2.6.4 Lineární lomené funkce s absolutní hodnotou
|
|
- Magdalena Bláhová
- před 8 lety
- Počet zobrazení:
Transkript
1 .6. Lineární lomené funkce s absolutní hodnotou Předpoklady: 60, 603 Pedagogická poznámka: Hlavním cílem hodiny je nácvik volby odpovídajícího postupu. Proto je dobré nechat studentům chvíli, aby si metody sepsali (metodu třetí jsme speciálně nezdůrazňovali, proto ji uvede jen málokdo), společně si zkontrolovali, u každé zhodnotili výhody a nevýhody a pak teprve začal řešit další příklady. Př. : Projdi sešit a sepiš všechny metody, které jsme používali při kreslení grafů funkcí s absolutní hodnotou. U každé metody napiš její výhody a její omezení. Používali jsme v podstatě tři metody:. metoda dělení definičního oboru na intervaly podle znaménka výrazu uvnitř absolutní hodnoty jsme absolutního hodnotu odstranili a v jednotlivých intervalech jsme nakreslili grafy odpovídajících funkcí, pak jsme vytáhli odpovídající části grafů Výhoda: jde aplikovat prakticky vždy (i vícekrát po sobě) Nevýhoda: pomalá, složitá pokud je uvnitř absolutní hodnoty složitější výraz. metoda napodobení výpočtu nakreslíme graf funkce uvnitř absolutní hodnoty a tento graf změníme podle toho, jak mění čísla absolutní hodnota, můžeme aplikovat i při přečíslovávání osy Výhoda: rychlá a snadno kontrolovatelná Nevýhoda: není možné ji uplatnit pokud se v předpisu vícekrát vyskytuje neznámá 3. metoda kreslení sudé funkce pokud je funkce sudá, nakreslím graf pouze pro kladná a pro záporná jej překreslím pomocí osové souměrnosti Výhoda: rychlé a jednoduché Nevýhoda: můžeme použít pouze v případě, že funkce je sudá Pedagogická poznámka: U všech následujících příkladů je důležité kontrolovat dostatečnou preciznost provedení. Příliš ledabylé kreslení vede k chybám. Př. : Nakresli libovolnou metodou graf funkce výhodnost jednotlivých metod. y =. Než začneš kreslit, zhodnoť Jaké máme možnosti?. dělení na intervaly a odstranění absolutní hodnoty: obtížné, není moc vidět, kdy je výraz uvnitř absolutní hodnoty kladný, museli bychom řešit nerovnici > 0. napodobení výpočtu: nakreslím graf funkce y = a použijeme na něj absolutní hodnotu (převrácení částí pod osou ) jednodušší, absolutní hodnota přichází na řadu až jako poslední
2 3. metoda kreslení sudé funkce: funkce není sudá, nejde použít použijeme metodu napodobení výpočtu:. Graf funkce: y = y = = f ( ) Zvolím Vypočtu Nakreslím funkci y = f ( ) = Nakreslím funkci y = f ( ) = Graf funkce: y = - uplatním na předchozí graf absolutní hodnotu Pedagogická poznámka: Někteří studenti špatně převrací graf. Místo osy používají asymptotu y =.
3 Př. 3: Nakresli libovolnou metodou graf funkce výhodnost jednotlivých metod. y = +. Než začneš kreslit, zhodnoť Jaké máme možnosti?. dělení na intervaly a odstranění absolutní hodnoty: snadné (v absolutní hodnotě je pouze ), ale zdlouhavé. napodobení výpočtu: nakreslíme funkci jako f ( ) +, není to příliš obtížné 3. metoda kreslení sudé funkce: funkce y = + je sudá funkce ( se v předpisu vyskytuje pouze v absolutní hodnotě, takže nezáleží na jeho znaménku), nakreslíme graf funkce y = +, pro kladná čísla ho vytáhneme, pro záporná čísla překopíruji výsledek z kladných čísel použijeme metodu kreslení sudé funkce:. Kreslíme graf funkce y = + y = + = f ( ) + Zvolím Vypočtu Nakreslím funkci y = f ( ) = Nakreslím funkci y = f ( ) + = Vytahujeme pravou část grafu a pomocí osové souměrnosti ji přenášíme na levou stranu 3
4 Pedagogická poznámka: V tomto příkladu bývá nejvíce chyb, značná část z nich začíná už ve špatné identifikaci platné části grafu funkce y = +. Př. : Nakresli libovolnou metodou graf funkce výhodnost jednotlivých metod. y =. Než začneš kreslit, zhodnoť Jaké máme možnosti?. dělení na intervaly a odstranění absolutní hodnoty: poměrně snadné (v absolutní hodnotě je pouze ), ale zdlouhavé. napodobení výpočtu: nejde, v předpisu je dvakrát neznámá 3. metoda kreslení sudé funkce: nejde, funkce není sudá použijeme metodu dělení na intervaly:. zjistíme předpisy funkce pro jednotlivé intervaly Zjistíme nulový bod absolutní hodnoty: : = ) ( ; dva intervaly < 0 = + + y = = = = = + = + ) ; ) ( ) > 0 = + y = = = + = +. Kreslíme grafy funkcí pro jednotlivé intervaly
5 = =. a) Kreslíme graf funkce y f ( ) Zvolíme Vypočteme Nakreslíme funkci y f ( ) Nakreslíme funkci ( ) Nakreslíme funkci ( ) = = y = f = y = f = = + = +. b) Kreslíme graf funkce y f ( ) Zvolíme Vypočteme Nakreslíme funkci y f ( ) Nakreslíme funkci ( ) = = y = f + = Nakreslíme oba grafy do jednoho obrázku a vytáhneme jejich odpovídající části 5
6 Pedagogická poznámka: Rozhodně není nutné, aby studenti kreslili graf částečných funkcí celé a zvlášť. Mohou kresli rovnou pouze jejich platnou část, ale vždy je nutné, aby používali takový postup, ve kterém se ještě orientují. Př. 5: U následujících funkcí najdi nejvhodnější metodu na kreslení jejího grafu. Graf nekresli. + a) y = b) y = + c) y = + a) y = - funkce je sudá (všechna jsou v absolutní hodnotě) nakreslíme graf metodou sudé funkce b) y = - funkce není sudá, v předpisu je neznámá pouze jednou použijeme metodu napodobení výpočtu + c) y = - funkce není sudá, neznámá se v předpisu vyskytuje dvakrát nakreslíme graf metodou dělení definičního oboru Př. 6: Nakresli libovolnou metodou graf funkce y =. Než začneš kreslit, zhodnoť výhodnost jednotlivých metod. Funkce není sudá a obsahuje dvakrát neznámou musíme použít metodu dělení definičního oboru. Funkce však obsahuje vnořené absolutní hodnoty (ty vnější se těžko odstraňují) budeme postupovat ve dvou krocích: I. nakreslíme graf funkce y = II. na nakreslený graf aplikujeme absolutní hodnotu (jako při metodě sledování výpočtu) I. kreslení grafu funkce y = 6
7 . zjistíme předpisy funkce pro jednotlivé intervaly Zjistíme nulový bod absolutní hodnoty: : = 0 ) ( ;0 = 0 dva intervaly + + y = = = = = + = ) 0; ) = + y = = = = + =. Kreslíme grafy funkcí pro jednotlivé intervaly a) Kreslíme graf funkce y = = f ( + ). + Zvolíme Vypočteme + Nakreslíme funkci y = f ( + ) = + Nakreslíme funkci y = f ( ) = + y b) Kreslíme graf funkce y = = f ( ) Zvolíme Vypočteme = = Nakreslíme funkci y f ( ). 7
8 y Nakreslíme oba grafy do jednoho obrázku a vytáhneme jejich odpovídající části y y II. na nakreslený graf aplikujeme absolutní hodnotu a získáme graf y = y Př. 7: Petáková: strana 58/cvičení 0 g, g3, g; g 6 Shrnutí: Při kreslení grafů lineárních funkcí je důležité zvolit nejvýhodnější metodu. 8
2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic
.3.19 Grafické řešení soustav lineárních rovnic a nerovnic Předpoklad: 307, 311 Př. 1: Vřeš soustavu rovnic + =. Pokud se také o grafické řešení. = 5 Tak jednoduchou soustavu už jsme dlouho neměli: + =
10.1.13 Asymptoty grafu funkce
.. Asmptot grafu funkce Předpoklad:, Asmptot grafu už známe kreslili jsme si je jako přímk, ke kterým se graf funkce přibližuje. Nakreslení asmptot, pak umožňuje přesnější kreslení grafu. Například u hperbol
2.8.8 Kvadratické nerovnice s parametrem
.8.8 Kvadratické nerovnice s arametrem Předoklady: 806 Pedagogická oznámka: Z hlediska orientace v tom, co studenti očítají, atří tato hodina určitě mezi nejtěžší během celého středoškolského studia. Proto
2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková
.. Funkce a jejich graf.. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné je taková binární relace z množin R do množin R, že pro každé R eistuje nejvýše jedno R, pro které [, ] f.
Numerická integrace. 6. listopadu 2012
Numerická integrace Michal Čihák 6. listopadu 2012 Výpočty integrálů v praxi V přednáškách z matematické analýzy jste se seznámili s mnoha metodami výpočtu integrálů. V praxi se ale poměrně často můžeme
2.7.15 Rovnice s neznámou pod odmocninou I
.7.15 Rovnice s neznámou pod odmocninou I Předpoklady: 711, 71 Pedagogická poznámka: Látka této hodiny vyžaduje tak jeden a půl vyučovací hodiny, pokud nepospícháte můžete obětovat hodiny dvě a nechat
UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin
5.1.2 Volné rovnoběžné promítání
5.1.2 Volné rovnoběžné promítání Předpoklady: 5101 Základní stereometrický problém: zabýváme se trojrozměrnými objekty, ale k práci používáme dvojrozměrný papír musíme najít způsob, jak trojrozměrné objekty
Druhá mocnina. Druhá odmocnina. 2.8.5 Druhá odmocnina. Předpoklady: 020804. V této hodině jsou kalkulačky zakázány.
.8.5 Druhá odmocnina Předpoklady: 0080 V této hodině jsou kalkulačky zakázány. Druhá mocnina nám umožňuje určit z délky strany plochu čtverce. Druhá mocnina 1 1 9 11 81 11 délky stran čtverců obsahy čtverců
2.7.2 Mocninné funkce se záporným celým mocnitelem
.7. Mocninné funkce se záporným celým mocnitelem Předpoklady: 70 Mocninné funkce se záporným celým mocnitelem: znamená? 3 y = = = = 3 y y y 3 = ; = ; = ;.... Co to Pedagogická poznámka: Nechávám studenty,
2.4.11 Nerovnice s absolutní hodnotou
.. Nerovnice s absolutní hodnotou Předpoklady: 06, 09, 0 Pedagogická poznámka: Hlavním záměrem hodiny je, aby si studenti uvědomili, že se neučí nic nového. Pouze používají věci, které dávno znají, na
Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel.
Výrazy. Rovnice a nerovnice. Výraz je matematický pojem používaný ve školské matematice. Prvním druhem matematických ů jsou konstanty. Konstanty označují právě jedno číslo z množiny reálných čísel. Například
4. R O V N I C E A N E R O V N I C E
4. R O V N I C E A N E R O V N I C E 4.1 F U N K C E A J E J Í G R A F Funkce (definice, značení) Způsoby zadání funkce (tabulka, funkční předpis, slovní popis, graf) Definiční obor funkce (definice, značení)
( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208
.. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla
(k 1)x k + 1. pro k 1 a x = 0 pro k = 1.
. Funkce dvou a více proměnných. Úvod. Určete definiční obor funkce a proveďte klasifikaci bodů z R vzhledem k a rozhodněte zda je množina uzavřená či otevřená. Určete a načrtněte vrstevnice grafu funkce
Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY
Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY INDIVIDUÁLNÍ VÝUKA Matematika METODIKA Soustavy rovnic Mgr. Marie Souchová květen 2011 Tato část učiva následuje po kapitole Rovnice. Je rozdělena do částí
Goniometrie trigonometrie
Goniometrie trigonometrie Goniometrie se zabývá funkcemi sinus, kosinus, tangens, kotangens (goniometrické funkce). V tomto článku se budeme zabývat trigonometrií (součást goniometrie) používáním goniometrických
( ) ( ) 7.2.2 Sčítání vektorů. Předpoklady: 7201
7.. Sčítání ektorů Předpoklady: 70 Pedagogická poznámka: Stdenti ětšino necítí potřeb postpoat při definici sčítání ektorů (obecně při zaádění jakékoli operace) tak striktně, jak yžadje matematika. Upozorňji
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115
Číslo projektu: Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo šablony: 14 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tematický celek: Anotace: CZ.1.07/1.5.00/34.0410
2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou
.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 0,, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli jednotlivé kroky postupu při řešení rovnic (nerovnic)
Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2.
Výklad Dalším typem extrémů, kterým se budeme zabývat jsou tzv. vázané extrémy. Hledáme extrémy nějaké funkce vzhledem k předem zadaným podmínkám. Definice 6.2.1. Řekneme, že funkce f : R n D f R má v
KVADRATICKÉ ROVNICE A NEROVNICE (početní a grafická řešení)
KVADRATICKÉ ROVNICE A NEROVNICE (početní a grafická řešení) KVADRATICKÉ ROVNICE (početně) Teorie: Kvadratická rovnice o jedné neznámé se nazývá každá taková rovnice, kterou lze ekvivalentními úpravami
IRACIONÁLNÍ ROVNICE. x /() 2 (umocnění obou stran rovnice na druhou) 2x 4 9 /(-4) (ekvivalentní úpravy) Motivace: Teorie: Řešené úlohy:
IRACIONÁNÍ ROVNICE Motivace: V řadě matematických úloh je nutno ovládat práci s odmocninami a rovnicemi, které obsahují neznámou pod odmocninou, mj. při vyjádření neznámé z technických vzorců. Znalosti
Rostislav Horčík. 13. října 2006
3. přednáška Rostislav Horčík 13. října 2006 1 Lineární prostory Definice 1 Lineárním prostorem nazýváme každou neprázdnou množinu L, na které je definováno sčítání + : L L L a násobení reálným číslem
7. Silně zakřivený prut
7. Silně zakřivený prut 2011/2012 Zadání Zjistěte rozložení napětí v průřezu silně zakřiveného prutu namáhaného ohybem analyticky a experimentálně. Výsledky ověřte numerickým výpočtem. Rozbor Pruty, které
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Uživatelská nastavení parametrických modelářů, využití
MODEL MOSTU. Ing.Jiřina Strnadová. Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti. Předmět:Fyzika
MODEL MOSTU Ing.Jiřina Strnadová Předmět:Fyzika Praha a EU Investujeme do vaší budoucnosti Model mostu Teoretický úvod: Příhradové nosníky (prutové soustavy) jsou složené z prutů, které jsou vzájemně spojené
B Kvantitativní test. Semestrální práce TUR. Novotný Michal novotm60@fel.cvut.cz
B Kvantitativní test Semestrální práce TUR Novotný Michal novotm60@fel.cvut.cz OBSAH 1. Úvod... 2 1.1. Předmět testování... 2 1.2. Cílová skupina... 2 2. Testování... 2 2.1. Nulová hypotéza... 2 2.2. Metoda
MS Word 2007 REVIZE DOKUMENTU A KOMENTÁŘE
MS Word 2007 REVIZE DOKUMENTU A KOMENTÁŘE 1 ZAPNUTÍ SLEDOVÁNÍ ZMĚN Pokud zapnete funkci Sledování změn, aplikace Word vloží značky tam, kde provedete mazání, vkládání a změny formátu. Na kartě Revize klepněte
( ) ( ) 9.2.12 Podmíněné pravděpodobnosti I. Předpoklady: 9207
9.. Podmíněné pravděpodobnosti I Předpoklady: 907 Pedagogická poznámka: Podmíněné pravděpodobnosti se často vynechávají jako velmi těžké a nepochopitelné učivo. Moje zkušenosti ukazují, že situace není
Funkce Vypracovala: Mgr. Zuzana Kopečková
Funkce Vypracovala: Mgr. Zuzana Kopečková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických předmětů OP
2.7.1 Mocninné funkce s přirozeným mocnitelem
.7. Mocninné funkce s přirozeným mocnitelem Předpoklad: 0 Pedagogická poznámka: K následujícím třem hodinám je možné přistoupit dvěma způsob. Já osobně doporučuji postupovat podle učebnice. V takovém případě
Lineární algebra. Vektorové prostory
Lineární algebra Vektorové prostory Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu:
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Informační
Třetí sazba DPH 10% v programech Stravné a MSklad pokročilé nastavení
Pro koho je tento návod určen Tento návod je určen pro uživatele, kteří používají: program MSklad s modulem Účtování skladu nebo přenáší faktury do programu Účtárna. program Stravné 4.45 a nižší s modulem
( ) 4.2.13 Slovní úlohy o společné práci I. Předpoklady: 040212. Sepiš postup na řešení příkladů o společné práci.
.. Slovní úlohy o společné práci I Předpoklady: 00 Př. : Sepiš postup na řešení příkladů o společné práci. Ze zadání si určíme jakou část práce vykonali účastníci za jednotku času. Vyjádříme si jakou část
Jan Březina. Technical University of Liberec. 17. března 2015
TGH03 - stromy, ukládání grafů Jan Březina Technical University of Liberec 17. března 2015 Kružnice - C n V = {1, 2,..., n} E = {{1, 2}, {2, 3},..., {i, i + 1},..., {n 1, n}, {n, 1}} Cesta - P n V = {1,
DUM 06 téma: Náležitosti výkresu sestavení
DUM 06 téma: Náležitosti výkresu sestavení ze sady: 01 tematický okruh sady: Kreslení výkres sestavení ze šablony: 04_Technická dokumentace Ur eno pro :1. ro ník vzd lávací obor: 26-41-M/01 Elektrotechnika
Vítězslav Bártl. prosinec 2013
VY_32_INOVACE_VB09_ČaP Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, vzdělávací obor, tematický okruh, téma Anotace Vítězslav
VY_62_INOVACE_VK53. Datum (období), ve kterém byl VM vytvořen Květen 2012 Ročník, pro který je VM určen
VY_62_INOVACE_VK53 Jméno autora výukového materiálu Věra Keselicová Datum (období), ve kterém byl VM vytvořen Květen 2012 Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace 9. ročník
MATERIÁL NA JEDNÁNÍ Zastupitelstva města Doksy
MATERIÁL NA JEDNÁNÍ Zastupitelstva města Doksy Jednání zastupitelstva města dne: 08. 04. 2015 Věc: Odměny uvolněným a neuvolněným členům zastupitelstva a další odměny Předkládá: Ing. Eva Burešová, starostka
( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501
..7 Neúplné kvadratické rovnice Předpoklady: Pedagogická poznámka: Tato hodina patří mezi vzácné výjimky, kdy naprostá většina studentů skončí více než pět minut před zvoněním. Nechávám je dělat něco jiného
1 Měření kapacity kondenzátorů
. Zadání úlohy a) Změřte kapacitu kondenzátorů, 2 a 3 LR můstkem. b) Vypočítejte výslednou kapacitu jejich sériového a paralelního zapojení. Hodnoty kapacit těchto zapojení změř LR můstkem. c) Změřte kapacitu
NÁZEV ŠKOLY: Střední odborné učiliště, Domažlice, Prokopa Velikého 640. V/2 Inovace a zkvalitnění výuky prostřednictvím ICT
NÁZEV ŠKOLY: Střední odborné učiliště, Domažlice, Prokopa Velikého 640 ŠABLONA: NÁZEV PROJEKTU: REGISTRAČNÍ ČÍSLO PROJEKTU: V/2 Inovace a zkvalitnění výuky prostřednictvím ICT Zlepšení podmínek pro vzdělávání
Fyzikální praktikum 3 - úloha 7
Fyzikální praktikum 3 - úloha 7 Operační zesilovač, jeho vlastnosti a využití Teorie: Operační zesilovač je elektronická součástka využívaná v měřící, regulační a výpočetní technice. Ideální model má nekonečně
Účetní případ MD D DOTACE OD ZŘIZOVATELE. Neinvestiční dotace (1/12, čtvrtletní platby, mimořádné platby) předpis 34611 6911x úhrada 221 34611
DOTACE OD ZŘIZOVATELE Neinvestiční dotace (1/12, čtvrtletní platby, mimořádné platby) předpis 34611 6911x úhrada 221 34611 časové rozlišení dotace (příjem letos, výnos v dalším roce) 34611 3848 vratka
Střední škola pedagogická, hotelnictví a služeb, Litoměříce, příspěvková organizace
Střední škola pedagogická, hotelnictví a služeb, Litoměříce, příspěvková organizace Předmět: Počítačové sítě Téma: Servery Vyučující: Ing. Milan Káža Třída: EK3 Hodina: 5 Číslo: III/2 S E R V E R Y 3.4.
Vzdělávací obor: Prvouka
VZDĚLÁVACÍ OBLAST : Člověk a jeho svět Vzdělávací obor: Prvouka Tematický okruh / učivo: Lidé a věci. ČP 16-DUM č. 6 Ka Autor: Marta Kasalová Název: Oblečení Anotace: Na pracovním listě se žáci naučí rozlišovat
( ) ( ) ( ) 2 ( ) 2.7.16 Rovnice s neznámou pod odmocninou II. Předpoklady: 2715
.7.6 Rovnice s neznámou pod odmocninou II Předpoklady: 75 Př. : Vyřeš rovnici y + + y = 4 y + + y = 4 / ( y + + y ) = ( 4) y + + 4 y + y + 4 y = 6 5y + 4 y + y = 8 5y + 4 y + y = 8 - v tomto stavu nemůžeme
Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu
1 Tutoriál č. 3 Exponenciála matice a její užití řešení Cauchyovy úlohy pro lineární systémy užitím fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 0.1 Exponenciála matice a její užití
AMU1 Monitorování bezpečného života letounu (RYCHLÝ PŘEHLED)
20. Července, 2009 AMU1 Monitorování bezpečného života letounu (RYCHLÝ PŘEHLED) ZLIN AIRCRAFT a.s. Oddělení Výpočtů letadel E-mail: safelife@zlinaircraft.eu AMU1 Monitorování bezpečného života letounu
Habermaaß-hra 5657A /4796N. Maják v obležení
CZ Habermaaß-hra 5657A /4796N Maják v obležení Maják v obležení Kooperativní hra pro 2 až 4 strážce majáku ve věku od 4 do 99 let. Zahrnuje soutěžní variantu. Autoři: Carmen & Thorsten Löpmann Ilustrace:
= musíme dát pozor na: jmenovatel 2a, zda je a = 0 výraz pod odmocninou, zda je > 0, < 0, = 0 (pak je jediný kořen)
.8.7 Kvadratické rovnice s parametrem Předpoklady: 507, 803 Pedagogická poznámka: Na první pohled asi každého zarazí, že takřka celá hodina je psána jako příklady a studenti by ji měli vypracovat samostatně.
Digitální učební materiál
Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_32_INOVACE_E.2.02 Integrovaná střední škola
Příručka pro práci s dataloggerem Labquest 2. Zapínání a domácí obrazovka
Příručka pro práci s dataloggerem Labquest 2 Obsah: 1. Zapínaní a domácí obrazovka 2. Senzory a obrazovka aktuální hodnota 3. Sběr dat a obrazovka graf 4. Vkládání a výpočet dat - obrazovka tabulka 5.
Stavební mechanika 3. 9. přednáška, 2. května 2016
Stavební mechanika 3 9. přednáška,. května 06 Stavební mechanika 3 9. přednáška,. května 06 Silová metoda ) opakování použití principu virtuálních il ) vliv mykové deormace 3) motivační příklad 4) zobecnění
NUMEROLOGIE CO JE NUMEROSKOP
CO JE NUMEROSKOP Čísla mají překvapivé vlastnosti například v podobě výpisu z bankovního účtu dovedou v lidech vyvolat nejrůznější emoce. Oplývají ale ještě mnohem dalekosáhlejšími významy a kvalitami.
5 1 BITY A SADY BITŮ
5 1 BITY A SADY BITŮ 6 bity a sady bitů Hitachi: kompletní paleta bitů Bity od Hitachi jsou konstruovány tak, aby poskytovaly co možná největší přenos síly spolu s dlouhou životností. Aby to bylo zajištěno,
M-10. AU = astronomická jednotka = vzdálenost Země-Slunce = přibližně 150 mil. km. V následující tabulce je závislost doby
M-10 Jméno a příjmení holka nebo kluk * Třída Datum Škola AU = astronomická jednotka = vzdálenost Země-Slunce = přibližně 150 mil. km V následující tabulce je závislost doby a/au T/rok oběhu planety (okolo
( x ) 2 ( ) 2.5.4 Další úlohy s kvadratickými funkcemi. Předpoklady: 2501, 2502
.5. Další úlohy s kvadratickými funkcemi Předpoklady: 50, 50 Pedagogická poznámka: Tato hodina patří mezi ty méně organizované. Společně řešíme příklad, při dalším počítání se třída rozpadá. Já řeším příklady
Definice a vlastnosti funkcí
Definice a vlastnosti funkcí Učební text pro druhý ročník (sextu) gymnázia V tomto textu jsou definovány základní, obecné pojmy týkající se funkcí. Součástí textu nejsou (velmi důležité!) obrázky; ty si
JIŠTĚNÍ OBVODŮ POJISTKY 2
JIŠTĚNÍ OBVODŮ POJISTKY 2 Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním školám - OP VK 1.5. Výuková sada ELEKTROINSTALACE,
4.6.6 Složený sériový RLC obvod střídavého proudu
4.6.6 Složený sériový LC obvod střídavého proudu Předpoklady: 41, 4605 Minulá hodina: odpor i induktance omezují proud ve střídavém obvodu, nemůžeme je však sčítat normálně, ale musíme použít Pythagorovu
Univerzita Tomáše Bati ve Zlíně
Univerzita Tomáše Bati ve líně LABORATORNÍ CVIČENÍ ELEKTROTECHNIKY A PRŮMYSLOVÉ ELEKTRONIKY Název úlohy: pracovali: Měření činného výkonu střídavého proudu v jednofázové síti wattmetrem Petr Luzar, Josef
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor013 Vypracoval(a),
Novinky v programu Majetek 2.06
Novinky v programu Majetek 2.06 Možnost použít zvětšené formuláře program Majetek 2.06 je dodávám s ovládacím programem ProVIS 1.58, který umožňuje nastavit tzv. Zvětšené formuláře. Znamená to, že se formuláře
Digitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_3_12 ŠVP Podnikání RVP 64-41-L/51
Hra a hry. Václav Vopravil. Teorie kombinatorických her se zabývá abstraktními hrami dvou hráčů. Hra je definována R },
Hra a hry Václav Vopravil Úvod 1 Kombinatorické hry Teorie kombinatorických her se zabývá abstraktními hrami dvou hráčů. Hra je definována pomocí jednodušších her, tj. jako uspořádaná dvojice množin her.
Návod ke stažení a instalaci bodů zájmu do navigace TomTom řady Via a Go100x
Návod ke stažení a instalaci bodů zájmu do navigace TomTom řady Via a Go100x Holandský výrobce navigací TomTom uvolnil do prodeje na podzim roku 2010 nové řady navigací Via a Go100x. Změnil však u těchto
Zápis dat z dotykového displeje s integrovaným PLC SmartAxis Touch na USB Flash disk a vyčítání dat pomocí softwaru Downloader
Zápis dat z dotykového displeje s integrovaným PLC SmartAxis Touch na USB Flash disk a vyčítání dat pomocí softwaru Downloader 2 Zápis dat z dotykového displeje s integrovaným PLC SmartAxis Touch na USB
1.9.5 Středově souměrné útvary
1.9.5 Středově souměrné útvary Předpoklady: 010904 Př. 1: V obdélníkových rámech jsou nakresleny tři obrázky. Každý je sestaven z jedné přímky a jednoho obdélníku. Jeden z obrázků je středově souměrný.
Hřídelové čepy. Podle tvaru, funkce a použití rozeznáváme hřídelové čepy: a) válcové b) kuželové c) prstencové d) kulové e) patní
Hřídelové čepy Hřídelový čep je část hřídele, která je ve styku s ložiskem. Každý hřídel je uložen nejméně na dvou ložiskách. Má tedy alespoň dva hřídelové čepy. Reakce vyvolané zatížením jsou přenášeny
Business Contact Manager Správa kontaktů pro tisk štítků
Business Contact Manager Správa kontaktů pro tisk štítků 1 Obsah 1. Základní orientace v BCM... 3 2. Přidání a správa kontaktu... 4 3. Nastavení filtrů... 5 4. Hromadná korespondence... 6 5. Tisk pouze
Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 02 VYSUNUTÍ PROFILU LINEÁRNÍ A ROTACÍ ]
Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jan Boháček [ÚLOHA 02 VYSUNUTÍ PROFILU LINEÁRNÍ A ROTACÍ ] 1 CÍL KAPITOLY Cílem této kapitoly je naučit se efektivní práci v parametrickém modeláři
Řešení potíží se zalomenými nástroji v obrobku
Řešení potíží se zalomenými nástroji v obrobku INTERSPARK Praha, s.r.o. 1 e-mail:interspark@interspark.cz Nový eromobil Kompaktní, funkční a praktický Při třískovém obrábění je zalomený nástroj běžná nehoda.
ZADÁNÍ: ÚVOD: SCHÉMA:
ZADÁNÍ: ) U daného síťového transformátoru vyhodnoťte osciloskopickou metodou ze zobrazení hysterezní smyčky hlavní magnetické vlastnosti jádra - H MAX,H 0,B r při B MAX T. 2) Ze zjištěného průběhu hysterezní
POKUS O STATISTICKOU PŘEDPOVĚD ZNEČIŠTĚNÍ OVZDUŠÍ. Josef Keder. ČHMÚ ÚOČO, Observatoř Tušimice, keder@chmi.cz
POKUS O STATISTICKOU PŘEDPOVĚD ZNEČIŠTĚNÍ OVZDUŠÍ Josef Keder ČHMÚ ÚOČO, Observatoř Tušimice, keder@chmi.cz Proč statistická předpověď motivace (1) Možnost předpovědět úroveň znečištění ovzduší na určité
ÚVOD DO HRY PRINCIP HRY
Počet hráčů: 2-6 Věk: od 6 let Délka hry: cca 20 min. Obsah: 66 hracích karet: 45 karet s čísly (hodnota 0 8 čtyřikrát, hodnota 9 devětkrát), 21 speciálních karet (9 karet Výměna, 7 karet Špehuj, 5 karet
Pokusy s kolem na hřídeli (experimenty s výpočty)
Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.1.28/02.0055 Pokusy s kolem na hřídeli (experimenty s výpočty) Označení: EU-Inovace-F-7-08 Předmět: fyzika Cílová skupina: 7. třída
EHLED OSV za rok 2015 vykonávajících pouze hlavní SV
Zadání pro programátory ehled o p íjmech a výdajích OSV za rok 2015 N_OSVC lokální aplikace ehled o p íjmech a výdajích OSV za rok 2015 Údaje P ehledu 2015 Dle FU(kont): Oznámil da. p.: M l podat na FU:
2.1.13 Funkce rostoucí, funkce klesající I
.1.13 Funkce rostoucí, funkce klesající I Předpoklad: 111 Pedagogická poznámka: Následující příklad je dobrý na opakování. Můžete ho studentům zadat na čas a ten kdo ho nestihne nebo nedokáže vřešit, b
Návod na sestavení naháněcí ohrady
Návod na sestavení naháněcí ohrady Obj. č: 3552 ECONOMY 3509 STANDARD 3547 STANDARD+ 3510 STANDARD KOMPLET ECONOMY STANDARD STANDARD+ STANDARD KOMPLET Díly pro základní naháněcí ohradu 3521 1x Posuvné
Technický popis koncovky výfukového systému vozu Mercedes Econic 1833LL:
Všeobecný popis: Cílem je vyřešit provedení odsávacího systému na stanicích HZS MSK opravou stávajícího stavu, v souladu s aktuálními požadavky na tento systém celkem pro 5 ks používaných vozidel CAS 20
Téma: Zemní práce III POS 1
Téma: Zemní práce III POS 1 Vypracoval: Ing. Josef Charamza TE NTO PR OJ E KT J E S POLUFINANC OVÁN E VR OPS KÝ M S OC IÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Ocelové a hliníkové systémy roubení
Název projektu: Spokojená škola Číslo projektu: OPVK.CZ.1.07/1.2.33/02.0039 Metodické pokyny k pracovnímu listu č. 1 Význam slov
Název projektu: Spokojená škola Číslo projektu: OPVK.CZ.1.07/1.2.33/02.0039 Metodické pokyny k pracovnímu listu č. 1 Význam slov Pracovní list slouží žákům s SPU k osvojení významu slov. Slova jednoznačná
Změnu DPH na kartách a v ceníku prací lze provést i v jednotlivých modulech.
Způsob změny DPH pro rok 2013 Verze 2012.34 a vyšší Úvod Vzhledem k tomu, že dnes 23.11.2012 nikdo netuší, zda od 1.1.2013 bude DPH snížená i základní 17.5% nebo 15% a 21%, bylo nutné všechny programy
Ž Á D O S T O POSKYTNUTÍ NEINVESTIČNÍ DOTACE Z ROZPOČTU MORAVSKOSLEZSKÉHO KRAJE 2016/2017 OBECNÁ ČÁST
Příloha č. 2 Dotačního programu Ž Á D O S T O POSKYTNUTÍ NEINVESTIČNÍ DOTACE Z ROZPOČTU MORAVSKOSLEZSKÉHO KRAJE Dotační program Podpora aktivit v oblasti prevence rizikových projevů chování u dětí a mládeže
Digitální učební materiál
Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_32_INOVACE_E.2.13 Integrovaná střední škola
Formulář návrhu projektu pro 4. veřejnou soutěž programu ALFA
Formulář návrhu projektu pro 4. veřejnou soutěž programu ALFA Tento dokument slouží pouze jako předběžný informativní materiál, který není právně závazný, není součástí hodnotícího procesu, nelze se na
ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec
ISŠT Mělník Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_C.1.15 Integrovaná střední škola technická Mělník, K učilišti 2566,
3. Slimák lezl na strom 10m vysoký. Přes den vylezl 4m ale v noci vždycky sklouzl o 3m. Za kolik dní dosáhl vrcholu stromu?
Logické úlohy 1. Katka přišla k Janě, která krmila na dvoře drůbež. Katka se ptala: Víš, kolik máte kuřat, kolik housat a kolik kachňat? Jana odpověděla: Vím, a ty si to vypočítej: dohromady máme 90hlav.
4.2.16 Ohmův zákon pro uzavřený obvod
4.2.16 Ohmův zákon pro uzavřený obvod Předpoklady: 040215 Postřeh z minulých měření: Při sestavování obvodů jsme používali stále stejnou plochou baterku. Přesto se její napětí po zapojení do obvodu měnilo.
Měření hustoty kapaliny z periody kmitů zkumavky
Měření hustoty kapaliny z periody kmitů zkumavky Online: http://www.sclpx.eu/lab1r.php?exp=14 Po několika neúspěšných pokusech se zkumavkou, na jejíž dno jsme umístili do vaty nejprve kovovou kuličku a
SWEET. Látková sedací souprava ZDARMA SWEET SLUŽBY NA KLÍČ. 2D grafi cké návrhy, doprava, vynošení, montáž a likvidace staré sedací soupravy
SLUŽBY NA KLÍČ 2D grafi cké návrhy, doprava, vynošení, montáž a likvidace staré sedací soupravy ZDARMA ŠIROKÝ VÝBĚR BAREVNÝCH ODSTÍNŮ KVALITNÍCH POTAHOVÝCH LÁTEK Látková sedací souprava www.montero.cz
Sada 3 CAD3. 3. CADKON DT+ Vynášení stěn
S třední škola stavební Jihlava Sada 3 CAD3 3. CADKON DT+ Vynášení stěn Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2 - inovace
Lokální a globální extrémy funkcí jedné reálné proměnné
Lokální etrémy Globální etrémy Použití Lokální a globální etrémy funkcí jedné reálné proměnné Nezbytnou teorii naleznete Breviáři vyšší matematiky (odstavec 1.). Postup při hledání lokálních etrémů: Lokální
Řešení lineárních a kvadratických funkcí v prostředí programu GeoGebra
Řešení lineárních a kvadratických funkcí v prostředí programu GeoGebra Lineární a kvadratické rovnice jsou součástí velké množiny rovnic. Jejich uplatnění je často velmi praktické, a proto je pojmu rovnice
Ozobot aktivita lov velikonočních vajíček
Ozobot aktivita lov velikonočních vajíček Autor: Ozobot Publikováno dne: 9. března 2016 Popis: Tato hra by měla zábavnou formou procvičit programování ozokódů. Studenti mají za úkol pomoci Ozobotovi najít
c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly.
9. Úvod do středoškolského studia - rozšiřující učivo 9.. Další znalosti o trojúhelníku 9... Sinova věta a = sin b = sin c sin Příklad : V trojúhelníku BC platí : c = 0 cm, α = 45 0, β = 05 0. Vypočtěte
1.2.7 Druhá odmocnina
..7 Druhá odmocnina Předpoklady: umocňování čísel na druhou Pedagogická poznámka: Probrat obsah této hodiny není možné ve 4 minutách. Já osobně druhou část (usměrňování) probírám v další hodině, jejíž