Popis a definice mikrokontroléru Typy architektur v mikroprocesorové technice. von Neumann, Harvardská, CISC, RISC, VLIW,...
|
|
- Ondřej Neduchal
- před 8 lety
- Počet zobrazení:
Transkript
1 Mikrokontroléry Úvod Popis a definice mikrokontroléru Typy architektur v mikroprocesorové technice von Neumann, Harvardská, CISC, RISC, VLIW,... Obecná bloková struktura mikrokontroléru Aritmeticko/logicka jednotka, centralní řídicí jednotka, paměti, vstupně/výstupní obvody 1
2 Úvod Popis a použití mikrokontroléru Typy architektur v mikroprocesorove technice von Neumann, Harvardská, CISC, RISC, VLIW,... Obecná bloková struktura mikrokontroléru Aritmeticko/logicka jednotka, centralní řídicí jednotka, paměti, vstupně/výstupní obvody Popis a použití mikrokontroléru Definice: Mikroprocesor (MPU - Microprocessor Unit) je centrální řídicí jednotka (CPU - Central Processing Unit) realizovaná na samostatném čipu. Doplněním mikroprocesoru o podpůrné obvody, tj. vstupně/vystupní periferie a pamet' (pro program i data) vznikne mikropočítač. 2
3 Popis a použití mikrokontroléru Definice: Mikrokontrolér (MCU - Microcomputer Unit) vznikne sdružením všech částí mikropočítače (řídicí jednotka, paměti RAM, ROM, vstupně/výstupní, čítač/časovač, a jiné periferie) na čipp Trocha historie První mikroprocesor vyvinula firma Intel v roce Dostal označení č 4004, které pocházelo z jeho 4- bitové architektury» 4bitova CPU, 16pinove pouzdro, hodinový signál 740kHz,» Harvardská architektura (tj. oddělená pamět' pro program a data),» 8 bitu instrukce, 4 bity data,» Instrukční sada: 46 instrukcí»původně určen pro kalkulačky. 3
4 Trocha historie První mikrokontrolér vytvořila firma Texas Instruments pod oznacenm TMS1000 v roce1974» 4bitová CPU, 28pinove pouzdro, hodinový signál 400kHz,» Harvardská architektura 32 B RAM a 1kB ROM,» periferie - oscilátor, 4 vstupní a11 výstupních bran, 8bitový paralelní port Historie přehled Intel první mikroprocesor - 4bitový Intel bitový mikroprocesor Intel bitový mikroprocesor, který se stal základem prvních 8bitových osobních počítačů MOS Technology bitový mikroprocesor, montovaný do Apple II, Commodore 64 a Atari Motorola první procesor firmy Motorola AMD nastupuje na trh s řadou Am TI TMS bitový mikroprocesor Zilog Z80-8bitový mikroprocesor, s rozšířenou instrukční sadou Intel 8080, frekvence až 10 MHz Intel bitový mikroprocesor, první z architektury x Intel bitový mikroprocesor s 8bitovou sběrnicí, který byl použit v prvním IBM PC v roce
5 Historie přehled Motorola /16bitový mikroprocesor Zilog Z bitový mikroprocesor IBM bitový experimentální procesor s revoluční RISC architekturou dosahující vynikajícího výkonu Intel bitový mikroprocesor se základní sadou periferií pro emebedded systémy Intel bitový mikroprocesor TMS první DSP firmy Texas Instruments Intel bitový mikroprocesor (měl tranzistorů) Acorn ARM - 32bitový RISC mikroprocesor, z Advanced RISC Machine, původně Acorn RISC Machine, použit i v domácích počítačích Intel bitový mikroprocesor s integrovaným matematickým koprocesorem Sun SPARC - 32bitový RISC mikroprocesor, z Scalable (původně Sun Processor ARChitecture) Historie přehled DEC Alpha - 64bitový RISC mikroprocesor Siemens 80C166-16bitový mikroprocesor pro průmyslové embedded systémy s bohatou sadou periferií Intel Pentium - 32bitový mikroprocesor nové generace (3,3 milionu tranzistorů) Intel Pentium Pro - 32bitový mikroprocesor nové generace pro servery a pracovní stanice (5,5 milionu tranzistorů) Sun UltraSPARC - 64bitový RISC mikroprocesor Intel Pentium II - 32bitový mikroprocesor nové generace s novou sadou instrukcí MMX (7,5 milionu tranzistorů) Sun picojava - mikroprocesor pro zpracování Java bytekódu Intel Celeron - 32bitový mikroprocesor odvozený původně od Intel Pentium II pro nejlevnější PC Intel Pentium III - 32bitový mikroprocesor nové generace s novou sadou instrukcí SIMD (9,5 milionu tranzistorů) 5
6 Historie přehled Intel Pentium 4-32bitový mikroprocesor s řadou technologií orientovaných na dosažení vysoké frekvence Intel Itanium - 64bitový mikroprocesor nové generace pro servery AMD Athlon 64-64bitový mikroprocesor nové generace pro desktopy s instrukční sadou AMD64, zpětně kompatibilní s x Intel Core - 64bitová architektura, na které jsou postaveny procesory Core Duo, Core 2 Duo, Core Solo, Core 2 Quad AMD uvádí novou řadu procesorů Phenom Intel Core i7 - nová řada CPU od Intelu Úvod Popis a definice mikrokontroléru Typy architektur v mikroprocesorové technice von Neumann, Harvardská, CISC, RISC, VLIW,... Obecná bloková struktura mikrokontroléru Aritmeticko/logicka jednotka, centralní řídicí jednotka, paměti, vstupně/výstupní obvody 6
7 Základní struktura ALU - taktovací kmitočet bývá jednotky až stovky MHz, šířka slova procesoru 4 až 64 bitů, operační paměť - paměť typu RAM, velikost od jednotek byte po desítky kb, paměť programu - paměť typu ROM, EPROM, EEPROM nebo flash obsahující program a data, velikost řádově desítky až stovky kb, oscilátor - RC nebo řízený krystalem, vstupně/výstupní rozhraní - takzvané porty. Počítač může mít architekturu typu von Neumann nebo harvardskou. Obecné schéma Mikroprocesoru Datová sběrnice systému Vnitřní datová sběrnice Vyrovnávací registr Aritmeticko - logická jednotka Řídící jednotka Datové registry Adresové registry Přizpůsobovací obvody Řídící signály Synchronizační signály Adresová sběrnice systému 7
8 Dělení mikropočítačů podle architektury Dvě základní koncepce: Von Neumannova Harvardská Tyto dvě koncepce vznikly jako výsledek snažení se Princetonské a Harvardské university navrhnout architekturu, která by se nejvíce hodila pro potřeby americké armády Poznámka: Dělení na Harvardskou a Von Neumannovu architekturu je však při dnešním stupni integrace již poněkud akademické. U moderních architektur se často uživateli adresový prostor jeví navenek jako lineární (Von Neumannovský), zatímco fyzicky jsou paměti k jádru připojeny pomocí několika nezávislých sběrnic (např. jedna sběrnice pro FLASH/ROM (paměť programu), druhá pro uživatelskou vnitřní RAM a zásobník, třetí pro připojení integrovaných paměťově mapovaných periferií, další pro připojení externí RAM). Von Neumannova architektura Popisuje základní bloky systému mikropočítače Základní myšlenka spočívá v použití pouze jedné paměti pro data i program Von Neumannovu architekturu využívají počítače typux86(pc) 8
9 Von Neumannova architektura Paměť ALU Řídící jednotka Vstupně-výstupní obvody Von Neumannova architektura Číslicový počítač se skládá z následujících funkčních jednotek: paměť (vnitřní, operační paměť), řadič, aritmetická a logická jednotka (ALJ), vstupní a výstupní jednotky. 2) Struktura číslicového počítače není závislá na typu řešené úlohy, je univerzální, číslicový počítač se programuje obsahem operační paměti. 3) Instrukce programu i operandy, s nimiž program pracuje, jsou uloženy v téže paměti (operační paměti), jde-li o instrukci či o operand rozpoznává počítač z kontextu. 9
10 Pravidla Program je vykonáván sekvenčně, tzn. tak jak jdou instrukce za sebou Změnu pořadí vykonávání instrukcí lze provést pouze podmíněným či nepodmíněným skokem nebo voláním podprogramu p Přednost v podobě universálnosti vede k neefektivnosti zpracování problému Pravidla Neexistuje princip paralelismu Výhodnější a přehlednější pro tvorbu aplikací Nevýhodné pro optimalizaci výkonu vždy je zatížena jen jedna část Vnitřní architektura je nezávislá na řešení úloze. Veškeré změny jsou řešeny programově tzn. počítač je řízen obsahem paměti. 10
11 Harvardská architektura Chronologicky navazuje na architekturu von Neumnannovu a odstraňuje ň některé její jí nedostatky tk Zásadní rozdíl je v oddělení paměti dat a programu Program nemůže přepsat sám sebe Využití pamětí realizovaných jinými technologiemi (EEPROM, Flash, FRAM, DRAM) Dvě sběrnice (adresová a datová) umožňuje současný přístup k instrukcím i datům Sekvenční vykonávání instrukcí je zachováno Harvardská architektura Paměť programu Paměť dat ALU Řídící jednotka Vstupně-výstupní obvody 11
12 Koncepce oddělené paměti Harvardské architektury Paměť programu je uložen v paměti FLASH, šířka slova 16bitů Paměť dat (RAM) je typu SRAM. 32B zabírají pracovní 8bitové registry, 64 SFR a zbytek do 8kB je určen pro všeobecné použití. Mikrokontroler integruje také 512B paměti EEPROM V čem spočívá činnost mikropočítače? Adresa kódu první instrukce je dána HW ČP. Výběr je vyvolán aktivací RESET! Od tohoto okamžiku procesor (ČP) ví, co má dělat. Činnost ČP spočívá v neustálém opakování dvou pracovních cyklů: - ČTENÍ INSTRUKCE Z OP, -DEKÓDOVÁNÍ A PROVEDENÍ INSTRUKCE. V této činnosti má výhradní postavení registr PROGRAMOVÝ ČÍTAČ (PC) 12
13 Rozdělení CISC/RISC Dělení z pohledu instrukční sady CISC (Complex Instruction Set Computer) RISC (Reduced Instruction Set Computer) VLIW (Very Long Instruction Word) RISC RISC (Reduced Instruction Set Computer) počítač č s redukovanou instrukční sadou Shrnutí typických rysů RISC procesorů: redukovaná sada instrukcí obsahuje hlavně jednoduché instrukce, délka provádění jedné instrukce je vždy jeden cyklus (tj. délka v bitech všech instrukcí je stejná), mikroinstrukce kce jsou hardwarově aro ě implementovány na procesoru, čímž je velmi výrazně zvýšena rychlost jejich provádění, registry jsou pouze víceúčelové (nezáleží, který z nich instrukce využije, což zjednodušuje návrh překladačů), využívají řetězení instrukcí (pipelining). 13
14 CISC CISC (Complex Instruction Set Computer) procesor s velkou sadou instrukcí (řádově stovky) a relativně malým počtem registrů (jejich počet obvykle nepřesahuje 30). Procesory CISC mají různě dlouhé strojové instrukce, jejichž vykonání trvá různě dlouhou dobu. Označení CISC bylo zavedeno jako protiklad až poté, co se prosadily procesory RISC, které mají instrukční sadu naopak maximálně redukovanou. CISC versus RISC široká instrukční sada procesorů CISC usnadňuje jejich programování, protože není některé operace nutné rozepisovat (například násobení) ve strojovém kódu (nebo v jazyce symbolických adres) se dnes programuje jen minimálně. Složitost CISC procesorů vede k problémům při výrobě (velká spotřeba materiálu, větší pravděpodobnost vady, komplikovaný návrh, problémy s vysokými frekvencemi, pipelining, cache atd). Typickými zástupci koncepce CISC jsou procesory rodiny Motorola a procesory postavené na architektuře Intel x86. 14
15 Procesory VLIW Procesory VLIV (Very Long Instruction Word Velmi dlouhé instrukční slovo) umožňují efektivnější vykonávání programu, protože je u nich podporováno hardwarově paralelní zpracování instrukcí Paralelismus je realizován větším počtem funkčních jednotek Podstata paralelního zpracování: během násobení dvou čísel je možné operandy sčítat a z paměti načíst další hodnoty ARM Advanced RISC Machine Je 32bitová mikroprocesorová architektura typu RISC vyvinutá firmou ARM Limited Energeticky úsporné vlastnosti (používány hlavně v mobilním odvětví spotřební elektroniky) První mikroprocesor s architekturou ARM byl navržen firmou ARM Limited v roce Dnes tvoří rodina procesorů ARM 75 % všech 32bitových RISC procesorů ve vestavěných zařízeních, což z ní dělá nejpoužívanější architekturu na světě. 15
16 ARM - charakteristika 32bitová vnitřní architektura 32bitová datová sběrnice s propustností tí 32 MB/s 26bitová adresová sběrnice (dostupný lineární adresní prostor 64 MiB) 25 vnitřních 32bitových registrů přístup do paměti pouze instrukcemi Load/Store částečné překrývání vnitřních registrů nejdelší doba reakce na přerušení 3 milisekundy hodinová frekvence 8 MHz možnost podmíněného vykonání instrukcí průměrná rychlost vykonání instrukcí 3 až 4 MIPS možnost připojení standardních pamětí DRAM jednoduchý a výkonný instrukční soubor Architektura procesoru ARM Procesor ARM obsahuje 44 základních instrukcí s jednotnou šířkou 32 bitů. V jednom taktu jsou vykonány pouze instrukce pracující salu, s registry nebo s přímými operandy. Procesor pracuje ve čtyřech základních režimech: uživatelský režim USR privilegovaný režim supervizora SUP privilegovaný ilego režim přerušení IRQ privilegovaný režim rychlého přerušení FIQ V procesoru je obsaženo 25 částečně se překrývajících 32bitových registrů (15 registrů je univerzálních a zbývajících 10 má speciální funkce), z toho 16 registrů je v každém režimu činnosti programově přístupných. 16
17 Periferie mikrokontrolerů řadič přerušení, časovače, č čítače, watchdog timer, řadič displeje, řadič klávesnice, programovatelné hradlové pole, paralelní porty (až desítky pinů), sériové porty (asynchronní, synchronní) porty komunikačních sběrnic (CAN, Ethernet) A/D převodníky Watchdog timer Watchdog nebo Watchdog timer, zkráceně WDT resetuje systém při jeho zaseknutí (deadlocku). Program (většinou v hlavní smyčce) periodicky signalizuje watchdogu svůj chod. Pokud systém určitý čas nesignalizuje chod (typicky milisekundy až sekundy), pak watchdog způsobí reset systému. Složitější watchdogy mohou navíc ještě zaznamenávat na nevolatilní (nezávislé na napájení tj. ukládání do energeticky nezávislé paměti) médium ladící informace (např. časy kdy došlo k zresetování systému a jaký byl obsah registrů). Watchdog může být realizován pomocí x-bitového čítače Účelem a současně důvodem existence watchdogu je přivést systém prostřednictvím resetu ze zaseknutého stavu zpět k normální funkci. Bez watchdogu by musel být čip resetován manuálně. 17
18 Přerušení Přerušení je způsobeno vnější událostí, která nastává asynchronně vzhledem k běhu HLAVNÍHO PROGRAMU Účelem přerušení je přimět procesor, aby na tuto vnější událost určitým způsobem reagoval. Procesor neumí nic jiného, než postupně vykonávat instrukce programu to je i jeho jedinou možnou reakcí. REAKCÍ procesoru na vnější přerušení je tedy dočasné pozastavení vykonávání instrukcí hlavního programu a spuštění programu jiného obslužného podprogramu přerušení vše probíhá formou volání podprogramu. Reakce procesoru na přerušení Jakou část své činnosti procesor po přijetí žádosti o přerušení dokončí??? Protože následuje programová obsluha přerušení, musí se dokončit instrukce přerušovací vstup je testován před koncem každé z prováděných instrukcí!!! Co by procesor dělal po dokončení instrukce, kdyby nepřišla žádost o přerušení??? 18
19 Co tedy udělá procesor po dokončení instrukce po přerušení??? Předpokládáme jediný přerušovací vstup!!! Varianta 1 bez účasti vnějšího hardware, působí ů pouze HW řadiče!!! Začne se provádět instrukce CALL APPP, kde APPP je vstupní adresa obslužného podprogramu přerušení do STACKU je uchována návratová adresa = adresa následující instrukce hlavního programu. Kromě toho může procesor učinit nějakou akci vedoucí k uchování stavu (registry, příznaky) Co tedy udělá procesor po dokončení instrukce po přerušení??? Předpokládáme jediný přerušovací vstup!!! Varianta 2 súčastí vnějšího hardware!!! MP generuje signál INTA/ (časově odpovídá signálu MEMR/ je to obdoba cyklu FETCH), ale adresová sběrnice je pasivní, INTA/ uvolňuje na datovou sběrnici informaci z vnější logiky. Může to být kód instrukce CALL APPP, kód jakékoliv jiné instrukce, ale většinou to je alespoň část adresy APPP (nebo zkrácené volání RST n). Do STACKU je uchována návratová adresa = adresa následující instrukce hlavního programu. Kromě toho může procesor učinit nějakou akci vedoucí k uchování stavu (registry, příznaky). 19
20 Programové ovládání přerušovacího systému, možnost zákazu přerušení Přerušení lze programově zakázat (instrukce typu DisableInterrupt) aopět povolit (instrukce typu EnableInterrupt) v těch úsecích programu, které musí proběhnout jako celek (např. při sekvenčním řízení). Přerušení je vždy zakázáno hardwarem (nutno napřed programově inicializovat přerušovací systém, přerušení povoluje až uživatelský program): - po RESETU, - po přijetí přerušení. Specifika hladinových a dynamických vstupů žádostí o přerušení (s ohledem na testování 1x během instrukce a na zdroj vstupního signálu). Prioritní přerušovací systém V1 jeden vstup, reaguje jen HW MP nutno řešit softwarově za podpory vnějšího hardware. V2 jeden vstup, reaguje i vnější HW možno řešit vnějším HW například podle priority přerušení je procesoru vnucována příslušná APPP nebo její část. V3 více vstupů, reaguje i vnější HW p g j j řešeno vnitřním HW procesoru, často v kombinaci s vnějším HW. 20
21 Maskování přerušení Individuální maskování jednotlivých (prioritních) úrovní. Možnost programového čtení stavu přerušovacích vstupů ještě před maskou. Nemaskovatelné přerušení nejvyšší priorita, vždy povoleno (ošetření výpadku napájení) speciální instrukce návratu (zachovává informaci o stavu přerušovacího systému před tímto přerušením). Adresování V/V zařízení 1. Adresa je součástí či externím parametrem V/V instrukce. 2. Každý bit adresy vybírá právě ě jedno V/V zařízení í lineární adresace. NEBO 3. Adresa je plně dekódována (n-bitů, výběr jednoho z 2 n zařízení adresace s dekódováním. NEBO 4. Kombinace způsobů 2a
22 Kvaziobousměrný V/V Realizace V/V bran
23 Násobky a užívané předpony V prosinci 1998 proto IEC vytvořila dodatek k normě IEC (v Česku převzatá jako ČSN IEC ), 2) ve kterém zavedla pro počítačové jednotky nový systém označování násobků. V tomto systému bylo pro původní velké kilo = 1024 B navrženo označení kibibyte a značka KiB, zatímco jednotka kilobyte (se značkou kb) označuje 1000 B, tak jak je obvyklé v soustavě SI. Binární násobky Binární násobky Jednotka Značka Velikost v B (byte) Mocnina Kibibyte KiB Mebibyte MiB Gibibyte GiB Tebibyte TiB Pebibyte PiB Exbibyte EiB Zebibyte ZiB Yobibyte YiB
24 Přehled násobných jednotek Násobky a užívané předpony Jednotka Značka B kb KiB MB MiB GB GiB TB TiB Kilobyte kb ~0,9766 Kibibyte KiB ,024 1 Megabyte MB ~976,6 1 ~0,9537 Mebibyte MiB ~1048, ,049 1 Gigabyte GB , ,7 1 ~0,9313 Gibibyte GiB ~1, ~ ~1073, ,074 1 Terabyte TB ~0, ~ , ,3 1 ~0,9095 Tebibyte TiB ~1, ~1, ~1, ~ ~1099, ~1,1 1 24
Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/34.0448
Střední odborná škola elektrotechnická, Centrum odborné přípravy Zvolenovská 537, Hluboká nad Vltavou Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/34.0448 CZ.1.07/1.5.00/34.0448 1 Číslo projektu
PROCESOR. Typy procesorů
PROCESOR Procesor je ústřední výkonnou jednotkou počítače, která čte z paměti instrukce a na jejich základě vykonává program. Primárním úkolem procesoru je řídit činnost ostatních částí počítače včetně
Historie výpočetní techniky Vývoj počítačů 4. generace. 4. generace mikroprocesor
4. generace mikroprocesor V roce 1971 se podařilo dosáhnout takové hustoty integrace (množství součástek v jednom obvodu), která umožňovala postavení celého mozku počítače z jednoho obvodu tento obvod
Technické prostředky počítačové techniky
Počítač - stroj, který podle předem připravených instrukcí zpracovává data Základní části: centrální procesorová jednotka (schopná řídit se posloupností instrukcí a ovládat další části počítače) zařízení
Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC
Informatika 2 Technické prostředky počítačové techniky - 2 Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Spojení: e-mail: jan.skrbek@tul.cz 16 10 17 45 tel.: 48 535 2442 Obsah:
Vítězslav Bártl. březen 2013
VY_32_INOVACE_VB07_K Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, vzdělávací obor, tematický okruh, téma Anotace Vítězslav
HISTORIE VÝPOČETNÍ TECHNIKY. Od abakusu k PC
HISTORIE VÝPOČETNÍ TECHNIKY Od abakusu k PC Předchůdci počítačů abakus - nejstarší předek počítačů, počítací pomůcka založená na principu posuvných korálků. V Číně byl abakus používán od 13. století, v
Procesor. Procesor FPU ALU. Řadič mikrokód
Procesor Procesor Integrovaný obvod zajišťující funkce CPU Tvoří srdce a mozek celého počítače a do značné míry ovlivňuje výkon celého počítače (čím rychlejší procesor, tím rychlejší počítač) Provádí jednotlivé
2.8 Procesory. Střední průmyslová škola strojnická Vsetín. Ing. Martin Baričák. Název šablony Název DUMu. Předmět Druh učebního materiálu
Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Ověřeno ve výuce dne, třída Střední průmyslová škola strojnická Vsetín
Pohled do nitra mikroprocesoru Josef Horálek
Pohled do nitra mikroprocesoru Josef Horálek Z čeho vycházíme = Vycházíme z Von Neumannovy architektury = Celý počítač se tak skládá z pěti koncepčních bloků: = Operační paměť = Programový řadič = Aritmeticko-logická
ZÁKLADY INFORMATIKY 14ZINF. Číselné soustavy
ZÁKLADY INFORMATIKY 14ZINF Číselné soustavy Data v číslicových počítačích I. nejčastěji počítače pracují s údaji vyjádřenými ve dvojkové soustavě, tedy pomocí číslic 0 a 1 důvod dvojkové soustavy byl ten,
Architektura počítače
Architektura počítače Výpočetní systém HIERARCHICKÁ STRUKTURA Úroveň aplikačních programů Úroveň obecných funkčních programů Úroveň vyšších programovacích jazyků a prostředí Úroveň základních programovacích
Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC
Informační systémy 2 Obsah: Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC ROM RAM Paměti typu CACHE IS2-4 1 Dnešní info: Informační systémy 2 03 Informační systémy
Architektury CISC a RISC, uplatnění v personálních počítačích
Architektury CISC a RISC, uplatnění v personálních počítačích 1 Cíl přednášky Vysvětlit, jak pracují architektury CISC a RISC, upozornit na rozdíly. Zdůraznit, jak se typické rysy obou typů architektur
Další aspekty architektur CISC a RISC Aktuálnost obsahu registru
Cíl přednášky: Vysvětlit principy práce s registry v architekturách RISC a CISC, upozornit na rozdíly. Vysvětlit možnosti využívání sad registrů. Zabývat se principy využívanými v procesorech Intel. Zabývat
Architektura AMD K10. Kozelský Martin, koz230. Datum: 11.11.2008
Architektura AMD K10 Vytvořil: Šuráb Jakub, sur072 Kozelský Martin, koz230 Datum: 11.11.2008 Obsah I. Připomenutí architektury AMD K8 IMC Cool'n'Quiet II. Architektura AMD K10 Struktura cache IMC, Hypertransport
Čítače e a časovače. v MCU. Čítače a časovače MCU. Obsah
Čítače e a časovače v MCU K.D. - přednášky 1 Obsah Režim čítač Režim časovač Rozšíření funkce čítače/časovače Automatické plnění Funkce compare Funkce capture Funkce PWM Dekódování signálu inkrementálních
Úvod do architektur personálních počítačů
Úvod do architektur personálních počítačů 1 Cíl přednášky Popsat principy proudového zpracování informace. Popsat principy zřetězeného zpracování instrukcí. Zabývat se způsoby uplatnění tohoto principu
Principy překladačů. Architektury procesorů. Jakub Yaghob
Principy překladačů Architektury procesorů Jakub Yaghob Architektury procesorů Architektura procesoru představuje cílový jazyk Platí pro překladače do kódu konkrétního procesoru Ovlivňuje celý backend
Sekvenční logické obvody
Sekvenční logické obvody 7.přednáška Sekvenční obvod Pokud hodnoty výstupů logického obvodu závisí nejen na okamžitých hodnotách vstupů, ale i na vnitřním stavu obvodu, logický obvod se nazývá sekvenční.
Identifikátor materiálu: ICT-1-06
Identifikátor materiálu: ICT-1-06 Předmět Informační a komunikační technologie Téma materiálu Základní pojmy Autor Ing. Bohuslav Nepovím Anotace Student si procvičí / osvojí základní pojmy jako hardware,
Architektura procesoru ARM
Architektura procesoru ARM Bc. Jan Grygerek GRY095 Obsah ARM...3 Historie...3 Charakteristika procesoru ARM...4 Architektura procesoru ARM...5 Specifikace procesoru...6 Instrukční soubor procesoru...6
Základní deska (1) Parametry procesoru (2) Parametry procesoru (1) Označována také jako mainboard, motherboard
Základní deska (1) Označována také jako mainboard, motherboard Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje: procesor (mikroprocesor) patici pro numerický koprocesor (resp. osazený
Petr Havíček HAV319. Rodina procesorů Intel Nehalem (historie a vývoj)
Petr Havíček HAV319 Rodina procesorů Intel Nehalem (historie a vývoj) Úvod Nehalem je označení pro novou mikroarchitekturu procesorů od společnosti Intel. Je následníkem architektury Intel Core. První
Struktura a architektura počítačů (BI-SAP) 12
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 12 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
Charakteristika dalších verzí procesorů v PC
Charakteristika dalších verzí procesorů v PC 1 Cíl přednášky Poukázat na principy tvorby architektur nových verzí personálních počítačů. Prezentovat aktuální pojmy. 2 Úvod Zvyšování výkonu cestou paralelizace
Historie počítačů v kostce. Marek Kocián, KOC322 Daniel Kapča, KAP077
Historie počítačů v kostce Marek Kocián, KOC322 Daniel Kapča, KAP077 Evoluce počítačů Pravěk Středověk Velká průmyslová revoluce Novověk Budoucnost Počítačový pravěk - Abakus Vznik už v Antice Základní
Činnost CPU. IMTEE Přednáška č. 2. Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus
Činnost CPU Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus Hodinový cyklus CPU je synchronní obvod nutné hodiny (f CLK ) Instrukční cyklus IF = doba potřebná
Úvod do informačních technologií
Úvod do informačních technologií Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Úvod Jan Outrata (Univerzita Palackého v Olomouci) Úvod do informačních technologií Olomouc, září
Pojem architektura je převzat z jiného oboru lidské činnosti, než počítače.
1 Architektura počítačů Pojem architektura je převzat z jiného oboru lidské činnosti, než počítače. Neurčuje jednoznačné definice, schémata či principy. Hovoří o tom, že počítač se skládá z měnších částí
SWI120 ZS 2010/2011. hookey.com/digital/
Principy cpypočítačů počítačů a operačních systémů Číslicové systémy Literatura http://www.play hookey.com/digital/ Digitální počítač Dnes obvykle binární elektronický 2 úrovně napětí, 2 logické hodnoty
Sběrnicová struktura PC Interní počítačové paměti PC
Informační systémy 2 Obsah: Sběrnicová struktura PC Interní počítačové paměti PC ROM RAM Paměti typu CACHE IS2-4 1 Dnešní info: Informační systémy 2 04 Informační systémy 2 Zemřel otec e-mailu 2 Aplikace
Vícejádrový procesor. Dvě nebo více nezávislých jader Pro plné využití. podporovat multihreading
Vývoj Jan Smuda, Petr Zajíc Procesor ALU (aritmeticko logická jednotka) Registry Řadič Jednotky pro práci s plovoucí čárkou Cache Vývoj procesorů Predikce skoku Plánování instrukcí Naráží na fyzická omezení
Popis a funkce klávesnice Gama originální anglický manuál je nedílnou součástí tohoto českého překladu
Popis a funkce klávesnice Gama originální anglický manuál je nedílnou součástí tohoto českého překladu Klávesnice Gama používá nejnovější mikroprocesorovou technologii k otevírání dveří, ovládání zabezpečovacích
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. Fakulta elektrotechnická POČÍTAČE PRO ŘÍZENÍ. Doc. Ing. Jiří Bayer, CSc Ing. Pavel Píša Ing.
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická POČÍTAČE PRO ŘÍZENÍ Doc. Ing. Jiří Bayer, CSc Ing. Pavel Píša Ing. Zdeněk Šebek 2004 sylaby a slajdy přednášek 1 POČÍTAČE PRO ŘÍZENÍ Program
RISC a CISC architektura
RISC a CISC architektura = dva rozdílné přístupy ke konstrukci CPU CISC (Complex Instruction Set Computer) vývojově starší přístup: pomoci konstrukci překladače z VPP co nejpodobnějšími instrukcemi s příkazy
PROCESORY. Typy procesorů
PROCESORY Procesor (CPU Central Processing Unit) je ústřední výkonnou jednotkou počítače, která čte z paměti instrukce a na jejich základě vykonává program. Primárním úkolem procesoru je řídit činnost
Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC
Informatika 2 Technické prostředky počítačové techniky - 2 Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Spojení: e-mail: jan.skrbek@tul.cz 16 10 17 45 tel.: 48 535 2442 Obsah:
Intel 80486 (2) Intel 80486 (1) Intel 80486 (3) Intel 80486 (4) Intel 80486 (6) Intel 80486 (5) Nezřetězené zpracování instrukcí:
Intel 80486 (1) Vyroben v roce 1989 Prodáván pod oficiálním názvem 80486DX Plně 32bitový procesor Na svém čipu má integrován: - zmodernizovaný procesor 80386 - numerický koprocesor 80387 - L1 (interní)
ÚVOD DO OPERAČNÍCH SYSTÉMŮ. Správa paměti. Přímý přístup k fyzické paměti, abstrakce: adresový prostor, virtualizace, segmentace
ÚVOD DO OPERAČNÍCH SYSTÉMŮ Správa paměti Přímý přístup k fyzické paměti, abstrakce: adresový prostor, virtualizace, segmentace České vysoké učení technické Fakulta elektrotechnická Y38ÚOS Úvod do operačních
Kubatova 19.4.2007 Y36SAP - 13. procesor - control unit obvodový a mikroprogramový řadič RISC. 19.4.2007 Y36SAP-control unit 1
Y36SAP - 13 procesor - control unit obvodový a mikroprogramový řadič RISC 19.4.2007 Y36SAP-control unit 1 Von Neumannova architektura (UPS1) Instrukce a data jsou uloženy v téže paměti. Paměť je organizována
ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ
Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: MEIII - 2.3.5.1 Historie Windows stanic Obor: Mechanik Elektronik Ročník: 3. Zpracoval(a): Bc. Martin Fojtík Střední průmyslová škola Uherský Brod, 2010 Projekt
Identifikátor materiálu: ICT-1-12
Identifikátor materiálu: ICT-1-12 Předmět Informační a komunikační technologie Téma materiálu Rozhraní vnějších pamětí počítače Autor Ing. Bohuslav Nepovím Anotace Student si procvičí / osvojí rozhraní
Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC
Informatika 2 Technické prostředky počítačové techniky - 2 Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Spojení: e-mail: jan.skrbek@tul.cz 16 10 17 45 tel.: 48 535 2442 Obsah:
Operační systém teoreticky
Přednášky o výpočetní technice Operační systém teoreticky Adam Dominec 2010 Rozvržení Operační systém Uživatelské účty Správa RAM Plánování procesů Knihovny Okna Správa zařízení Rozvržení Operační systém
Intel 80286. Procesor a jeho konstrukce. Vývojové typy, činnost procesoru
Procesor a jeho konstrukce. Vývojové typy, činnost procesoru První obvod nazvaný mikroprocesor uvedla na trh firma Intel v roce 1970. Šlo o 4bitový procesor Intel 4004. V roce 1972 byl MCS8 prvním 8bitovým
Miroslav Tichý, tic136
Miroslav Tichý, tic136 32bitová mikroprocesorová architektura typu RISC(Reduced Instruction Set Computer) mobilním odvětví - smartphony, PDA, přenosné herní konzole, kalkulačky apod. Důvod: nízké vyzařované
Základy informatiky. 2. Přednáška HW. Lenka Carr Motyčková. February 22, 2011 Základy informatiky 2
Základy informatiky 2. Přednáška HW Lenka Carr Motyčková February 22, 2011 Základy informatiky 1 February 22, 2011 Základy informatiky 2 February 22, 2011 Základy informatiky 3 February 22, 2011 Základy
PAVIRO Zesilovač PVA-2P500
PAVIRO Zesilovač PVA-2P500 1 PAVIRO PAVIRO zesilovač PVA-2P500. 2 Základní popis PVA-2P500 je 19 zařízení s velikostí 2HU 2-kanálový třídy D zesilovač s galvanicky oddělenými výstupy pro reproduktory (100V
Základní typy procesorů, principy zřetězeného zpracování, plnění fronty instrukcí.
Radek Nakoukal NAK010 Základní typy procesorů, principy zřetězeného zpracování, plnění fronty instrukcí. Zdroj: http://radovan.bloger.cz/risc---cisc-procesory Základní typy procesorů V dnešní době se dělí
HW počítače co se nalézá uvnitř počítačové skříně
ZVT HW počítače co se nalézá uvnitř počítačové skříně HW vybavení PC Hardware Vnitřní (uvnitř počítačové skříně) Vnější ( ) Základní HW základní jednotka + zobrazovací zařízení + klávesnice + (myš) Vnější
Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/34.0448
Střední odborná škola elektrotechnická, Centrum odborné přípravy Zvolenovská 537, Hluboká nad Vltavou Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/34.0448 CZ.1.07/1.5.00/34.0448 1 Číslo projektu
6. Procesory jiných firem... 1
6. Procesory jiných firem. Obsah 6. Procesory jiných firem.... 1 6.1. Acron RISC Machine (ARM)... 1 6.1.1. Charakteristika procesoru ARM... 2 6.1.2. Architektura procesoru ARM... 3 6.1.3. Specifika procesoru
CHARAKTERISTIKY MODELŮ PC
CHARAKTERISTIKY MODELŮ PC Historie: červenec 1980 skupina 12 pracovníků firmy IBM byla pověřena vývojem osobního počítače 12. srpna 1981 byl počítač veřejně prezentován do konce r. 1983 400 000 prodaných
FREESCALE KOMUNIKAČNÍ PROCESORY
FREESCALE KOMUNIKAČNÍ PROCESORY 1 Trocha historie: Freescale Semiconductor, Inc. byla založena v roce 2004 v Austinu v Texasu jako samostatná společnost, jelikož po více jak 50 byla součástí Motoroly.
Cílem kapitoly je seznámit studenta s pamětmi. Jejich minulostí, současností a hlavnímu parametry.
Paměti Cílem kapitoly je seznámit studenta s pamětmi. Jejich minulostí, současností a hlavnímu parametry. Klíčové pojmy: paměť, RAM, rozdělení pamětí, ROM, vnitřní paměť, vnější paměť. Úvod Operační paměť
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER SYSTEMS NÁVRH PROCESORU
ORGANIZAČNÍ A VÝPOČETNÍ TECHNIKA
Střední škola, Havířov Šumbark, Sýkorova 1/613, příspěvková organizace ORGANIZAČNÍ A VÝPOČETNÍ TECHNIKA PROCESORY Ing. Bouchala Petr 2010 Vytištěno pro vnitřní potřebu školy PROCESORY 1.Úvod základní pojmy
Architektura počítačů
Architektura počítačů Studijní materiál pro předmět Architektury počítačů Ing. Petr Olivka katedra informatiky FEI VŠB-TU Ostrava email: petr.olivka@vsb.cz Ostrava, 2010 1 1 Architektura počítačů Pojem
Architekura mikroprocesoru AVR ATMega ( Pokročilé architektury počítačů )
Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Architekura mikroprocesoru AVR ATMega ( Pokročilé architektury počítačů ) Führer Ondřej, FUH002 1. AVR procesory obecně
Pokročilé architektury počítačů
Pokročilé architektury počítačů referát Intel Core 2 Quad Martin Samek SAM094 Abstrakt Text se bude zabývat procesorem Core 2 Quad firmy Intel. Text bude rozdělen do dvou hlavních částí, kde první část
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
Post-Processingové zpracování V módu post-processingu je možné s tímto přístrojem docílit až centimetrovou přesnost z běžné 0,5m.
Výjimečná EVEREST technologie Aplikovaná EVEREST technologie pro dobrou ochranu vícecestného šíření GNSS signálu a pro spolehlivé a přesné řešení. To je důležité pro kvalitní měření s minimální chybou.
Architektura Intel Atom
Architektura Intel Atom Štěpán Sojka 5. prosince 2008 1 Úvod Hlavní rysem Atomu je podpora platformy x86, která umožňuje spouštět a běžně používat řadu let vyvíjené aplikace, na které jsou uživatelé zvyklí
EWM 1000 Všeobecné informace
Elektronicky řízené pračky EWM 1000 Všeobecné informace 2002 1 TSE-N Hlavní téma 2002 2 TSE-N Řídící elektronika EWM 1000 2002 3 TSE-N Výrobní závody pro pračky 2002 4 TSE-N Úvod EWM 3000 řídící elektronika
SOU Valašské Klobouky. VY_32_INOVACE_01_8 IKT Procesory, Intel, AMD, Architektura x86-64, AMR. Mgr. Radomír Soural
SOU Valašské Klobouky VY_32_INOVACE_01_8 IKT Procesory, Intel, AMD, Architektura x86-64, AMR Mgr. Radomír Soural Zkvalitnění výuky prostřednictvím ICT Název a číslo projektu CZ.1.07/1.5.00/34.0459 Název
Paměti EEPROM (1) Paměti EEPROM (2) Paměti Flash (1) Paměti EEPROM (3) Paměti Flash (2) Paměti Flash (3)
Paměti EEPROM (1) EEPROM Electrically EPROM Mají podobné chování jako paměti EPROM, tj. jedná se o statické, energeticky nezávislé paměti, které je možné naprogramovat a později z nich informace vymazat
V 70. letech výzkumy četnosti výskytu instrukcí ukázaly, že programátoři a
1 Počítače CISC a RISC V dnešní době se ustálilo dělení počítačů do dvou základních kategorií podle typu použitého procesoru: CISC - počítač se složitým souborem instrukcí (Complex Instruction Set Computer)
Úvod SISD. Sekvenční výpočty SIMD MIMD
Úvod SISD Single instruction single data stream Sekvenční výpočty MISD 1. Přednáška Historie Multiple instruction single data stream SIMD Single instruction multiple data stream MIMD Multiple instruction
VÝUKOVÝ MATERIÁL. 3. ročník učebního oboru Elektrikář Přílohy. bez příloh. Identifikační údaje školy
VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Autor Tematická oblast Číslo a název materiálu Anotace Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková
Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky. referát do předmětu: Pokročilé architektury počítačů.
Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky referát do předmětu: Pokročilé architektury počítačů na téma: Intel Atom Jan Bajer; baj102 Úvod Během posledních let
Převodník DL232. Návod pro instalaci. Docházkový systém ACS-line. popis DL232.doc - strana 1 (celkem 5) Copyright 2013 ESTELAR
Převodník DL232 Docházkový systém ACS-line Návod pro instalaci popis DL232.doc - strana 1 (celkem 5) Popis funkce Modul DL232 slouží jako převodník datové sběrnice systému ACS-line (RS485) na signály normovaného
Hardware ZÁKLADNÍ JEDNOTKA
Hardware ZÁKLADNÍ JEDNOTKA RNDr. Jan Preclík, Ph.D. Ing. Dalibor Vích Jiráskovo gymnázium Náchod Skříň počítače case druhy Desktop Midi tower Middle tower Big tower Hardware - základní jednotka 2 Základní
Jedna z nejdůležitějších součástek počítače = mozek počítače, bez něhož není počítač schopen vykonávat žádné operace.
Procesor Jedna z nejdůležitějších součástek počítače = mozek počítače, bez něhož není počítač schopen vykonávat žádné operace. Procesor v počítači plní funkci centrální jednotky (CPU - Central Processing
Procesory. Autor: Kulhánek Zdeněk
Procesory Autor: Kulhánek Zdeněk Škola: Hotelová škola, Obchodní akademie a Střední průmyslová škola Teplice, Benešovo náměstí 1, příspěvková organizace Kód: VY_32_INOVACE_ICT_825 1.11.2012 1 (CPU Central
Digitální obvody. Doc. Ing. Lukáš Fujcik, Ph.D.
Digitální obvody Doc. Ing. Lukáš Fujcik, Ph.D. Synchronní 3-bitový čítač s KO D, asyn. RST a výstupem MAX Vlastnosti: ) Čítač inkrementuje svůj výstup o 2) Změna výstupu nastává vždy při změně náběžné
1 ÚVOD DRUHY MIKROPROCESORŮ PRVNÍ ČIPY ROZDĚLENÍ CPU... 7
1 ÚVOD... 2 2 DRUHY MIKROPROCESORŮ... 3 2.1 MOOREŮV ZÁKON... 3 3 PRVNÍ ČIPY... 4 3.1 TEXAS INSTRUMENT... 4 3.2 JEDNOČIPOVÝ POČÍTAČ... 5 3.3 VÝZNAMNÉ 8BITOVÉ PROCESORY... 5 4 ROZDĚLENÍ CPU... 7 4.1 PODLE
ŘÍZENÍ FYZIKÁLNÍHO PROCESU POČÍTAČEM
VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE FAKULTA CHEMICKO-INŽENÝRSKÁ Ústav počítačové a řídicí techniky MODULÁRNÍ LABORATOŘE ŘÍZENÍ FYZIKÁLNÍHO PROCESU POČÍTAČEM Programování systému PCT40 v LabVIEW
Pingpongový míček. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií
Petr Školník, Michal Menkina TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.7/../7.47, který je spolufinancován
Převodníky analogových a číslicových signálů
Převodníky analogových a číslicových signálů Převodníky umožňující transformaci číslicově vyjádřené informace na analogové napětí a naopak zaujímají v řídícím systému klíčové postavení. Značná část měřených
Hardware = technické (hmatatelné, materiální) vybavení počítače Rozdělení dílů (komponent) dle umístění: vně skříně počítače)
Mgr. Jan Libich Hardware = technické (hmatatelné, materiální) vybavení počítače Rozdělení dílů (komponent) dle umístění: 1. interní (uvnitř skříně počítače) 2. externí (vně skříně počítače) 3. interně-externí
Parkovací automat. Identifikace systému. Popis objektu
Parkovací automat Identifikace systému Popis objektu Pohled: Systém analyzujeme z funkčního hlediska, tedy technické interakce mezi jednotlivými (funkčními) subsystémy umístěnými v lokalitě vjezdu na automatizované
Mikrokontroléry. Doplňující text pro POS K. D. 2001
Mikrokontroléry Doplňující text pro POS K. D. 2001 Úvod Mikrokontroléry, jinak též označované jako jednočipové mikropočítače, obsahují v jediném pouzdře všechny podstatné části mikropočítače: Řadič a aritmetickou
Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/34.0448
Střední odborná škola elektrotechnická, Centrum odborné přípravy Zvolenovská 537, Hluboká nad Vltavou Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/34.0448 CZ.1.07/1.5.00/34.0448 1 Číslo projektu
Klasifikace počítačů a technologické trendy Modifikace von Neumanova schématu pro PC
Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Obsah: Historie počítačů Počítačové generace Spojení: e-mail: jan.skrbek@tul.cz 16 10 17 45 tel.: 48 535 2442 Klasifikace počítačů
Pohled do nitra mikroprocesoru
Pohled do nitra mikroprocesoru Obsah 1. Pohled do nitra mikroprocesoru 2. Architektury mikroprocesorů 3. Organizace cvičného mikroprocesoru 4. Registry v mikroprocesoru 5. Aritmeticko-logická jednotka
APSLAN. Komunikační převodník APS mini Plus <-> Ethernet nebo WIEGAND -> Ethernet. Uživatelský manuál
APSLAN Komunikační převodník APS mini Plus Ethernet nebo WIEGAND -> Ethernet Uživatelský manuál 2004 2014, TECHFASS s.r.o., Věštínská 1611/19, 153 00 Praha 5, www.techfass.cz, techfass@techfass.cz
Úvod. Předpokládané znalosti. Literatura. Pojmy. IMTEE Přednáška č. 1
Úvod Předpokládané znalosti Číslicová technika Základy elektroniky Programování ve VPJ (v C) Pasivně angličtina Literatura Záznamy přednášek a Vaše poznámky Firemní literatura a datasheety výrobců součástek.
Procesory, mikroprocesory, procesory na FPGA. 30.1.2013 O. Novák, CIE 11 1
Procesory, mikroprocesory, procesory na FPGA 30.1.2013 O. Novák, CIE 11 1 Od sekvenčních automatů k mikroprocesorům 30.1.2013 O. Novák, CIE 11 2 30.1.2013 O. Novák, CIE 11 3 Architektura počítačů Von Neumannovská,
Cílem kapitoly je seznámit studenta s pamětmi. Jejich minulostí, současností, budoucností a hlavními parametry.
Paměti Cílem kapitoly je seznámit studenta s pamětmi. Jejich minulostí, současností, budoucností a hlavními parametry. Klíčové pojmy: paměť, RAM, rozdělení pamětí, ROM, vnitřní paměť, vnější paměť. Úvod
Základní pojmy a historie výpočetní techniky
Základní pojmy a historie výpočetní techniky Vaše jméno 2009 Základní pojmy a historie výpočetní techniky...1 Základní pojmy výpočetní techniky...2 Historický vývoj počítačů:...2 PRVOHORY...2 DRUHOHORY...2
Architektura počítačů
Architektura počítačů Historie První počítače v dnešním slova smyslu se začaly objevovat v průběhu 2. světové války a těsně po ní. Největší vliv na utváření představ, jak by počítače měly být konstruovány,
Procesor. Hardware - komponenty počítačů Procesory
Procesor Jedna z nejdůležitějších součástek počítače = mozek počítače, bez něhož není počítač schopen vykonávat žádné operace. Procesor v počítači plní funkci centrální jednotky (CPU - Central Processing
ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14
ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 14 0:40 1.3. Vliv hardware počítače na programování Vliv
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana Kubcová Název
éra elektrického proudu a počítačů 3. generace
3. generace Znaky 3. generace tranzistory vydávaly teplo - poškozování dalších součástek uvnitř počítače vynález integrovaného obvodu (IO) zvýšení rychlosti, zmenšení rozměrů modely relativně malých osobních
Výstavba PC. Vývoj trhu osobních počítačů
Výstavba PC Vývoj trhu osobních počítačů Osobní počítač? Sálový počítač (Mainframe) IBM System/370 model 168 (1972) Minipočítač DEC PDP-11/70 (1975) Od 60. let počítač byl buď velký sálový nebo mini, stroj,
GIS HZS ČR pro ORP a přednostní připojení k veřejné komunikační síti
GIS HZS ČR pro ORP a přednostní připojení k veřejné komunikační síti plk. Ing Jan Brothánek jan.brothanek@grh.izscr.cz MV GŘ HZS ČR Obsah Co je to GIS? Historie GIS HZS ČR Segmentace GIS HZS ČR Tenký mapový