Věty o pravoúhlém trojúhelníku. Vztahy pro výpočet obvodu a obsahu. Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu
|
|
- Jarmila Veselá
- před 8 lety
- Počet zobrazení:
Transkript
1 Věty o pravoúhlém trojúhelníku Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu b v a obou úseků přepony: v 2 = c a c b c b c a Eukleidova věta o odvěsně A c B Druhá mocnina délky odvěsny je rovna součinu délky přepony a přilehlého úseku na přeponě a 2 = c c a b 2 = c c b Sečtením vět o odvěsně vzniká Pythagorova věta a 2 + b 2 = c 2 Druhá mocnina délky přepony je rovna součtu druhých mocnin délek obou odvěsen. (významná je i věta obrácená platí-li pro strany trojúhelníku daný vztah, pak je pravoúhlý) Vztahy pro výpočet obvodu a obsahu Obvod : o = a + b + c Obsah: S = 1 2 a v a = 1 2 b v b = 1 2 c v c S = 1 a b sinγ = 1 b c sinα = 1 a c sinβ Heronův vzorec: S = s (s a) (s b). (s c), kde s = 1 (a + b + c) 2
2 PS Je dán pravoúhlý trojúhelník KLM s pravým úhlem při vrcholu K. M K L a) Označte strany daného trojúhelníku. Doplňte: Přeponou trojúhelníku KLM je strana, odvěsnami jsou strany a. b) Dorýsujte obrázek tak, aby vyjadřoval Pythagorovu větu pro daný trojúhelník. c) Slovně formulujte P. V. pomocí obsahů vhodných čtverců d) Zapište symbolicky P. V. pro daný KLM: e) Změřte délky stran KLM a ověřte, zda pro tento trojúhelník platí P. V. k = l = m = f) Slovně formulujte obrácenou větu k větě Pythagorově: 2. Doplňte do tabulky délku zbývající strany pravoúhlého trojúhelníku. odvěsna odvěsna přepona Trojúhelník Trojúhelník Trojúhelník 3 0,9 4,1 Trojúhelník Trojúhelník 5 0,11 0,60
3 3. Vypočítejte: a) Vypočítejte délku základny rovnoramenného trojúhelníku, má-li výška na základnu velikost 7 cm a ramena délku 18,2 cm. b) Vypočítejte velikost výšky na přeponu rovnoramenného pravoúhlého trojúhelníku, mají-li odvěsny délku 3,4 cm. Zaokrouhlete na desetiny cm. c) Vypočítejte velikost výšky pravoúhlého lichoběžníku, mají-li základny délky 6 cm a 4 cm a šikmé rameno délku 5,2 cm. D A B
4 d) Vypočítejte délku strany kosočtverce, mají-li úhlopříčky délku u = 2 3cm a v = 4 2cm. D v S u A B 4. Rozhodněte, zda je trojúhelník s danými délkami stran pravoúhlý. a) 30 cm, 40 cm, 50 cm b) 1 cm, 0,8 cm, 0,7 cm c) 2cm, 5cm, 3cm d) 2 2 cm, 5 cm, 3 cm e) 2d, 3d, 4d kde d je libovolné kladné reálné číslo f) x 2 y 2, 2xy, x 2 + y 2, kde x, y jsou libovolná kladná čísla a x > y
5 5. Vypočítejte délku l zábradlí nad schodištěm se čtyřmi schody, výška schodu v = 16 cm a šířka schodu s = 30 cm. h l v h s 2 s s 2 9. Doplňte věty výběrem nabízených možností. a) Délka úhlopříčky čtverce o straně délky a je 1) a 3 2 b) Velikost výšky v rovnostranném trojúhelníku o straně a je 2) 5 c) Průměr kružnice opsané pravoúhlému trojúhelníku, jehož odvěsny mají délky a, 2a je 3) a 2 d) Délka odvěsny pravoúhlého rovnoramenného trojúhelníku, jehož přepona má délku a je 4) a 2 2
6 11. S využitím P. V. sestrojte úsečky dané délky. a) 8 cm b) 13 cm c) 21cm d) a 3 cm (a je zadaná ús.) 13. Rozhodněte, zda trojúhelník se zadanými délkami stran je ostroúhlý, pravoúhlý nebo tupoúhlý. a) 8, 15, 17 b) 8, 15, 20 c) 8, 15, 16 d) 8, 15, V pravoúhlém trojúhelníku AB s pravým úhlem při vrcholu je a = 4cm, t b = 5cm. Vypočítejte délky zbývajících těžnic. 15. Obdélníkový pozemek o stranách délek 36 m a 27 m rozděluje úhlopříčně přímá cesta na dvě shodné části, které mají tvar rovnoramenného pravoúhlého trojúhelníku. Vypočítejte šířku cesty.
7 Eukleidovy věty PS Je dán pravoúhlý trojúhelník AB s pravým úhlem při vrcholu. A B a) Dorýsujte obrázek tak, aby vyjadřoval Eukleidovu větu o výšce pro daný pravoúhlý trojúhelník AB. Obrázek popište. b) Vyslovte Eukleidovu větu o výšce pomocí vhodného čtverce a obdélníku. c) E. V. ov. pro trojúhelník AB zapište: d) Změřte délky c a, c b, v c a ověřte platnost E. V. o V. c a = c b = v c = 2. Je dán pravoúhlý trojúhelník AB s pravým úhlem při vrcholu. A B a) Dorýsujte obrázek tak, aby vyjadřoval Eukleidovu větu o odvěsně a pro daný pravoúhlý trojúhelník AB. Obrázek popište. b) Vyslovte E. V. o O. pomocí obsahů vhodného čtverce a obdélníku. c) E. V. o O. a pro trojúhelník AB symbolicky zapište: d) Změřte délky c a, c, a a ověřte platnost E. V. o O. pro daný pravoúhlý trojúhelník AB. c a = c = a =
8 3. Načrtněte pravoúhlé trojúhelníky podle zadání, popišteje a zapište pro ně Eukleidovy věty. a) Trojúhelník XYZ s pravým úhlem při vrcholu Z Náčrt E. věta o výšce E. věty o odvěsně b) Trojúhelník MNP s pravým úhlem při vrcholu P Náčrt E. věta o výšce E. věty o odvěsně 4. Jsou dány pravoúhlé AB s pravým úhlem při vrcholu a s obvyklým značením. Doplňte tabulku. Hodnoty jsou uvedeny ve stejných jednotkách. c c a c b a b v c Trojúhelník1 5 1 Trojúhelník Trojúhelník Trojúhelník4 8 12
9 6. Do kosočtverce je vepsána kružnice. Bod dotyku rozděluje stranu kosočtverce na části dlouhé 5cm a 3 cm. Vypočítejte: a) délky obou úhlopříček b) poloměr vepsané kružnice D S A P B 7. Stožár je ve dvou třetinách své výšky upevněn dvěma nestejně dlouhými lany svírajícími pravý úhel. Pata stožáru a body ukotvení lan leží na přímce. Vypočti výšku stožáru a délky lan, jsou-li vzdálenosti ukotvení od paty 5 m a 3,2 m.
10 Příklady k domácí přípravě 1. V pravoúhlém trojúhelníku AB s pravým úhlem při vrcholu je zadána odvěsna a = 6,5 cm a výška v c = 5,2 cm. Vypočtěte: a) úsek c a (pomocí P. V.) b) úsek c b (pomocí E. V. o V.) c) odvěsnu b (pomocí E. V. o O.) b v c a Zaokrouhlete na jedno desetinné místo, správnost ověřte kontrolou stran A B a, b, c, pomocí Pythagorovy věty. 2. V rovnoramenném trojúhelníku má základna délku 18 cm a ramena délky 15 cm. Vypočtěte velikost výšky na základnu tohoto trojúhelníku. 3. Kosočtverec má úhlopříčky o délkách 12 cm a 16cm. Vypočtěte délku strany tohoto kosočtverce.
Matematika pro 9. ročník základní školy
Matematika pro 9. ročník základní školy Řešení Ćíselné výrazy 1. Prvočíslo je přirozené číslo, které je beze zbytku dělitelné právě dvěma různými přirozenými čísly, a to číslem jedna a sebou samým (tedy
Digitální učební materiál
Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.057 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova
Kružnice. Kruh. Kruh K(S; r) je množina všech bodů roviny, které mají. od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice.
Kružnice Kružnice k(s; r) je množina všech bodů roviny, které mají d od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice. S r Délka spojnice dvou bodů kružnice, která prochází středem
2.8.23 Využití Pythagorovy věty III
.8.3 Využití Pythagorovy věty III Předpoklady: 008 Př. 1: Urči obsah rovnoramenného trojúhelníku se základnou 8 cm a rameny 5,8 cm. Pro výpočet obsahu potřebujeme znát jednu ze stran a odpovídající výšku.
Různostranné obecné Rovnoramenné Rovnostranné. třetí, základna, je různá
Trojúhelník Trojúhelník - AB určují tři body A, B,, které neleží na jedné přímce. Trojúhelník je rovněž možno považovat za průnik tří polorovin nebo tří konvexních úhlů. γ, γ, γ Body A, B,, se nazývají
M - Příprava na 1. čtvrtletní písemku
M - Příprava na 1. čtvrtletní písemku Určeno pro třídu 2ODK. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete na www.dosli.cz.
Analytická geometrie (3. - 4. lekce)
Analytická geometrie (3. - 4. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 16. června 2011 Příklad 1 Příklad 1. Algebraicky
Úlohy domácího kola kategorie C
50. ročník Matematické olympiády Úlohy domácího kola kategorie 1. Najděte všechna trojmístná čísla n taková, že poslední trojčíslí čísla n 2 je shodné s číslem n. Student může při řešení úlohy postupovat
Goniometrie trigonometrie
Goniometrie trigonometrie Goniometrie se zabývá funkcemi sinus, kosinus, tangens, kotangens (goniometrické funkce). V tomto článku se budeme zabývat trigonometrií (součást goniometrie) používáním goniometrických
Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Planimetrie. Trojúhelníky. Teorie a příklady.
Číslo projektu Z.1.07/1.5.00/34.0743 Název školy Moravské gymnázium rno s.r.o. utor Tematická oblast Mgr. Marie hadimová Mgr. Věra Jeřábková Matematika. Planimetrie. Trojúhelníky. Teorie a příklady. Ročník
Výstupy Učivo Téma. Čas. Základní škola a mateřská škola Hať. Školní vzdělávací program. Průřezová témata, kontexty a přesahy,další poznámky
provádí pamětné a písemné početní Čísla přirozená Opakování září, říjen operace v oboru přirozených čísel porovnává a uspořádává čísla celá a Čísla celá, racionální racionální, provádí početní operace
SBÍRKA PŘÍKLADŮ PRO OPAKOVÁNÍ NA PŘIJÍMACÍ ZKOUŠKY 2
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNÍ A STAVEBNÍ TÁBOR, KOMENSKÉHO 1670 SBÍRKA PŘÍKLADŮ PRO OPAKOVÁNÍ NA PŘIJÍMACÍ ZKOUŠKY 2 ŠKOLNÍ ROK 2014/2015 Obsah 1 Dělitelnost přirozených čísel... 3 2 Obvody a obsahy
Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.
Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.b Co je množinou středů všech kružnic v rovině, které prochází
3.1.4 Trojúhelník. Předpoklady: 3103. Každé tři různé body neležící v přímce určují trojúhelník. C. Co to je, víme. Jak ho definovat?
3..4 Trojúhelní Předpolady: 303 Každé tři různé body neležící v přímce určují trojúhelní. o to je, víme. Ja ho definovat? Př. : Definuj trojúhelní jao průni polorovin. Trojúhelní je průni polorovin, a.
Č část četnost. 部 分 频 率 relativní četnost 率, 相 对 频 数
A absolutní člen 常 量 成 员 absolutní hodnota čísla 绝 对 值 algebraický výraz 代 数 表 达 式 ar 公 亩 aritmetický průměr 算 术 均 数 aritmetika 算 术, 算 法 B boční hrana 侧 棱 boční hrany jehlanu 角 锥 的 侧 棱 boční stěny jehlanu
3.cvičení. k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR. 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ),
3.cvičení 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ), k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR Bodem A rovnoběžku: Ještě jednu kolmici. Tři úhly, které je možno rozdělit
Příloha č. 7. ročník 9. 1h 1x za 14 dní. dotace. nepovinný. povinnost
Příloha č. 7 Seminář z matematiky V učebním plánu 2. druhého stupně se zařazuje nepovinný předmět Seminář z matematiky. V tematickém okruhu Čísla a početní operace na prvním stupni, na který navazuje a
Moravské gymnázium Brno s.r.o. Mgr. Věra Jeřábková, Mgr. Marie Chadimová. Matematika, Mnohoúhelníky, pokračování
Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Mgr. Věra Jeřábková, Mgr. Marie Chadimová Tematická oblast Matematika, Mnohoúhelníky, pokračování Ročník 2. Datum
Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz.
7. Shodná zobrazení 6. ročník 7. Shodná zobrazení 7.1. Shodnost geometrických obrazců Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor,
(k 1)x k + 1. pro k 1 a x = 0 pro k = 1.
. Funkce dvou a více proměnných. Úvod. Určete definiční obor funkce a proveďte klasifikaci bodů z R vzhledem k a rozhodněte zda je množina uzavřená či otevřená. Určete a načrtněte vrstevnice grafu funkce
c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly.
9. Úvod do středoškolského studia - rozšiřující učivo 9.. Další znalosti o trojúhelníku 9... Sinova věta a = sin b = sin c sin Příklad : V trojúhelníku BC platí : c = 0 cm, α = 45 0, β = 05 0. Vypočtěte
1) Vypočítej A) 32 B) 44 C) 48 D) 56. 2) Urči číslo, které se skrývá za A ve výpočtu: 8 5 A) 12 B) 13 C) 14 D) 15
Varianta A 4 4 4 4 4 4 4 4 1) Vypočítej A) 32 B) 44 C) 48 D) 56 2) Urči číslo, které se skrývá za A ve výpočtu: 8 5 20 120 A. A) 12 B) 13 C) 14 D) 15 3) Najdi největší a nejmenší trojciferné číslo skládající
Průměty rovinných obrazců a těles
Průměty rovinných obrazců a těles Tato část je podmíněna znalostí základních úloh, principů Mongeova promítání a pravoúhlé axonometrie. Slouží jako pracovní sešit na procvičování. Pracovní list č. 1 Zadání:
2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková
.. Funkce a jejich graf.. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné je taková binární relace z množin R do množin R, že pro každé R eistuje nejvýše jedno R, pro které [, ] f.
1.9.5 Středově souměrné útvary
1.9.5 Středově souměrné útvary Předpoklady: 010904 Př. 1: V obdélníkových rámech jsou nakresleny tři obrázky. Každý je sestaven z jedné přímky a jednoho obdélníku. Jeden z obrázků je středově souměrný.
STEREOMETRIE, OBJEMY A POVRCHY TĚLES
STEREOMETRIE, OBJEMY POVRCHY TĚLES Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia utoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky
1. Kruh, kružnice. Mezi poloměrem a průměrem kružnice platí vztah : d = 2. r. Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r.
Kruh, kružnice, válec 1. Kruh, kružnice 1.1. Základní pojmy Kružnice je množina bodů mající od daného bodu stejnou vzdálenost. Daný bod označujeme jako střed kružnice. Stejnou vzdálenost nazýváme poloměr
Jakýkoliv jiný způsob záznamu odpovědí (např. dva křížky u jedné úlohy) bude považován za nesprávnou odpověď.
MATEMATIKA 5 M5PZD16C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 60
α + β < 180 trojúhelník lze sestrojit 3. ROZBOR 5. KONSTRUKCE
GEOMETRIE KONSTRUKCE TROJÚHELNÍKŮ Knstrukce trjúhelníku zadanéh pdle věty sss SSS strana, strana, strana Př. Sestrjte trjúhelník ABC, je-li dán a = 6 cm, b = 8 cm a c = 7 cm 1. NÁČRT VĚTA sss Dva trjúhelníky
Po etní geometrie. Výpo et délky p epony: c 2 = a 2 + b 2 Výpo et délky odv sny: a 2 = c 2 b 2, b 2 = c 2 a 2
Po etní geometrie Pythagorova v ta Obsah tverce nad p eponou je roven sou tu obsah tverc nad ob ma odv snami. Výpo et délky p epony: c = a + b Výpo et délky odv sny: a = c b, b = c a P íklad 1: Vypo t
Jan Březina. Technical University of Liberec. 17. března 2015
TGH03 - stromy, ukládání grafů Jan Březina Technical University of Liberec 17. března 2015 Kružnice - C n V = {1, 2,..., n} E = {{1, 2}, {2, 3},..., {i, i + 1},..., {n 1, n}, {n, 1}} Cesta - P n V = {1,
Dů kazové úlohy. Jiří Vaníček
Dů kazové úlohy Jiří Vaníček Následující série ú loh je koncipována tak, ž e student nejprve podle předem daného konstrukčního postupu sestrojí konstrukci a v ní podle návodu objeví některý nový poznatek.
5.2.1 Matematika povinný předmět
5.2.1 Matematika povinný předmět Učební plán předmětu 1. ročník 2. ročník 3. ročník 6. ročník 7. ročník 8. ročník 9. ročník 4 4+1 4+1 4+1 4+1 4 4 3+1 4+1 Vzdělávací oblast Matematika a její aplikace v
Výukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3476 Název materiálu: VY_42_INOVACE_181 Vzdělávací oblast: Matematika a její aplikace Vzdělávací
Hra a hry. Václav Vopravil. Teorie kombinatorických her se zabývá abstraktními hrami dvou hráčů. Hra je definována R },
Hra a hry Václav Vopravil Úvod 1 Kombinatorické hry Teorie kombinatorických her se zabývá abstraktními hrami dvou hráčů. Hra je definována pomocí jednodušších her, tj. jako uspořádaná dvojice množin her.
2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 7 M7PZD16C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
Matematika. Charakteristika vyučovacího předmětu. Výchovné a vzdělávací strategie pro rozvíjení klíčových kompetencí žáků
Vzdělávací obor: Matematika a její aplikace Matematika Obsahové, časové a organizační vymezení Charakteristika vyučovacího předmětu 1.-2. ročník 4 hodiny týdně 3.-5. ročník 5 hodin týdně Vzdělávací obsah
Pokusy s kolem na hřídeli (experimenty s výpočty)
Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.1.28/02.0055 Pokusy s kolem na hřídeli (experimenty s výpočty) Označení: EU-Inovace-F-7-08 Předmět: fyzika Cílová skupina: 7. třída
1) Určete ohniskové vzdálenosti čoček, jsou-li jejich optické mohutnosti 2 D, 16 D, - 4 D, - 12 D.
ČOČKY ) Určete ohniskové vzdálenosti čoček, jsou-li jejich optické mohutnosti 2 D, 6 D, - 4 D, - 2 D. φ = 2 D φ 2 = 6 D φ = 4 D φ = 2 D f 4 =? (m) Optická mohutnost je převrácená hodnota ohniskové vzdálenosti
MATEMATIKA. 1 Základní informace k zadání zkoušky
MATEMATIKA PŘIJÍMAČKY LIK 2012 DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů 1 Základní informace k zadání zkoušky Didaktický test obsahuje 15 úloh. Časový limit pro řešení didaktického testu je
3.2.4 Podobnost trojúhelníků II
3..4 odobnost trojúhelníků II ředpoklady: 33 ř. 1: Na obrázku jsou nakresleny podobné trojúhelníky. Zapiš jejich podobnost (aby bylo zřejmé, který vrchol prvního trojúhelníku odpovídá vrcholu druhého trojúhelníku).
M - Příprava na 3. čtvrtletku třídy 1P, 1VK
M - Příprava na 3. čtvrtletku třídy P, VK Souhrnný studijní materiál určený k přípravě na 3. čtvrtletní písemnou práci. Obsahuje učivo ledna až března. VARIACE Tento dokument byl kompletně vytvořen, sestaven
15 s. Analytická geometrie lineárních útvarů
5 s Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý
COPY SPS. Návrh převodovky. Vypracoval Jaroslav Řezníček IV.B 2.KONSTRUKČNÍ CVIČENÍ ZA 4. ROČNÍK
SPS 2.KONSTRUKČNÍ CVIČENÍ ZA 4. ROČNÍK Návrh převodovky Vypracoval Jaroslav Řezníček IV.B 26.listopadu 2001 Kinematika Výpočet převodového poměru (i), krouticích momentů počet zubů a modul P 8kW n n 1
5.1.2 Volné rovnoběžné promítání
5.1.2 Volné rovnoběžné promítání Předpoklady: 5101 Základní stereometrický problém: zabýváme se trojrozměrnými objekty, ale k práci používáme dvojrozměrný papír musíme najít způsob, jak trojrozměrné objekty
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor013 Vypracoval(a),
Grafické sčítání úseček teorie
Grafické sčítání úseček teorie Nezáleží na tom, kterou úsečku přeneseme na polopřímku jako první. Úsečka AD je grafickým součtem úseček AB a CD. Příklad 1 Hana jde ze školy na poštu, z pošty do knihovny.
Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY
Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY INDIVIDUÁLNÍ VÝUKA Matematika METODIKA Soustavy rovnic Mgr. Marie Souchová květen 2011 Tato část učiva následuje po kapitole Rovnice. Je rozdělena do částí
Vyučovací předmět / ročník: Matematika / 5. Učivo
Vzdělávací oblast: Matematika a její aplikace Výstupy žáka Vyučovací předmět / ročník: Matematika / 5. ČÍSLO A POČETNÍ OPERACE Zpracoval: Mgr. Dana Štěpánová orientuje se v posloupnosti přirozených čísel
Počty 1. ročník, 2 hodiny týdně Vzdělávací obsah. Časový plán Září. Téma Učivo Ročníkové výstupy žák podle svých schopností Poznámka
Počty 1. ročník, 2 hodiny týdně Listopad Přípravná část Třídění předmětů - manipulace s předměty - abstrakce (obrázky) Pojmy - všechno nic - všichni nikdo - velký malý - dlouhý krátký - stejně více méně
ŠKOLNÍ VZDĚLÁVACÍ PROGRAM
Vyučovací předmět: Období ročník: Učební texty: Matematika 2. období 4. ročník R. Blažková: Matematika pro 3. ročník ZŠ (3. díl) (Alter) R. Blažková: Matematika pro 4. ročník ZŠ (1. díl) (Alter) J. Jurtová:
Vysoká škola báňská Technická univerzita Ostrava KUŽELOSEČKY, KOLINEACE
Vysoká škola báňská Technická univerzita Ostrava KUŽELOEČKY KOLINECE Deskriptivní geometrie Krista Dudková Radka Hamříková O T R V 0 0 5 OH 1. Kuželosečky 5 1.1. Řezy na kuželové ploše 5 1.. Elipsa 7 odová
Vítězslav Bártl. prosinec 2013
VY_32_INOVACE_VB09_ČaP Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, vzdělávací obor, tematický okruh, téma Anotace Vítězslav
Orientovaná úseka. Vektory. Souadnice vektor
Vektory, operace s vektory Ž3 Orientovaná úseka Mjme dvojici bod A, B (na pímce, v rovin nebo prostoru), které spojíme a vznikne tak úseka. Pokud budeme rozlišovat, zda je spojíme od A k B nebo od B k
POVINNÝ DOMÁCÍ ÚKOL PLANIMETRIE
POVINNÝ DOMÁCÍ ÚKOL PLANIMETRIE DATUM ODEVZDÁNÍ: 4. 1. 2016 DO 7:50 BOJANOVSKÝ (1) V obdélníku ABCD je vzdálenost jeho středu od přímky AB o 3 cm větší než od přímky BC. Obvod obdélníku je 5 cm. Určete
Numerická integrace. 6. listopadu 2012
Numerická integrace Michal Čihák 6. listopadu 2012 Výpočty integrálů v praxi V přednáškách z matematické analýzy jste se seznámili s mnoha metodami výpočtu integrálů. V praxi se ale poměrně často můžeme
Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel.
Výrazy. Rovnice a nerovnice. Výraz je matematický pojem používaný ve školské matematice. Prvním druhem matematických ů jsou konstanty. Konstanty označují právě jedno číslo z množiny reálných čísel. Například
M - Matematika - třída 2ODK celý ročník
M - Matematika - třída ODK celý ročník Obsahuje učivo celého školního roku 006/007. VARIACE Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu
M - Příprava na čtvrtletní písemnou práci
M - Příprava na čtvrtletní písemnou práci Určeno pro třídu 1ODK. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete
2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic
.3.19 Grafické řešení soustav lineárních rovnic a nerovnic Předpoklad: 307, 311 Př. 1: Vřeš soustavu rovnic + =. Pokud se také o grafické řešení. = 5 Tak jednoduchou soustavu už jsme dlouho neměli: + =
Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 02 VYSUNUTÍ PROFILU LINEÁRNÍ A ROTACÍ ]
Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jan Boháček [ÚLOHA 02 VYSUNUTÍ PROFILU LINEÁRNÍ A ROTACÍ ] 1 CÍL KAPITOLY Cílem této kapitoly je naučit se efektivní práci v parametrickém modeláři
IRACIONÁLNÍ ROVNICE. x /() 2 (umocnění obou stran rovnice na druhou) 2x 4 9 /(-4) (ekvivalentní úpravy) Motivace: Teorie: Řešené úlohy:
IRACIONÁNÍ ROVNICE Motivace: V řadě matematických úloh je nutno ovládat práci s odmocninami a rovnicemi, které obsahují neznámou pod odmocninou, mj. při vyjádření neznámé z technických vzorců. Znalosti
Žáci mají k dispozici pracovní list. Formou kolektivní diskuze a výkladu si osvojí grafickou minimalizaci zápisu logické funkce
Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_9_ČT_1.09_ grafická minimalizace Střední odborná škola a Střední odborné učiliště,
Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Volitelný předmět Matematický seminář ročník 8.
Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Volitelný předmět Matematický seminář ročník 8. Výuka matematického semináře bude probíhat jednou týdně v dvouhodinovém bloku.
Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 9.
5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 9. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo M9101 provádí početní operace
Výukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3476 Název materiálu: VY_42_INOVACE_145 Vzdělávací oblast: Matematika a její aplikace Vzdělávací
1. a) Lineární rovnice a nerovnice s absolutní hodnotou. b) Skalární součin vektorů, úhel dvou vektorů, kolmost a rovnoběžnost vektorů.
. a) Lineární rovnice a nerovnice s absolutní hodnotou. b) Skalární součin vektorů, úhel dvou vektorů, kolmost a rovnoběžnost vektorů. A.: Řeš v R : 4 B.: Vypočti velikosti vnitřních úhlů v trojúhelníku
2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu
5.2.3 Kolmost přímek a rovin I
5.2.3 Kolmost římek rovin I ředokldy: 5202 vě římky jsou k soě kolmé rávě tehdy, když jejich odchylk je 90. Nvzájem kolmé mohou ýt i mimoěžky. vě úsečky jsou kolmé, rávě když leží n kolmých římkách. íšeme:
10.1.13 Asymptoty grafu funkce
.. Asmptot grafu funkce Předpoklad:, Asmptot grafu už známe kreslili jsme si je jako přímk, ke kterým se graf funkce přibližuje. Nakreslení asmptot, pak umožňuje přesnější kreslení grafu. Například u hperbol
Název: Osová souměrnost
Název: Osová souměrnost Autor: Mgr. Lukáš Saulich Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: matematika a její aplikace Ročník: 3. (1. ročník vyššího gymnázia)
OVO RVP OVO ŠVP UČIVO
pro tématický charakterizuje a třídí základní rovinné útvary popíše přímku, polopřímku, úsečku přímka, polopřímka, úsečka, kružnice, 5 kruh, trojúhelník, čtyřúhelník, úhel měří délku úsečky vlastními slovy
1.7. Mechanické kmitání
1.7. Mechanické kmitání. 1. Umět vysvětlit princip netlumeného kmitavého pohybu.. Umět srovnat periodický kmitavý pohyb s periodickým pohybem po kružnici. 3. Znát charakteristické veličiny periodického
GEOMETRICKÁ TĚLESA. Mnohostěny
GEOMETRICKÁ TĚLESA Geometrické těleso je prostorový geometrický útvar, který je omezený (ohraničený), tato hranice mu náleží. Jeho povrch tvoří rovinné útvary a také různé složitější plochy. Geometrická
Matematika - Sekunda Matematika sekunda Výchovné a vzdělávací strategie Učivo ŠVP výstupy
- Sekunda Matematika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k učení Kompetence pracovní Učivo
Pokyny k hodnocení úlohy 1 ZADÁNÍ. nebo NEDOSTATEČNÉ ŘEŠENÍ. nebo CHYBNÉ ŘEŠENÍ. nebo CHYBĚJÍCÍ ŘEŠENÍ 0
PZK 9 M9-Z-D-PR_OT_ST M9PZD6CT Pokyny k hodnocení Pokyny k hodnocení úlohy BODY ZADÁNÍ Vypočtěte, kolikrát je rozdíl čísel,4 a,7 (v tomto pořadí) menší než jejich součet. (V záznamovém archu je očekáván
Matematický KLOKAN 2009 www.matematickyklokan.net. kategorie Benjamín
Matematický KLOKAN 2009 www.matematickyklokan.net kategorie Benjamín Úlohy za 3 body 1. Hodnota kterého výrazu je sudé číslo? (A) 200 + 9 (B) 200 9 (C) 200 9 (D) 2 + 0 + 0 + 9 (E) 2 0 + 0 + 9 2. Kolik
Školní vzdělávací program pro základní vzdělávání - VLNKA Učební osnovy / Matematika a její aplikace / M
I. název vzdělávacího oboru: MATEMATIKA (M) II. charakteristika vzdělávacího oboru: a) organizace: Vzdělávací obsah vzdělávacího oboru Matematika je realizován ve všech ročnících základního vzdělávání.
1.2.5 Reálná čísla I. Předpoklady: 010204
.2.5 Reálná čísla I Předpoklady: 00204 Značíme R. Reálná čísla jsou čísla, kterými se vyjadřují délky úseček, čísla jim opačná a 0. Každé reálné číslo je na číselné ose znázorněno právě jedním bodem. Každý
Druhá mocnina. Druhá odmocnina. 2.8.5 Druhá odmocnina. Předpoklady: 020804. V této hodině jsou kalkulačky zakázány.
.8.5 Druhá odmocnina Předpoklady: 0080 V této hodině jsou kalkulačky zakázány. Druhá mocnina nám umožňuje určit z délky strany plochu čtverce. Druhá mocnina 1 1 9 11 81 11 délky stran čtverců obsahy čtverců
Poznámka 1: Každý příklad začneme pro přehlednost do nového souboru tímto krokem:
Mongeovo promítání základní úlohy metrické (skutečná velikost úsečky - sklápění, kolmice k rovině, vzdálenost bodu od roviny, vzdálenost bodu od přímky, rovina kolmá k přímce, otáčení roviny, trojúhelník
Shodná zobrazení Zobrazení Z v rovin shodné zobrazení nep ímou shodnost shodnost p ímou
Shodná zobrazení Zobrazení Z v rovině je předpis, který každému bodu X roviny přiřazuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X jeho obraz; zapisujeme Z: X X. Zobrazení v rovině je shodné
Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu.
Svarové spoje Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu. Vybrané druhy svarů a jejich posouzení dle EN ČSN 1993-1-8. Koutový svar -T-spoj - přeplátovaný
Úvod do studia matematiky I GEOMETRIE I
Úvod do studia matematiky I GEOMETRIE I Milan Hejný, Darina Jirotková, Jana Slezáková Úvod Texty, které předkládáme čtenáři, jsou určeny praktikujícím i budoucím učitelům 1. stupně ZŠ a jsou věnovány geometrii.
Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ mechanismy. Přednáška 8
Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ mechanismy Přednáška 8 Převody s korigovanými ozubenými koly Obsah Převody s korigovanými ozubenými koly Výroba ozubení odvalováním
ŠVP - učební osnovy - Vzdělání pro život - rozšířená výuka matematiky, přírodovědných předmětů a informatiky
1 Učební osnovy 1.1 Matematika a její aplikace Vzdělávací oblast Matematika a její aplikace v základním vzdělávání je založena především na aktivních činnostech, které jsou typické pro práci s matematickými
Kód uchazeče ID:... Varianta: 15
Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2013 Kód uchazeče ID:.................. Varianta: 15 1. V únoru byla zaměstnancům zvýšena mzda o 15 % lednové mzdy. Následně
DUM 09 téma: P edepisování struktury povrchu
DUM 09 téma: P edepisování struktury povrchu ze sady: 03 tematický okruh sady: Kreslení výrobních výkres ze šablony: 04_Technická dokumentace Ur eno pro :1. ro ník vzd lávací obor: 26-41-M/01 Elektrotechnika
mezinárodní pohárovou soutěž mladých hasičů
Sbor dobrovolných hasičů Havířov Město vás zve na mezinárodní pohárovou soutěž mladých hasičů Pořadatel: SDH Havířov Město za finanční podpory Mezinárodního Visegradského fondu, Termín konání: sobota 14.
Průniky rotačních ploch
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Průniky rotačních ploch Vypracoval: Vojtěch Trnka Třída: 8. M Školní rok: 2012/2013 Seminář: Deskriptivní geometrie Prohlašuji, že jsem
Výčtové typy OTSKP-SPK Skupina stav. dílů 9
Výčtové typy OTSKP-SPK Skupina stav. dílů 9 Položka Výčtový typ Hodnoty výčtového typu 911111 OCEL SILNIČ ZÁBRADLÍ NATÍRANÉ M Hmotnost zábradlí do 20kg/m přes 20kg/m do 25kg/m přes 25kg/m do 30kg/m přes
Výčtové typy OTSKP-SPK Skupina stav. dílů 9
Položka Výčtový typ Hodnoty výčtového typu 911111 OCEL SILNIČ ZÁBRADLÍ NATÍRANÉ M Hmotnost zábradlí do 20kg/m přes 20kg/m do 25kg/m přes 25kg/m do 30kg/m přes 30kg/m do 35kg/m přes 35kg/m do 40kg/m přes
Návod na sestavení naháněcí ohrady
Návod na sestavení naháněcí ohrady Obj. č: 3552 ECONOMY 3509 STANDARD 3547 STANDARD+ 3510 STANDARD KOMPLET ECONOMY STANDARD STANDARD+ STANDARD KOMPLET Díly pro základní naháněcí ohradu 3521 1x Posuvné
SBORNÍK PŘÍKLADŮ Z MATEMATIKY
SBORNÍK PŘÍKLADŮ Z MATEMATIKY 1. Výrazy a počítání s nimi... 4 1.1. Mocniny s celým exponentem a s racionálním exponentem... 4 1.2 Počítání s odmocninami... 7 1.3 Úpravy algebraických výrazů... 10 2. Rovnice,
Profilová část maturitní zkoušky 2015/2016
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: MATEMATIKA
Lineární algebra. Vektorové prostory
Lineární algebra Vektorové prostory Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu:
Kótování na strojnických výkresech 1.část
Kótování na strojnických výkresech 1.část Pro čtení výkresů, tj. určení rozměrů nebo polohy předmětu, jsou rozhodující kóty. Z tohoto důvodu je kótování jedna z nejzodpovědnějších prací na technických
( ) ( ) 7.2.2 Sčítání vektorů. Předpoklady: 7201
7.. Sčítání ektorů Předpoklady: 70 Pedagogická poznámka: Stdenti ětšino necítí potřeb postpoat při definici sčítání ektorů (obecně při zaádění jakékoli operace) tak striktně, jak yžadje matematika. Upozorňji
I. kolo kategorie Z6
58. ročník Matematické olympiády I. kolo kategorie Z6 Z6 I 1 Naobrázkuječtvercovásíť,jejížčtvercemajístranudélky1cm.Vsítijezakreslen obrazec vybarvený šedě. Libor má narýsovat přímku, která je rovnoběžná
Výroba ozubených kol. Použití ozubených kol. Převody ozubenými koly a tvary ozubených kol
Výroba ozubených kol Použití ozubených kol Ozubenými koly se přenášejí otáčivé pohyby a kroutící momenty. Přenos je zde nucený, protože zuby a zubní mezery do sebe zabírají. Kola mohou mít vnější nebo