jak trojrozměrné objekty

Více

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz.

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz. 7. Shodná zobrazení 6. ročník 7. Shodná zobrazení 7.1. Shodnost geometrických obrazců Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor,

Více

Pravoúhlá axonometrie - řezy hranatých těles

Pravoúhlá axonometrie - řezy hranatých těles Pravoúhlá axonometrie - řezy hranatých těles KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS 2008 1 / 41 Příklad (Řez šikmého hranolu) Sestrojte řez šikmého

Více

Kótování na strojnických výkresech 1.část

Kótování na strojnických výkresech 1.část Kótování na strojnických výkresech 1.část Pro čtení výkresů, tj. určení rozměrů nebo polohy předmětu, jsou rozhodující kóty. Z tohoto důvodu je kótování jedna z nejzodpovědnějších prací na technických

Více

Výroba ozubených kol. Použití ozubených kol. Převody ozubenými koly a tvary ozubených kol

Výroba ozubených kol. Použití ozubených kol. Převody ozubenými koly a tvary ozubených kol Výroba ozubených kol Použití ozubených kol Ozubenými koly se přenášejí otáčivé pohyby a kroutící momenty. Přenos je zde nucený, protože zuby a zubní mezery do sebe zabírají. Kola mohou mít vnější nebo

Více

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Uživatelská nastavení parametrických modelářů, využití

Více

ROČNÍKOVÁ PRÁCE TEORETICKÉ ŘEŠENÍ STŘECH

ROČNÍKOVÁ PRÁCE TEORETICKÉ ŘEŠENÍ STŘECH ROČNÍKOVÁ PRÁCE TEORETICKÉ ŘEŠENÍ STŘECH Vypracoval: Jan Vojtíšek Třída: 8.M Školní rok: 2011/2012 Seminář: Aplikace Deskriptivní geometrie Prohlašuji, že jsem svou ročníkovou práci napsal samostatně a

Více

Sada 3 CAD3. 3. CADKON DT+ Vynášení stěn

Sada 3 CAD3. 3. CADKON DT+ Vynášení stěn S třední škola stavební Jihlava Sada 3 CAD3 3. CADKON DT+ Vynášení stěn Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2 - inovace

Více

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková .. Funkce a jejich graf.. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné je taková binární relace z množin R do množin R, že pro každé R eistuje nejvýše jedno R, pro které [, ] f.

Více

4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů

4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů 4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů Příklad 1: Pracujte v pohledu Shora. Sestrojte kružnici se středem [0,0,0], poloměrem 10 a kružnici

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.] 1 CÍL KAPITOLY Cílem této kapitoly je naučit uživatele efektivně navrhovat objekty v režimu

Více

Nezaměstnanost. You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

Nezaměstnanost. You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Nezaměstnanost pokud na trhu práce převyšuje. práce zam..po práci firem. Při měření nezaměstnanosti rozlišujeme tyto typy skupin: 1)Ekonomicky aktivní obyvatelstvo (EAO) (nad 15 let) EOA Zaměstnaní Nezaměstnaní

Více

Sada 1 Geodezie I. 06. Přímé měření délek pásmem

Sada 1 Geodezie I. 06. Přímé měření délek pásmem S třední škola stavební Jihlava Sada 1 Geodezie I 06. Přímé měření délek pásmem Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2

Více

František Hudek. červen 2013. 6. - 7. ročník. Nastavení myši, místní a jazykové nastavení.

František Hudek. červen 2013. 6. - 7. ročník. Nastavení myši, místní a jazykové nastavení. VY_32_INOVACE_FH19_WIN Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace František Hudek červen 2013

Více

Jednofázový alternátor

Jednofázový alternátor Jednofázový alternátor - 1 - Jednofázový alternátor Ing. Ladislav Kopecký, 2007 Ke generování elektrického napětí pro energetické účely se nejčastěji využívá dvou principů. Prvním z nich je indukce elektrického

Více

Inovace a zkvalitnění výuky prostřednictvím ICT. Tváření. Název: Přesný střih. Téma: Ing. Kubíček Miroslav. Autor:

Inovace a zkvalitnění výuky prostřednictvím ICT. Tváření. Název: Přesný střih. Téma: Ing. Kubíček Miroslav. Autor: Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Tváření Přesný střih Ing. Kubíček Miroslav Číslo:

Více

Vyhrubování a vystružování válcových otvorů

Vyhrubování a vystružování válcových otvorů Vyhrubování a vystružování válcových otvorů Vyhrubováním se dosáhne nejen hladších povrchů otvorů, ale i jejich přesnějších rozměrů a správnějších geometrických tvarů než při vrtání. Vyhrubování je rozšiřování

Více

Numerická integrace. 6. listopadu 2012

Numerická integrace. 6. listopadu 2012 Numerická integrace Michal Čihák 6. listopadu 2012 Výpočty integrálů v praxi V přednáškách z matematické analýzy jste se seznámili s mnoha metodami výpočtu integrálů. V praxi se ale poměrně často můžeme

Více

Matematika pro 9. ročník základní školy

Matematika pro 9. ročník základní školy Matematika pro 9. ročník základní školy Řešení Ćíselné výrazy 1. Prvočíslo je přirozené číslo, které je beze zbytku dělitelné právě dvěma různými přirozenými čísly, a to číslem jedna a sebou samým (tedy

Více

3.1.4 Trojúhelník. Předpoklady: 3103. Každé tři různé body neležící v přímce určují trojúhelník. C. Co to je, víme. Jak ho definovat?

3.1.4 Trojúhelník. Předpoklady: 3103. Každé tři různé body neležící v přímce určují trojúhelník. C. Co to je, víme. Jak ho definovat? 3..4 Trojúhelní Předpolady: 303 Každé tři různé body neležící v přímce určují trojúhelní. o to je, víme. Ja ho definovat? Př. : Definuj trojúhelní jao průni polorovin. Trojúhelní je průni polorovin, a.

Více

Změny v LPIS v souvislosti s novou SZP a novelou zákona o zemědělství

Změny v LPIS v souvislosti s novou SZP a novelou zákona o zemědělství Změny v LPIS v souvislosti s novou SZP a novelou zákona o zemědělství Mgr. et Mgr. Tereza Gimunová tereza.gimunova@mze.cz MZE, odbor rozvoje a projektového řízení IT Zemědělské kultury NV LPIS 307/2014

Více

Změna sazby DPH v HELIOS Red po 1. 1. 2013

Změna sazby DPH v HELIOS Red po 1. 1. 2013 Změna sazby DPH v HELIOS Red po 1. 1. 2013 Uživatelé s platnou systémovou podporou budou mít HELIOS Red připravený k používání po stažení aktualizace. Uživatelé bez systémové podpory si mohou program nakonfigurovat

Více

Téma: Zemní práce III POS 1

Téma: Zemní práce III POS 1 Téma: Zemní práce III POS 1 Vypracoval: Ing. Josef Charamza TE NTO PR OJ E KT J E S POLUFINANC OVÁN E VR OPS KÝ M S OC IÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Ocelové a hliníkové systémy roubení

Více

1. POLOVODIČOVÁ DIODA 1N4148 JAKO USMĚRŇOVAČ

1. POLOVODIČOVÁ DIODA 1N4148 JAKO USMĚRŇOVAČ 1. POLOVODIČOVÁ DIODA JAKO SMĚRŇOVAČ Zadání laboratorní úlohy a) Zaznamenejte datum a čas měření, atmosférické podmínky, při nichž dané měření probíhá (teplota, tlak, vlhkost). b) Proednictvím digitálního

Více

MS Word 2007 REVIZE DOKUMENTU A KOMENTÁŘE

MS Word 2007 REVIZE DOKUMENTU A KOMENTÁŘE MS Word 2007 REVIZE DOKUMENTU A KOMENTÁŘE 1 ZAPNUTÍ SLEDOVÁNÍ ZMĚN Pokud zapnete funkci Sledování změn, aplikace Word vloží značky tam, kde provedete mazání, vkládání a změny formátu. Na kartě Revize klepněte

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor013 Vypracoval(a),

Více

SMĚŠOVACÍ KALORIMETR -tepelně izolovaná nádoba s míchačkou a teploměrem, která je naplněná kapalinou

SMĚŠOVACÍ KALORIMETR -tepelně izolovaná nádoba s míchačkou a teploměrem, která je naplněná kapalinou KALORIMETRIE Kalorimetr slouží k měření tepla, tepelné kapacity, případně měrné tepelné kapacity Kalorimetrická rovnice vyjadřuje energetickou bilanci při tepelné výměně mezi kalorimetrem a tělesy v kalorimetru.

Více

Goniometrie trigonometrie

Goniometrie trigonometrie Goniometrie trigonometrie Goniometrie se zabývá funkcemi sinus, kosinus, tangens, kotangens (goniometrické funkce). V tomto článku se budeme zabývat trigonometrií (součást goniometrie) používáním goniometrických

Více

Matrika otázky a odpovědi Vidimace částečné listiny. Ing. Markéta Hofschneiderová Eva Vepřková 26.11.2009

Matrika otázky a odpovědi Vidimace částečné listiny. Ing. Markéta Hofschneiderová Eva Vepřková 26.11.2009 Matrika otázky a odpovědi Vidimace částečné listiny Ing. Markéta Hofschneiderová Eva Vepřková 26.11.2009 1 Ženská příjmení Příjmení žen se tvoří v souladu s pravidly české mluvnice. Při zápisu uzavření

Více

A b s t r a k t. A b s t r a c t

A b s t r a k t. A b s t r a c t Rekonstrukce pilařského provozu v Tišnovské Nové Vsi A b s t r a k t N á p l n í b a k a l ářs k é p r á c e j e r o z b o r s o uč a s n é h o s t a v u v p i l ařské m p r o v o z u v T i š n o v s k

Více

2 Trochu teorie. Tab. 1: Tabulka pˇrepravních nákladů

2 Trochu teorie. Tab. 1: Tabulka pˇrepravních nákladů Klíčová slova: Dopravní problém, Metody k nalezení výchozího ˇrešení, Optimální ˇrešení. Dopravní problém je jednou z podskupin distribuční úlohy (dále ještě problém přiřazovací a obecná distribuční úloha).

Více

Věty o pravoúhlém trojúhelníku. Vztahy pro výpočet obvodu a obsahu. Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu

Věty o pravoúhlém trojúhelníku. Vztahy pro výpočet obvodu a obsahu. Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu Věty o pravoúhlém trojúhelníku Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu b v a obou úseků přepony: v 2 = c a c b c b c a Eukleidova věta o odvěsně A c B Druhá mocnina délky

Více

( x ) 2 ( ) 2.5.4 Další úlohy s kvadratickými funkcemi. Předpoklady: 2501, 2502

( x ) 2 ( ) 2.5.4 Další úlohy s kvadratickými funkcemi. Předpoklady: 2501, 2502 .5. Další úlohy s kvadratickými funkcemi Předpoklady: 50, 50 Pedagogická poznámka: Tato hodina patří mezi ty méně organizované. Společně řešíme příklad, při dalším počítání se třída rozpadá. Já řeším příklady

Více

Novinky verze ArCon 14 Small Business

Novinky verze ArCon 14 Small Business Novinky verze ArCon 14 Small Business Windows 7 Struktura souborů ArCon 14 Small Business je již optimalizována pro operační systém Windows 7 a nové typy procesorů Intel. Uživatelské prostředí Uživatelské

Více

ESII-2.1 Elektroměry

ESII-2.1 Elektroměry Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: ESII-2.1 Elektroměry Obor: Elektrikář - silnoproud Ročník: 2. Zpracoval(a): Bc. Josef Dulínek Střední průmyslová škola Uherský Brod, 2010 OBSAH 1. Měření

Více

1.4.4 Negace složených výroků

1.4.4 Negace složených výroků 1.4.4 Negace složených výroků Předpoklady: 1401, 1402, 1403 Negace konjunkce: Př. 1: Doplň následující tabulku pravdivostních hodnot výroků: 1 1 1 0 0 1 0 0 a b ( a b) a b ( a b) 1 1 1 0 0 0 1 0 0 1 0

Více

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly.

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly. 9. Úvod do středoškolského studia - rozšiřující učivo 9.. Další znalosti o trojúhelníku 9... Sinova věta a = sin b = sin c sin Příklad : V trojúhelníku BC platí : c = 0 cm, α = 45 0, β = 05 0. Vypočtěte

Více

4 DVOJMATICOVÉ HRY. Strategie Stiskni páku Sed u koryta. Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0)

4 DVOJMATICOVÉ HRY. Strategie Stiskni páku Sed u koryta. Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0) 4 DVOJMATICOVÉ HRY Strategie Stiskni páku Sed u koryta Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0) 125 DVOJMATICOVÁ HRA Je-li speciálně množina hráčů Q = {1, 2} a prostory strategií S 1, S 2

Více

VÝZNAMOVÉ POMĚRY MEZI VH

VÝZNAMOVÉ POMĚRY MEZI VH Základní škola, Šlapanice, okres Brno-venkov, příspěvková organizace Masarykovo nám. 1594/16, 664 51 Šlapanice www.zsslapanice.cz MODERNÍ A KONKURENCESCHOPNÁ ŠKOLA reg. č.: CZ.1.07/1.4.00/21.2389 VÝZNAMOVÉ

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzita Tomáše Bati ve líně LABORATORNÍ CVIČENÍ ELEKTROTECHNIKY A PRŮMYSLOVÉ ELEKTRONIKY Název úlohy: pracovali: Měření činného výkonu střídavého proudu v jednofázové síti wattmetrem Petr Luzar, Josef

Více

3.5.8 Otočení. Předpoklady: 3506

3.5.8 Otočení. Předpoklady: 3506 3.5.8 Otočení Předpoklady: 3506 efinice úhlu ze základní školy: Úhel je část roviny ohraničená dvojicí polopřímek se společným počátečním bodem (konvexní a nekonvexní úhel). Nevýhody této definice: Nevíme,

Více

Název: Šumivá tableta

Název: Šumivá tableta Název: Šumivá tableta Výukové materiály Téma: Anorganické plyny Úroveň: střední škola Tematický celek: Látky a jejich přeměny, makrosvět přírody Předmět (obor): chemie Doporučený věk žáků: 15 17 let Doba

Více

Téma: Plošné základy POS 1

Téma: Plošné základy POS 1 Téma: Plošné základy POS 1 Vypracoval: Ing. Josef Charamza TE NTO PR OJ E KT J E S POLUFINANC OVÁN E VR OPS KÝ M S OC IÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Základní rozdělení Rozdělení podle

Více

Balancéry Tecna typ 9354 9359

Balancéry Tecna typ 9354 9359 Balancéry Tecna typ 9354 9359 Návod k obsluze a údržbě Typ Nosnost Délka Váha Váha lanka balancéru s obalem 9354 4 7 2000 5 5,8 9355 7 10 2000 5,5 6,3 9356 10 14 2000 5,5 6,3 9357 14 18 2000 6,5 7,3 9358

Více

( ) 4.2.13 Slovní úlohy o společné práci I. Předpoklady: 040212. Sepiš postup na řešení příkladů o společné práci.

( ) 4.2.13 Slovní úlohy o společné práci I. Předpoklady: 040212. Sepiš postup na řešení příkladů o společné práci. .. Slovní úlohy o společné práci I Předpoklady: 00 Př. : Sepiš postup na řešení příkladů o společné práci. Ze zadání si určíme jakou část práce vykonali účastníci za jednotku času. Vyjádříme si jakou část

Více

Poruchy modul pro rychlé hlášení poruch z provozu.

Poruchy modul pro rychlé hlášení poruch z provozu. Poruchy modul pro rychlé hlášení poruch z provozu. Účelem tohoto programu je sbírat data o poruchách a nedostatcích v činnosti strojů a zařízení a jednak je zapisovat přímo do programu evidence údržby,

Více

Závislost hladiny intenzity zvuku na počtu zdrojů zvuku, na vzdálenosti od zdroje zvuku

Závislost hladiny intenzity zvuku na počtu zdrojů zvuku, na vzdálenosti od zdroje zvuku Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.1.28/02.0055 Závislost hladiny intenzity zvuku na počtu zdrojů zvuku, na vzdálenosti od zdroje zvuku (experiment) Označení: EU-Inovace-F-8-15

Více

Třetí sazba DPH 10% v programech Stravné a MSklad pokročilé nastavení

Třetí sazba DPH 10% v programech Stravné a MSklad pokročilé nastavení Pro koho je tento návod určen Tento návod je určen pro uživatele, kteří používají: program MSklad s modulem Účtování skladu nebo přenáší faktury do programu Účtárna. program Stravné 4.45 a nižší s modulem

Více

Sestavení vlastní meteostanice - měření srážek

Sestavení vlastní meteostanice - měření srážek Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.1.28/02.0055 Sestavení vlastní meteostanice - měření srážek (práce v terénu + laboratorní práce) Označení: EU-Inovace-F-6-02 Předmět:

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.11 Diagnostika automobilů Kapitola 16 Potenciometr

Více

( ) ( ) 9.2.12 Podmíněné pravděpodobnosti I. Předpoklady: 9207

( ) ( ) 9.2.12 Podmíněné pravděpodobnosti I. Předpoklady: 9207 9.. Podmíněné pravděpodobnosti I Předpoklady: 907 Pedagogická poznámka: Podmíněné pravděpodobnosti se často vynechávají jako velmi těžké a nepochopitelné učivo. Moje zkušenosti ukazují, že situace není

Více

Inovace profesního vzdělávání ve vazbě na potřeby Jihočeského regionu CZ.1.07/3.2.08/03.0035. Závěrečná práce

Inovace profesního vzdělávání ve vazbě na potřeby Jihočeského regionu CZ.1.07/3.2.08/03.0035. Závěrečná práce Závěrečná práce Studijní opora pro kurz Rozpočtování staveb v rámci projektu Inovace profesního vzdělávání ve vazbě na potřeby Jihočeského regionu Petr Hruška 2013 České Budějovice Obsah Průvodce studiem

Více

Měření základních vlastností OZ

Měření základních vlastností OZ Měření základních vlastností OZ. Zadání: A. Na operačním zesilovači typu MAA 74 a MAC 55 změřte: a) Vstupní zbytkové napětí U D0 b) Amplitudovou frekvenční charakteristiku napěťového přenosu OZ v invertujícím

Více

Projekt: 1.5, Registrační číslo: CZ.1.07/1.5.00/34.0304. Zoner Photo Studio

Projekt: 1.5, Registrační číslo: CZ.1.07/1.5.00/34.0304. Zoner Photo Studio Zoner Photo Studio Program Photo Studio je špičkový produkt pro kompletní práci s digitálními fotografiemi od importu a editace přes správu, organizaci až po publikaci. Podívejme se nyní na základní práci

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_32_INOVACE_E.2.13 Integrovaná střední škola

Více

1.9.5 Středově souměrné útvary

1.9.5 Středově souměrné útvary 1.9.5 Středově souměrné útvary Předpoklady: 010904 Př. 1: V obdélníkových rámech jsou nakresleny tři obrázky. Každý je sestaven z jedné přímky a jednoho obdélníku. Jeden z obrázků je středově souměrný.

Více

DUM 06 téma: Náležitosti výkresu sestavení

DUM 06 téma: Náležitosti výkresu sestavení DUM 06 téma: Náležitosti výkresu sestavení ze sady: 01 tematický okruh sady: Kreslení výkres sestavení ze šablony: 04_Technická dokumentace Ur eno pro :1. ro ník vzd lávací obor: 26-41-M/01 Elektrotechnika

Více

Strojní součásti, konstrukční prvky a spoje

Strojní součásti, konstrukční prvky a spoje Strojní součásti, konstrukční prvky a spoje Šroubové spoje Šrouby jsou nejčastěji používané strojní součástí a neexistuje snad stroj, kde by se nevyskytovaly. Mimo šroubů jsou u některých šroubových spojů

Více

1. Pojmy a definice. 2. Naivní algoritmus. 3. Boyer Moore

1. Pojmy a definice. 2. Naivní algoritmus. 3. Boyer Moore Algoritmy vyhledávaní v textu s lineární a sublineární složitostí, (naivní, Boyer-Moore), využití konečných automatů pro přesné a přibližné hledání v textu 1. Pojmy a definice Abeceda: Konečná množina

Více

1.4.1 Výroky. Předpoklady: Výrok je sdělení, u něhož má smysl otázka, zda je či není pravdivé

1.4.1 Výroky. Předpoklady: Výrok je sdělení, u něhož má smysl otázka, zda je či není pravdivé 1.4.1 Výroky Předpoklady: Výrok je sdělení, u něhož má smysl otázka, zda je či není pradié Číslo π je iracionální. pradiý ýrok Ach jo, zase matika. není ýrok V rozrhu máme deset hodin matematiky týdně.

Více

Přílohy. Příloha I. Seznam příloh

Přílohy. Příloha I. Seznam příloh Přílohy Seznam příloh Příloha I.: Párové značky...78 Příloha II.: Dotazník...79 Příloha III.: Zápis zadání úloh a jejich řešení...80 Příloha IV.: Obtížnost úloh podle chlapců a dívek...84 Příloha I. Párové

Více

1.7. Mechanické kmitání

1.7. Mechanické kmitání 1.7. Mechanické kmitání. 1. Umět vysvětlit princip netlumeného kmitavého pohybu.. Umět srovnat periodický kmitavý pohyb s periodickým pohybem po kružnici. 3. Znát charakteristické veličiny periodického

Více

2.2.10 Slovní úlohy vedoucí na lineární rovnice I

2.2.10 Slovní úlohy vedoucí na lineární rovnice I Slovní úlohy vedoucí na lineární rovnice I Předpoklady: 0, 06 Pedagogická poznámka: Řešení slovních úloh představuje pro značnou část studentů nejobtížnější část matematiky Důvod je jednoduchý Po celou

Více

M-10. AU = astronomická jednotka = vzdálenost Země-Slunce = přibližně 150 mil. km. V následující tabulce je závislost doby

M-10. AU = astronomická jednotka = vzdálenost Země-Slunce = přibližně 150 mil. km. V následující tabulce je závislost doby M-10 Jméno a příjmení holka nebo kluk * Třída Datum Škola AU = astronomická jednotka = vzdálenost Země-Slunce = přibližně 150 mil. km V následující tabulce je závislost doby a/au T/rok oběhu planety (okolo

Více

Změnu DPH na kartách a v ceníku prací lze provést i v jednotlivých modulech.

Změnu DPH na kartách a v ceníku prací lze provést i v jednotlivých modulech. Způsob změny DPH pro rok 2013 Verze 2012.34 a vyšší Úvod Vzhledem k tomu, že dnes 23.11.2012 nikdo netuší, zda od 1.1.2013 bude DPH snížená i základní 17.5% nebo 15% a 21%, bylo nutné všechny programy

Více

Fyzikální praktikum 3 - úloha 7

Fyzikální praktikum 3 - úloha 7 Fyzikální praktikum 3 - úloha 7 Operační zesilovač, jeho vlastnosti a využití Teorie: Operační zesilovač je elektronická součástka využívaná v měřící, regulační a výpočetní technice. Ideální model má nekonečně

Více

ᖇ刷ÍLOHA Čᖇ刷ᖇ刷 ᖇ刷ᖇ刷Aᖇ刷ᖇ刷Lᖇ刷A LOᖇ刷Hᖇ刷 ᖇ刷Oᖇ刷ᖇ刷ᖇ刷 ᖇ刷 ᖇ刷 ᖇ刷Aᖇ刷ᖇ刷Aᖇ刷ᖇ刷A ᖇ刷 Lᖇ刷ᖇ刷ᖇ刷ᖇ刷ᖇ刷A ᖇ刷ᖇ刷 ᖇ刷ᖇ刷ᖇ刷 ᖇ刷ᖇ刷ᖇ刷ᖇ刷ᖇ刷ᖇ刷ᖇ刷ᖇ刷ᖇ刷 ᖇ刷ᖇ刷ᖇ刷ᖇ刷ᖇ刷ᖇ刷 ᖇ卷 ᖇ卷ᖇ卷៧吇dé je ve výᖇ卷rese ᖇ卷2ᖇ卷ᖇ卷 uveden jedinečný ᖇ卷៧吇d ᖇ卷៧吇erý je slo៧吇en

Více

Technický popis koncovky výfukového systému vozu Mercedes Econic 1833LL:

Technický popis koncovky výfukového systému vozu Mercedes Econic 1833LL: Všeobecný popis: Cílem je vyřešit provedení odsávacího systému na stanicích HZS MSK opravou stávajícího stavu, v souladu s aktuálními požadavky na tento systém celkem pro 5 ks používaných vozidel CAS 20

Více

č Č Ó ť Ó Ý ť Í ďý Ů Ť Í Ť Ó č Ó č Ť Ó č Ě ť Ě ť ť Ť Ťč ť Ěč č Ť Íč Ó Ť Ť Ťč Ó Í Ť ť ž ť ť Ť ť ť ť Č Ó ď Ť ť ť Ť č ť Í č Í Í ř Í ť Ť č ť Ú ú Ú Ť ť Í ť Í Í č ť Í ť Ť ď Í Í č Í Í ť ť Ó Í Ť É Í Ť Ď ž ž Ď

Více

5. cvičení 4ST201_řešení

5. cvičení 4ST201_řešení cvičící. cvičení 4ST201_řešení Obsah: Informace o 1. průběžném testu Pravděpodobnostní rozdělení 1.část Vysoká škola ekonomická 1 1. Průběžný test Termín: pátek 26.3. v 11:00 hod. a v 12:4 v průběhu cvičení

Více

Základní prvky a všeobecná lyžařská průprava

Základní prvky a všeobecná lyžařská průprava Základní prvky a všeobecná lyžařská průprava Základní prvky a všeobecná lyžařská průprava na běžeckých lyžích Základními prvky nazýváme prvky elementární přípravy a pohybových dovedností, jejichž zvládnutí

Více

METODICKÝ LIST. Aktivita projektu Obloha na dlani - Laboratoř vědomostí ROBOT NA PÁSOVÉM PODVOZKU

METODICKÝ LIST. Aktivita projektu Obloha na dlani - Laboratoř vědomostí ROBOT NA PÁSOVÉM PODVOZKU METODICKÝ LIST Aktivita projektu Obloha na dlani - Laboratoř vědomostí ROBOT NA PÁSOVÉM PODVOZKU 1. Základní programovatelné funkce Robot je vybaven třemi pohonnými jednotkami, z toho dvě jsou využity

Více

B Kvantitativní test. Semestrální práce TUR. Novotný Michal novotm60@fel.cvut.cz

B Kvantitativní test. Semestrální práce TUR. Novotný Michal novotm60@fel.cvut.cz B Kvantitativní test Semestrální práce TUR Novotný Michal novotm60@fel.cvut.cz OBSAH 1. Úvod... 2 1.1. Předmět testování... 2 1.2. Cílová skupina... 2 2. Testování... 2 2.1. Nulová hypotéza... 2 2.2. Metoda

Více

ÚVOD DO HRY PRINCIP HRY

ÚVOD DO HRY PRINCIP HRY Počet hráčů: 2-6 Věk: od 6 let Délka hry: cca 20 min. Obsah: 66 hracích karet: 45 karet s čísly (hodnota 0 8 čtyřikrát, hodnota 9 devětkrát), 21 speciálních karet (9 karet Výměna, 7 karet Špehuj, 5 karet

Více

1.11 Vliv intenzity záření na výkon fotovoltaických článků

1.11 Vliv intenzity záření na výkon fotovoltaických článků 1.11 Vliv intenzity záření na výkon fotovoltaických článků Cíle kapitoly: Cílem laboratorní úlohy je změřit výkonové a V-A charakteristiky fotovoltaického článku při změně intenzity světelného záření.

Více

:6pt;font-style:normal;color:grey;font-family:Verdana,Geneva,Kalimati,sans-serif;text-decoration:none;text-align:center;font-variant:no = = < p s t y l e = " p a d d i n g : 0 ; b o r d e r : 0 ; t e

Více

Účetní případ MD D DOTACE OD ZŘIZOVATELE. Neinvestiční dotace (1/12, čtvrtletní platby, mimořádné platby) předpis 34611 6911x úhrada 221 34611

Účetní případ MD D DOTACE OD ZŘIZOVATELE. Neinvestiční dotace (1/12, čtvrtletní platby, mimořádné platby) předpis 34611 6911x úhrada 221 34611 DOTACE OD ZŘIZOVATELE Neinvestiční dotace (1/12, čtvrtletní platby, mimořádné platby) předpis 34611 6911x úhrada 221 34611 časové rozlišení dotace (příjem letos, výnos v dalším roce) 34611 3848 vratka

Více

Vyvažování tuhého rotoru v jedné rovině přístrojem Adash 4900 - Vibrio

Vyvažování tuhého rotoru v jedné rovině přístrojem Adash 4900 - Vibrio Aplikační list Vyvažování tuhého rotoru v jedné rovině přístrojem Adash 4900 - Vibrio Ref: 15032007 KM Obsah Vyvažování v jedné rovině bez měření fáze signálu...3 Nevýhody vyvažování jednoduchými přístroji...3

Více

ZAŘÍZENÍ PRO MĚŘENÍ DÉLKY

ZAŘÍZENÍ PRO MĚŘENÍ DÉLKY 1. Obecný popis ZAŘÍZENÍ PRO MĚŘENÍ DÉLKY typ DEL 2115A ATERM 1 Měřicí zařízení DEL2115A je elektronické zařízení, které umožňuje měřit délku kontinuálně vyráběného nebo odměřovaného materiálu a provádět

Více

Inovace výuky prostřednictvím šablon pro SŠ

Inovace výuky prostřednictvím šablon pro SŠ Název projektu Číslo projektu Název školy Autor Název šablony Název DUMu Stupeň a typ vzdělávání Vzdělávací oblast Vzdělávací obor Inovace výuky prostřednictvím šablon pro SŠ CZ.1.07/1.5.00/34.0748 Gymnázium

Více