Program PID regulátoru mikropájky
|
|
- Michal Vacek
- před 8 lety
- Počet zobrazení:
Transkript
1 Program PID regulátoru mikropájky Publikované: , Kategória: Mikroprocesory Jedním z cílů vlastní konstrukce pájecí stanice bylo, naučit se naprogramovat PID regulátor teploty. Proporcionální, integrační i derivační složka regulátoru je realizována programem v procesoru ATmega8. Do regulátoru vstupuje regulační odchylka, ta je vypočtena jako rozdíl požadované a naměřené teploty na termočlánku pájecího pera. Vystupuje akční veličina, tou je střída PWM signálu, kterým je řízeno napájení topné těleso pájky Solomon 24V/48W. Při programování a měření jsem se seznámil s fyzikálními vlastnostmi řízené soustavy: topné těleso, poblíž uložený termočlánek a kovové pájecí pero s relativně velkou teplotní setrvačností. Zapojení pájecí stanice je převzaté ze stránek Jenda elektro, nebo podobné zapojení na PaJa. Místo stabilizátoru 7805 je osazen step-down měnič s MC34063, protože jsem chtěl vyzkoušet, jak moc bude spínaný zdroj rušit chod měření. Výsledek: používaná hodnota napětí z převodníku musí být průměrována alespoň z pěti naměřených hodnot, aby se dalo využít 12-ti bitů. Jako AD převodník jsem použil LTC1286, protože byl zrovna v šuplíku. Podrobným popisem zapojení se zabývali mí předchůdci, já se ve svém článku zaměřím na programování stanice, speciálně na regulátor teploty. Na úvod je zapotřebí říct, že řídit výkon pájecího pera PID regulací a PWM signálem je zbytečný přepych, stačí obyčejný termostat. I když při použití termostatu bude teplota naměřená termočlánkem uvnitř pera kmitat v rozsahu 3 4 K, teplota na hrotu se nezmění víc, než o stupeň. Je to proto, že termočlánek je někde blízko topného tělesa, které je obaleno spoustou kovu. Ten kmitání teploty stabilizuje. Termostat ve srovnání s PWM regulací navíc nevyzařuje spoustu rušivých kmitočtů, které můžou vadit při oživování pájeného obvodu. Hrál jsem si s tím hlavně proto, abych se na jednoduché aplikaci seznámil s programováním PID regulátoru.
2 Návrh programu Po zapnutí přístroje program nastaví registry I/O portů a inicializuje proměnné. Nastaví přerušení INT1, které je použito pro snímání údajů z rotačního kodéru. Nastaví časovač T1, který je v režimu PWM. Kanál A ovládá tranzistor BUZ11 a tím výkon pájky, kanál B jsem dodatečně použil k ovládání piezoměniče. Potom jsou z paměti EEPROM procesoru načteny proměnné, jejichž hodnotu lze měnit v MENU programu. Nakonec je aktivován displej. V hlavní smyčce programu je na displej vypisována aktuální teplota pájky, požadovaná teplota pájky a aktuální výkon PWM. Na konci smyčky je zavolána funkce, která vyhodnocuje stav tlačítka rotačního kodéru. Pokud je stisknuto, bude možné v programu MENU_Global() nastavit jednotlivé proměnné, používané v programu.
3 while(1) { LCD_Position( 0, 0 ); // prvni radek LCD_WriteCString( "Tsold = " ); LCD_PrTemp( TempSolder ); // teplota telesa // LCD_PrIntDec( IntegralRozdil ); LCD_WriteCString( " " ); LCD_Position( 1, 0 ); LCD_PrTemp( TempSet ); // nastavena teplota LCD_PrPwm( SolderPWM / 8 ); // aktualni vykon v desetinach procenta _delay_ms( 100 ); if (ROT_Key() > 2) MENU_Global(); // ceka na stisk rotacniho koderu } Měření napětí z AD převodníku, výpočet teploty a program PID regulátoru, který nastavuje PWM kanál je součástí programu
4 přerušení T1. Proměnná TempSet teplota, kterou se snaží regulátor udržet na pájecím peru, je na začátku nastavena na hodnotu převzanou z EEPROM. Potom je možné ji měnit prostřednictvím rotačního kodéru a na něj napojeného programu přerušení INT1. Měření napětí na termočlánku mikropájky Napětí na svorkách termočlánku se pohybuje v rozmezí 0 18mV pro teploty od C. Toto napětí je operačním zesilovačem OP07 zesíleno přibližně 240 krát, aby byla využita velká část rozsahu AD převodníku. Ten je 0 4,096V, protože toto napětí je dodáváno referenčním zdrojem TL431. K obsluze AD převodníku slouží funkce LTC1686(), která vrací 16-ti bitové číslo ve formátu unsigned int. Doopravdy je z 16-ti bitů použito pouze dvanáct, takže hodnota bude v rozsahu Při daném zapojení odpovídá jednotka čísla z funkce LTC1286() přibližně 4µV na svorkách termočlánku. Naměřené napětí můžeme na displeji zobrazit procedurou LCD_PrIntDec( LTC1286()).
5 unsigned int LTC1286(void) { unsigned char ADcount; unsigned int ADval=0; AD_CS_Clr; AD_CLK_Clr; AD_CLK_Set; AD_CLK_Clr; AD_CLK_Set; AD_CLK_Clr; // sestupna na CS // hodinovy impuls // hodinovy impuls for(adcount=0;adcount<13;adcount++) { AD_CLK_Set; // hodinovy impuls AD_CLK_Clr; if ((PIND & 0x40) == 0x40) ADval++; // kdyz je H, bude nulty bit=1 if(adcount<12) ADval <<= 1; // posune prijimana data } AD_CS_Set; return ( ADval ); }
6 Převodník LTC1286 a výpočet průměrné hodnoty z několika měření V programu pájecí stanice je fukce AD převodníku spouštěna v programu obsluhy přerušení časovače T1. Registry ovládájící časovač jsou nastaveny tak, aby bylo přerušení časovače spouštěno 1000x za sekundu, když je kmitočet procesoru nastaven na 8MHz.
7 TCCR1A = 0b ; // Frekvence = F krystal TCCR1B = 0b ; // rezim PWM 14 TIMSK = 0b ; // preruseni pri preteceni ICR1 = 8000; // 1000 Hz kmitocet PWM OCR1A = 0; // pajka PWM = 0% OCR1B = 4000; // 50% PWM pro piezomenic
8 Měření tedy probíhá 1000x za sekundu, ale data z AD převodníku jsou zatížena šumem, proto je počítán průměr s několika měření. První nápad byl, uložit několik měření do pole dat MeanArray, potom data v poli sečíst. Součet vydělit množstvím dat v poli a tak získat průměr. Nevýhoda je, že rozdíl mezi dvěmi takto získanými hodnotami může být velký. Zároveň trvá dlouho, než je vypočítaná další hodnota, což zpomaluje reakce regulátoru. Přemýšlel jsem, jestli by bylo možné k součtu MeanAdd při každém spuštění programu přerušení časovače T1 přičíst nově naměřenou hodnotu a odečíst hodnotu, která byla naměřena někdy v minulosti. Následující řádky programu ukládají naměřené hodnoty do pole MeanArray. Velikost pole je nastavena v menu programu a uložena z EEPROM do proměnné MeanMax. Do proměnné MeanAdd je při každém měření přičtena aktuálně naměřená hodnota, ta je zároveň uložena do pole a odečtena hodnota z druhého konce pole. Takže MeanAdd / MeanMax zobrazuje vždy aktuální průměr hodnot z posledních měření. Množstvím hodnot (velikostí pole v proměnné MeanMax) určujeme přesnost měření a rychlost odezvy v čase. Velké pole hodnot reaguje pomaleji na změny teploty, optimální je kolem 20 měřených hodnot.
9 MeanArray[ MeanPointer ] = LTC1286(); // nameri se hodnota MeanAdd += MeanArray[ MeanPointer ]; // pricte namerenou hodnotu if (MeanPointer < MeanMax) MeanPointer++; else MeanPointer=0; // ovladani ukazatele v poli MeanAdd -= MeanArray[ MeanPointer ]; // odecte namerenou z konce pole MeanOld = Mean; // ulozi hodnotu z minuleho mereni Mean = (unsigned int) (MeanAdd / MeanMax); // vypocte prumer
10 Výpočet teploty (proměnná TempSolder) z naměřené hodnoty (proměnná Mean) Abych se v programu vyhnul použití aritmetiky s pohyblivou čárkou, probíhají všechny výpočty v množině celých čísel a až procedura zobrazení na displeji vloží na vhodné místo desetinnou čárku. Vzhledem k rozlišení AD převodníku jsem se rozhodl, že rozlišení proměnných které zobrazují teploty, bude desetina stupně. Úkolem tedy je, přepočítat číslo z AD převodníku na desetiny stupně. Závislost napětí z termočlánku na teplotě je lineární, je tedy popsána rovnicí přímky. Pokud je operační zesilovač a AD převodník lineární, bude i závislost údaje z AD převodníku na teplotě popsána rovnicí přímky. K přibližnému sestavení rovnice budeme potřebovat teploměr a voltmetr. Voltmetr dáme na výstup operačního zesilovače a sondu teploměru vložíme do dutiny místo hrotu pájky. Zesílení operačního zesilovače nastavíme tak, aby při 450 C bylo na jeho výstupu něco kolem 3,8V. Tím je dosaženo optimálního využití rozsahu AD převodníku. Na přímce, která popisuje závislost napětí na teplotě vyznačíme dva body následujícím způsobem: Bod pro 100 C označíme číslem 1000 (to jsou desetiny stupně) a k němu přiřadíme napětí z operačního zesilovače, 700mV. M = [ Mx; My ] = [ 1000; 700 ] Bod pro 400 C označíme číslem 4000 a k němu přiřadíme napětí z operačního zesilovače, 3437mV. N = [ Nx; Ny ] = [ 4000; 3437 ] Vypočteme vektor přímky u = ( Nx Mx; Ny My) = ( 3000; 2737 ) Rovnice přímky jsou: X = Mx + u1 * t Y = My + u2 * t Dosadíme: X = * t Y = * t, z toho 2737 * t = Y 700 a z toho t = ( Y 700 ) / 2737 Rovnici t = ( Y 700 ) / 2737 dosadíme do X = * ( Y 700 ) / 2737 Postupně zjednodušíme: 2737 * X = ( Y 700 ) * * X = * Y * X = 3437 * Y dělěno * X = 172 * Y Y je napětí, X je teplota, takže rovnice bude:
11 TempSolder = (unsigned int) ((( Primka1 * Mean ) + Primka2 ) / Primka3 ); Rozdil = TempSet - TempSolder;
12 Proměnná Primka1 = 172, Primka2 = 1655, Primka3 = 137. Proměnná Rozdil zobrazuje regulační odchylku mezi požadovanou a naměřenou teplotou v desetinách stupně. Přesnější rovnici sestavíme s pomocí teploměru a údaje z AD převodníku. V tomto okamžiku už je dobré mít naprogramovaný regulátor, aby se teplota na pájecím peru ustálila a z teploměru bylo možné přečíst stabilní údaj. Údaj z AD převodníku si zobrazíme na displeji pomocí funkce LCD_PrIntDec. Já tuto část naprogramoval v MENU_Global. Pro teploty 100 C a 400 C si opíšeme aktuální čísla z převodníku. Tyto čísla respektují vlastnosti konkrétního pájecího pera, konkrétního nastavení zesílení na vstupním operačním zesilovači a konkrétního referenčního napětí. Proto není důležité, mít referenční napětí a zesílení nastaveno na nějakou přesnou hodnotu. Ale je důležité nastavit dobře linearitu, to znamená, zkontrolovat údaje naměřené teploměrem na větším množství teplot. Hodnoty z AD převodníku dosadíme do rovnice přímky a vypočítáme nové konstanty Primka1, Primka2, Primka3.
13 LCD_Position( 0, 0 ); LCD_WriteCString( "U=" ); LCD_PrIntDec( Mean ); // napise napeti z prevodniku LCD_WriteCString( " " ); LCD_PrTemp( TempSolder ); // napise vypoctenou teplotu LCD_Position( 1, 0 ); LCD_PrTemp( TempMenu ); // nastavena teplota v MENU LCD_WriteCString( " " ); LCD_PrIntDec( LTC1286() ); LCD_WriteCString( " ");
14 Program PID regulátoru, nastavení a zobrazení PWM regulace Srozumitenlý popis PID regulace je např. zde. Hodinový kmitočet procesoru je 8MHz, kmitočet pro práci časovače T1 odpovídá hodinovému kmitočtu. Přerušení od časovače je nastaveno na 8000, to odpovídá kmitočtu 1000Hz a periodě 0,001s, s kterou bude spouštěn program přerušení časovače. PWM kanály reprezentované registry OCR1A a OCR1B mají tedy rozlišení 8000 dílků. Kanál B je použit pro ovládání piezoměniče, jeho střída je tedy nastavena na 50%. To odpovídá hodnotě OCR1B = Kanál A je použit pro ovládání výkonu pájecího pera, pro OCR1A = 0 bude výkon 0%, pro OCR1A = 8000 bude výkon 100%. Na displeji můžeme výkon zobrazovat po 1/80 = 0,0125 dílcích procenta. Já zobrazuji proměnnou SolderPWM / 8 s tím, že desetinná čárka je před číslicí nejnižšího řádu, tedy desetiny procenta. Proporcionální regulace Proporcionální složka regulace určuje aktuální výkon z rozdílu požadované a naměřené teploty. To jsou funkce: Rozdil = TempSet TempSolder SolderPWM = (Rozdil * SolderPWM1 / 100) První počítá velikost regulační odchylky a druhá počítá aktuální výkon tělesa. Konstanta SolderPWM1 je převzata z EEPROM a může být změněna v MENU. Pokud je její hodnota např. 3000, bude při rozdílu nastavené a naměřené teploty 10 K nastaven výkon 37,5% PWM regulace. Když bude rozdíl nastavené a naměřené teploty 1 K, bude výkon 10 * 3000 / 100 / 80 = 3,75%. Pokud bude regulační odchylka záporná, teplota tělesa bude větší než nastavená teplota, funkce if ( SolderPWM < 0 ) SolderPWM = 0; nastaví 0%. Tento proporcionální regulátor lze prostřednictvím konstanty SolderPWM1 nastavit do dvou režimů: konstanta je velká, vypočteným výkonem bude překročena požadovaná teplota a napájení pájecího pera se odpojí. Teplota poklesne pod požadovanou hodnotu, znovu nastavený výkon překročí nastavenou teplotu systém se rozkmitá kolem nastavené teploty. V druhém režimu je konstanta menší a nastavené teploty nebude po ustálení systému dosaženo, protože když je regulační odchylka nulová, je nulový i výkon pájecího pera a není čím pokrýt výkonové ztráty, které pero vyzáří do vzduchu, nebo předá ohřívané součástce. Proporcionálním regulátorem jsem dosáhl stavu, kdy se teplota termočlánku přiblíží k nastavené, nebo kolem ní kmitá v rámci několika C. Pro aplikaci pájecí stanice tohle stačí, teplota kovového tělesa a hrotu nestihne tak rychle kopírovat teplotu topného tělíska bude stabilní. Další části programu regulátoru jsem napsal pro vlastní rozvoj a pro pozdější použití v jiných aplikacích. Pro dosažení nastavené teploty s přesností na několik desetin stupně je potřeba k proporcionální složce přičíst integrační složku. Integrační složka regulátoru Integrace průběhu regulační odchylky v čase je realizována sčítáním regulačních odchylek jednotlivých měření. Tato složka je k proporcionální přičítána následovně: SolderPWM = (Rozdil * SolderPWM1 / 100) + (IntegralRozdil * SolderPWM2 / 10000) Složka v mém programu začne působit, až když je rozdíl nastavené a naměřené teploty menší, než 5 K. Když je teplota nízká, jede jenom proporcionální regulátor, když je naměřená teplota vysoká, regulátor odpojí napájení pájecího pera. Pokud je rozdíl teplot v intervalu ( 0, +5 K ) bude při každém dalším měření zvýšena integrační složka, výkon tělesa se bude postupně zvětšovat.
15 Pokud je rozdíl teplot v intervalu ( -5 K, 0 ) bude při každém dalším měření snížena integrační složka, výkon tělesa se bude postupně snižovat. Rychlost změny velikosti integrační složky v čase je dána velikostí konstanty SolderPWM2. Při konstantní spotřebě tepla např. vyzářením do vzduchu se derivační + integrační složka regulátoru a tím i výkon tělesa za chvíli ustálí na velikosti, která je nutná k udržení požadované teploty. V mém programu se integrační složka zvýší, nebo sníží vždy o jednotku, takže to není zrovna integrál průběhu regulační odchylky v čase. Správné by bylo přičítat vždy aktuální velikost regulační odchylky. Jenomže to se rozkmitávalo, tak jsem to změnil. Nastavení výkonu PWM na základě vypočteného rozdílu mezi nastavenou a naměřenou teplotou
16 if (( Rozdil > 50 ) ( Rozdil < -50 )) IntegralRozdil = 0; // rozdil teplot je vic nez 5 stupnu if (( Rozdil > -50 ) && ( Rozdil < 0 ) && ( IntegralRozdil > )) IntegralRozdil--; // rozdil je zaporny, slozka klesa if (( Rozdil > 0 ) && ( Rozdil < 50 ) && ( IntegralRozdil < )) IntegralRozdil++; // rozdil je kladny, slozka roste SolderPWM = (Rozdil * SolderPWM1 / 100) + (IntegralRozdil * SolderPWM2 / 10000); // * * * * * * * * * * * * * * * * * * vyhodnoti interval a nastavi PWM if ( SolderPWM < 0 ) SolderPWM = 0; if (( SolderPWM > 8000 ) ( Rozdil > 400 )) SolderPWM = 8000; // rozdil je vic nez 40 stupnu, PWM bude 100% OCR1A = SolderPWM; Přičtením integrační složky jsem dosáhl přesnějšího nastavení výkonu tak, aby teplota kmitala v rámci několika desetin C, pokud je
17 odběr tepla z pájecího pera stabilní. V okamžiku, kdy dojde ke změně množství odebíraného tepla, poklesne teplota pera. Až po poklesu teploty začne reagovat integrační složka, postupně přidávat výkon tělesa. Derivační složka regulátoru Derivací funkce získáme směrnici tečny ke grafu funkce. Čím rychleji funkce roste, tím větší bude hodnota derivace. Derivace bude mít zápornou hodnotu v místě, kde bude graf fuknce klesat. Funkcí, kterou se zabýváme, je průběh regulační odchylky (rozdíl požadované a naměřené teploty) v čase. Její derivace nám tedy řekne, jestli a jak rychle regulační odchylka roste, nebo klesá. Jinými slovy, z derivace funkce zjistíme, jak rychle se teplota pájecího pera přibližuje, nebo vzdaluje od nastavené hodnoty. Vynásobením vypočtené derivace s konstantou získáme derivační složku, která bude přičtena proporcionální a integrační složce: SolderPWM = (Rozdil * SolderPWM1 / 100) + (IntegralRozdil * SolderPWM2 / 10000) + (DerivRozdil * SolderPWM3 / 10000) Derivační složka zlepší vlastnosti regulátoru v okamžiku, kdy je změněna požadovaná teplota, nebo se změní výkon odebíraný z pera. V takové situaci začne integrační složka pomalu přičítat, nebo odečítat a pomalu měnit výkon vzhledem k nové situaci. Ale derivace hned na začátku spočítá, kterým směrem se mění situace (směrnice funkce) a podle toho změní dodávaný výkon. A jak to realizovat v programu? Naměřená a zprůměrovaná hodnota z AD převodníku je Mean. Vždy před uložením nové hodnoty AD převodníku tu původní schovávám do MeanOld. Rozdíl regulační odchylky spočítané z Mean a odchylky spočítané z MeanOld je derivací funkce v tomto bodě.
Laboratorní zdroj - 4. část
Laboratorní zdroj - 4. část Publikované: 10.04.2016, Kategória: Silové časti www.svetelektro.com Komunikace po sériové lince a programování DA a AD převodníku Aby bylo možné komunikovat s podřízeným procesorem
Vánoční hvězda 2. Publikované: , Kategória: Blikače a optika.
Vánoční hvězda 2 Publikované: 10.12.2015, Kategória: Blikače a optika www.svetelektro.com Blíží se vánoce a tak by se hodila nějaká vánoční ozdoba do okna. Chtěl jsem vymyslet něco, s čím se zabavím na
Spojité regulátory Zhotoveno ve školním roce: 2011/2012. Spojité regulátory. Jednoduché regulátory
Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory
Programovatelná řídící jednotka REG10. návod k instalaci a použití 2.část. Měřící jednotka výkonu EME
Obsah: Programovatelná řídící jednotka REG10 návod k instalaci a použití 2.část Měřící jednotka výkonu EME 1.0 Obecný popis... 2 1.1 Popis programu... 2 1.2 Vstupní měřené veličiny... 2 1.3 Další zobrazované
Voltmetr pro elektromobil. Technická dokumentace
Voltmetr pro elektromobil Technická dokumentace EGMedical, s.r.o. Křenová 19, 602 00 Brno CZ www.strasil.net 2011 Obsah 1. Hardwarové řešení a technické parametry...3 2. Připojení měřených napětí a ovládání...4
Laboratorní zdroj - 6. část
Laboratorní zdroj - 6. část Publikované: 20.05.2016, Kategória: Silové časti www.svetelektro.com V tomto článku popíšu způsob, jak dojít k rovnicím (regresní funkce), které budou přepočítávat milivolty
Úloha 5 Řízení teplovzdušného modelu TVM pomocí PC a mikropočítačové jednotky CTRL
VŠB-TUO 2005/2006 FAKULTA STROJNÍ PROSTŘEDKY AUTOMATICKÉHO ŘÍZENÍ Úloha 5 Řízení teplovzdušného modelu TVM pomocí PC a mikropočítačové jednotky CTRL SN 72 JOSEF DOVRTĚL HA MINH Zadání:. Seznamte se s teplovzdušným
Kompaktní mikroprocesorový regulátor MRS 04
Kompaktní mikroprocesorový regulátor MRS 04 Dvojitý čtyřmístný displej LED Čtyři vstupy Čtyři výstupy Regulace: on/off, proporcionální, PID, PID třístavová Přístupové heslo Alarmové funkce Přiřazení vstupu
Návrh konstrukce odchovny 3. dil
1 Portál pre odborné publikovanie ISSN 1338-0087 Návrh konstrukce odchovny 3. dil Pikner Michal Elektrotechnika 16.02.2011 V minulém díle jsme se seznámily s elektronickým zapojením. Popsali jsme si principy
APOSYS 10. Kompaktní mikroprocesorový regulátor APOSYS 10. MAHRLO s.r.o. Ľudmily Podjavorinskej 535/11 916 01 Stará Turá
APOSYS 10 Kompaktní mikroprocesorový regulátor APOSYS 10 Popis dvojitý čtyřmístný displej LED univerzální vstup s galvanickým oddělením regulační výstupy reléové regulace: on/off, proporcionální, PID,
ŘÍDICÍ TERMINÁL pro vícepásmovou regulaci teploty TERM 2198
ŘÍDICÍ TERMINÁL pro vícepásmovou regulaci teploty TERM 2198 Výrobu a servis zařízení provádí: ATERM, Nad Hřištěm 206, 765 02 Otrokovice Telefon/Fax: 577 932 759 Mobil: 603 217 899 E-mail: matulik@aterm.cz
Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka
Tel-10 Suma proudů v uzlu (1. Kirchhofův zákon) Posuvným ovladačem ohmické hodnoty rezistoru se mění proud v uzlu, suma platí pro každou hodnotu rezistoru. Tel-20 Suma napětí podél smyčky (2. Kirchhofův
LED_007.c Strana: 1/5 C:\Michal\AVR\Výukové programy\archiv\ Poslední změna: 4.10.2011 8:01:48
LED_007.c Strana: 1/5 Nyní již umíme používat příkazy k větvení programu (podmínky) "if" a "switch". Umíme také rozložit program na jednoduché funkce a používat cyklus "for". Co se týče cyklů, zbývá nám
PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 23. 1. 2009 Číslo: Kontroloval: Datum: 4 Pořadové číslo žáka: 24
2. MĚŘENÍ TEPLOTY TERMOČLÁNKY
2. MĚŘENÍ TEPLOTY TERMOČLÁNKY Otázky k úloze (domácí příprava): Jaká je teplota kompenzačního spoje ( studeného konce ), na kterou koriguje kompenzační krabice? Dá se to zjistit jednoduchým měřením? Čemu
Impulsní regulátor ze změnou střídy ( 100 W, 0,6 99,2 % )
ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta elektrotechnická Impulsní regulátor ze změnou střídy ( 100 W, 0,6 99,2 % ) Školní rok: 2007/2008 Ročník: 2. Datum: 12.12. 2007 Vypracoval: Bc. Tomáš Kavalír Zapojení
SAUNOVÝ REGULÁTOR S 500
SAUNOVÝ REGULÁTOR S 500 Návod na obsluhu www.mctsro.com Saunový regulátor S500 Návod na obsluhu Stránka 1/7 1. Popis Saunový regulátor S500 je určen k ovládání a řízení provozu sauny. Umožňuje okamžité
BASPELIN MRP Popis obsluhy indikační a řídicí jednotky MRP T2
Baspelin, s.r.o. Hálkova 10 614 00 BRNO tel. + fax: 545 212 382 tel.: 545212614 e-mail: info@baspelin.cz http://www.baspelin.cz BASPELIN MRP Popis obsluhy indikační a řídicí jednotky MRP T2 květen 2004
D M P 01 MANUÁL PRO NASTAVENÍ PROCESOROVÉHO PANELMETRU. 2 limitní / 4 limitní. Programovatelný procesní kontrolér DMP-návod
Programovatelný procesní kontrolér DMP-návod MANUÁL PRO NASTAVENÍ PROCESOROVÉHO PANELMETRU D M P 01 2 limitní / 4 limitní A ZÁKLADNÍ PŘEHLED ADRES, PODADRES A JEJICH FUNKCÍ str. č. 1 B PODROBNÝ POPIS FUNKCÍ
Programovatelná řídící jednotka REG10. návod k instalaci a použití 2.část. Řídící jednotka regulace podtlaku TPR
Programovatelná řídící jednotka REG10 návod k instalaci a použití 2.část Řídící jednotka regulace podtlaku TPR Obsah: 1.0 Obecný popis... 2 1.1 Popis programu... 2 1.2 Vstupní měřené veličiny... 2 1.3
Číslicový zobrazovač CZ 5.7
Určení - Číslicový zobrazovač CZ 5.7 pro zobrazování libovolné veličiny, kterou lze převést na elektrický signál, přednostně 4 až 20 ma. Zobrazovaná veličina může být až čtyřmístná, s libovolnou polohou
ochranným obvodem, který chrání útlumové články před vnějším náhodným přetížením.
SG 2000 je vysokofrekvenční generátor s kmitočtovým rozsahem 100 khz - 1 GHz (s option až do 2 GHz), s možností amplitudové i kmitočtové modulace. Velmi užitečnou funkcí je také rozmítání výstupního kmitočtu
Příloha A návod pro cvičení 1. SESTAVENÍ MODELU V PROSTŘEDÍ MATLAB SIMULINK Zapojení motoru
Příloha A návod pro cvičení 1. SESTAVENÍ MODELU V PROSTŘEDÍ MATLAB SIMULINK Sestavte model real-time řízení v prostředí Matlab Simulink. 1.1. Zapojení motoru Začněte rozběhem motoru. Jeho otáčky se řídí
Prostředky automatického řízení Úloha č.5 Zapojení PLC do hvězdy
VŠB-TU OSTRAVA 2005/2006 Prostředky automatického řízení Úloha č.5 Zapojení PLC do hvězdy Jiří Gürtler SN 7 Zadání:. Seznamte se s laboratorní úlohou využívající PLC k reálnému řízení a aplikaci systému
Mikropočítačová vstupně/výstupní jednotka pro řízení tepelných modelů. Zdeněk Oborný
Mikropočítačová vstupně/výstupní jednotka pro řízení tepelných modelů Zdeněk Oborný Freescale 2013 1. Obecné vlastnosti Cílem bylo vytvořit zařízení, které by sloužilo jako modernizovaná náhrada stávající
MĚŘENÍ TEPLOTY TERMOČLÁNKY
MĚŘENÍ TEPLOTY TERMOČLÁNKY Úkoly měření: 1. Změřte napětí termočlánku a) přímo pomocí ručního multimetru a stolního multimetru U3401A. Při výpočtu teploty uvažte skutečnou teplotu srovnávacího spoje termočlánku,
Prostředky automatického řízení
VŠB-Technická Univerzita Ostrava SN2AUT01 Prostředky automatického řízení Návrh měřícího a řídicího řetězce Vypracoval: Pavel Matoška Zadání : Navrhněte měřicí řetězec pro vzdálené měření průtoku vzduchu
Obrázek č. 7.0 a/ regulační smyčka s regulátorem, ovladačem, regulovaným systémem a měřicím členem b/ zjednodušené schéma regulace
Automatizace 4 Ing. Jiří Vlček Soubory At1 až At4 budou od příštího vydání (podzim 2008) součástí publikace Moderní elektronika. Slouží pro výuku předmětu automatizace na SPŠE. 7. Regulace Úkolem regulace
REGULÁTOR TEPLOTY. typ REGU 2198. www.aterm.cz. REGU2198 Technická dokumentace. REGU2198 Technická dokumentace
REGULÁTOR TEPLOTY typ REGU 2198 1. Úvod Tento výrobek byl zkonstruován podle současného stavu techniky a odpovídá platným evropským a národním normám a směrnicím. U výrobku byla doložena shoda s příslušnými
Programovatelná řídící jednotka REG10. návod k instalaci a použití 2.část Program RS03-02 regulátor pro řízení servopohonů
Obsah: Programovatelná řídící jednotka REG10 návod k instalaci a použití 2.část Program RS03-02 regulátor pro řízení servopohonů 1.0 Obecný popis... 1 1.1 Popis programu... 1 1.2 Popis zobrazení... 2 1.3
1. Navrhněte a prakticky realizujte pomocí odporových a kapacitních dekáda derivační obvod se zadanou časovou konstantu: τ 2 = 320µs
1 Zadání 1. Navrhněte a prakticky realizujte pomocí odporových a kapacitních dekáda integrační obvod se zadanou časovou konstantu: τ 1 = 62µs derivační obvod se zadanou časovou konstantu: τ 2 = 320µs Možnosti
18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry
18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry Digitální voltmetry Základním obvodem digitálních voltmetrů je A/D
Návrh konstrukce odchovny 2. dil
1 Portál pre odborné publikovanie ISSN 1338-0087 Návrh konstrukce odchovny 2. dil Pikner Michal Elektrotechnika 19.01.2011 V minulem dile jsme si popsali návrh konstrukce odchovny. senzamili jsme se s
PROGRAMOVATELNÝ TERMOSTAT CT Citherm 6.0 Návod k obsluze
Programovatelný termostat Strana č. 1 z 9 PROGRAMOVATELNÝ TERMOSTAT CT Citherm 6.0 Návod k obsluze + - + DC 48V 12V + - + - IN 1 IN 2 IN 3 venkovní vnitřní + - T1 T2 0-10V IN 1 AC Fail IN 2 Fire IN 3 Servis
BASPELIN CPL. Popis obsluhy ekvitermního regulátoru CPL EQ23/EQ24
BASPELIN CPL Popis obsluhy ekvitermního regulátoru CPL EQ23/EQ24 červenec 2007 EQ23 CPL Důležité upozornění Obsluhovat zařízení smí jen kvalifikovaná a řádně zaškolená obsluha. Nekvalifikované svévolné
TP 304337/b P - POPIS ARCHIVACE TYP 457 - Měřič INMAT 57 a INMAT 57D
Měřič tepla a chladu, vyhodnocovací jednotka průtoku plynu INMAT 57S a INMAT 57D POPIS ARCHIVACE typ 457 OBSAH Možnosti archivace v měřiči INMAT 57 a INMAT 57D... 1 Bilance... 1 Uživatelská archivace...
Operační zesilovač, jeho vlastnosti a využití:
Truhlář Michal 6.. 5 Laboratorní práce č.4 Úloha č. VII Operační zesilovač, jeho vlastnosti a využití: Úkol: Zapojte operační zesilovač a nastavte jeho zesílení na hodnotu přibližně. Potvrďte platnost
Regulační obvody se spojitými regulátory
Regulační obvody se spojitými regulátory U spojitého regulátoru výstupní veličina je spojitou funkcí vstupní veličiny. Regulovaná veličina neustále ovlivňuje akční veličinu. Ta může dosahovat libovolné
Aktivace REŽIMU ČASOVÉHO ŘÍZENÍ
Aktivace REŽIMU ČASOVÉHO ŘÍZENÍ Při zapnutém termostatu: Stiskněte tlačítko M a podržte je tři vteřiny stisknuté. Stisknutím nebo vyberete následující nastavení: 00 = bez časovače (funkce časovače vypnuta)
Čísla, reprezentace, zjednodušené výpočty
Čísla, reprezentace, zjednodušené výpočty Přednáška 4 A3B38MMP kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2014, J.Fischer, ČVUT - FEL, kat. měření 1 Čísla 4 bitová dec bin. hex. 0 0000 0 1 0001
Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK
Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK a/ PNEUMATICKÉHO PROPORCIONÁLNÍHO VYSÍLAČE b/ PNEUMATICKÉHO P a PI REGULÁTORU c/ PNEUMATICKÉHO a SOLENOIDOVÉHO VENTILU ad a/ Cejchování
Měření času, periody, šíře impulsu a frekvence osciloskopem
http://www.coptkm.cz/ Měření času, periody, šíře impulsu a frekvence osciloskopem Měření času S měřením času, neboli se stanovením doby, která uběhne při zobrazení určité části průběhu, při kontrole časové
Automatické měření veličin
Měření veličin a řízení procesů Automatické měření veličin» Čidla» termočlánky, tlakové senzory, automatické váhy, konduktometry» mají určitou dynamickou charakteristiku» Analyzátory» periodický odběr
Nejjednodušší, tzv. bang-bang regulace
Regulace a ovládání Regulace soustavy S se od ovládání liší přítomností zpětné vazby, která dává informaci o stavu soustavy regulátoru R, který podle toho upravuje akční zásah do soustavy, aby bylo dosaženo
CT-936CD CT BRAND. Mikroprocesorem řízená pájecí stanice. Návod k použití
CT BRAND CT-936CD Mikroprocesorem řízená pájecí stanice Návod k použití Obsah Stručný úvod...2 Vlastnosti...2 Technický popis...3 1. Pájecí stanice...3 2. Řídicí část...3 3. Páječka...3 Názvy částí...4
Regulační obvody s nespojitými regulátory
Regulační obvody s nespojitými regulátory Dvoupolohový regulátor ve spojení s regulovanou statickou a astatickou soustavou. Známe již funkci regulovaných soustav a nespojitých regulátorů a můžeme přejít
Serie TXDIN70 Dvojitý převodník
1 Uživatelská příručka Serie TXDIN70 Dvojitý převodník 2 OBSAH Konfigurace (nastavení) modelu.. 2 Technická specifikace 3 Parametry a nastavení.. 4 Popisy symbolů.. 6 Rozmístění a připojení svorek a indikačních
Tenzometrické měřidlo
Tenzometrické měřidlo typ Tenz2345 www.aterm.cz 1 Obsah 1. ÚVOD... 3 2. OBECNÝ POPIS ZAŘÍZENÍ... 4 3. POPIS OBSLUHY ZAŘÍZENÍ... 4 4. KALIBRACE ZAŘÍZENÍ... 5 5. BEZPEČNOSTNÍ OPATŘENÍ... 7 6. TECHNICKÉ PARAMETRY...
Návod k obsluze pro termický anemometr TA 888
strana č. 1 Návod k obsluze pro termický anemometr TA 888 Měřicí přístroj TA888 je určen k měření rychlosti proudění vzduchu a teploty. Velký, lehce čitelný LCD displej obsahuje dva velké zobrazovače a
Digitální Teploměry Řady TM Návod k použití
Digitální Teploměry Řady TM Návod k použití Bezpečnostní upozornění V průběhu instalace a obsluhy přístroje, dodržujte následující instrukce: 1) Přístroj smí zapojovat kvalifikovaná osoba. 2) Při instalaci
BASPELIN CPM EQ21. Popis obsluhy ekvitermního regulátoru CPM EQ21
BASPELIN CPM EQ21 Popis obsluhy ekvitermního regulátoru CPM EQ21 září 2002 EQ21 CPM Důležité upozornění Obsluhovat zařízení smí jen kvalifikovaná a řádně zaškolená obsluha. Nekvalifikované svévolné zásahy
Nastavení parametrů PID a PSD regulátorů
Fakulta elektrotechniky a informatiky Univerzita Pardubice Nastavení parametrů PID a PSD regulátorů Semestrální práce z předmětu Teorie řídicích systémů Jméno: Jiří Paar Datum: 9. 1. 2010 Zadání Je dána
5. MĚŘENÍ TEPLOTY TERMOČLÁNKY
5. MĚŘENÍ TEPLOTY TERMOČLÁNKY Úkol měření 1. Ověření funkce dvoudrátového převodníku XTR 101 pro měření teploty termoelektrickými články (termočlánky). 2. Použití měřicího modulu Janascard AD232 s izotermální
Technická dokumentace MĚŘIČ TEPLOTY. typ Term
MĚŘIČ TEPLOTY typ Term2205 www.aterm.cz 1 1. Úvod Tento výrobek byl zkonstruován podle současného stavu techniky a odpovídá platným evropským a národním normám a směrnicím. U výrobku byla doložena shoda
Funkce jednotlivých tlačítek se mohou měnit podle toho, na jaké úrovni menu se právě nacházíte; vysvětlení viz následující tabulka.
5. Přehled použití Snímač a vysílač průtoku FlowX3 F9.02 je jako všechny ostatní přístroje řady X3 vybaven digitálním displejem a klávesnicí s pěti tlačítky, které slouží k nastavení, kalibraci a ovládání
1. Úvod. 2. Technické parametry
Obsah Obsah...1 1. Úvod...2 2. Technické parametry...2 A/D převodník:...2 Zdroj proudu:...2 Digitální vstupy/výstupy:...3 3. Instalace karty...3 3.1. Zapojení vst. konektoru CANON25 zásuvka...3 3.2. Zapojení
BASPELIN CPM EQ3. Popis obsluhy ekvitermního regulátoru CPM EQ3
BASPELIN Popis obsluhy ekvitermního regulátoru duben 2001 Důležité upozornění Obsluhovat zařízení smí jen kvalifikovaná a řádně zaškolená obsluha. Nekvalifikované svévolné zásahy zejména do elektrického
Manuální, technická a elektrozručnost
Manuální, technická a elektrozručnost Realizace praktických úloh zaměřených na dovednosti v oblastech: Vybavení elektrolaboratoře Schématické značky, základy pájení Fyzikální principy činnosti základních
25.z-6.tr ZS 2015/2016
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace Typové členy 2 25.z-6.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ třetí část tématu předmětu pokračuje. A oblastí
1) Výrobek: Vestavný termostat pro fancoily SILENCE
1) Výrobek: Vestavný termostat pro fancoily SILENCE 2) Typ: IVAR.3TADEI 3) Charakteristika použití: Digitální termostat určený k řízení teploty ve vytápěných nebo klimatizovaných místnostech prostřednictvím
Laboratorní zdroj - 1. část
Laboratorní zdroj - 1. část Publikované: 12.02.2016, Kategória: Silové časti www.svetelektro.com V sérii článků, se spolu s kolegou Michalem OK2HAZ, budeme věnovat popisu naší práce při stavbě laboratorního
Radiocontrol F. Regulace podlahového vytápění Rádiový regulační systém pro podlahové vytápění
Radiocontrol F Regulace podlahového vytápění Rádiový regulační systém pro podlahové vytápění IMI HEIMEIER / Regulace podlahového vytápění / Radiocontrol F Radiocontrol F Radiocontrol F regulační systém
Jaroslav Rzepka MERCOS - Boleslavova 4, Ostrava 9, Czech Republic
Jaroslav Rzepka MERCOS - Boleslavova 4, 709 00 Ostrava 9, Czech Republic tel / fax : +420 596 627 097, tel : +420 596 616 729, mob : +420 604 334 327 email : mercos@mercos.cz, www : http://www.mercos.cz
Pravidla pro získání zápočtu vytvořením individuální semestrální práce mimo cvičení
Pravidla pro získání zápočtu vytvořením individuální semestrální práce mimo cvičení Ing. Tomáš Martinec Ph.D. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento
Ṡystémy a řízení. Helikoptéra Petr Česák
Ṡystémy a řízení Helikoptéra 2.......... Petr Česák Letní semestr 2001/2002 . Helikoptéra 2 Identifikace a řízení modelu ZADÁNÍ Identifikujte laboratorní model vodárny č. 2.; navrhněte a odzkoušejte vhodné
Teplotní relé typ TEPL2374
Teplotní relé typ TEPL2374 www.aterm.cz 1 Obsah 1. ÚVOD... 3 2. OBECNÝ POPIS ZAŘÍZENÍ... 4 3. POPIS OBSLUHY ZAŘÍZENÍ... 4 4. BEZPEČNOSTNÍ OPATŘENÍ... 5 5. TECHNICKÉ PARAMETRY... 6 6. PŘÍLOHA 1: PROHLÁŠENÍ
Technická dokumentace ŘÍDICÍ TERMINÁL. pro vícepásmovou regulaci teploty TERM
ŘÍDICÍ TERMINÁL pro vícepásmovou regulaci teploty TERM 2198 www.aterm.cz 1 1. Úvod Tento výrobek byl zkonstruován podle současného stavu techniky a odpovídá platným evropským a národním normám a směrnicím.
Měřící a senzorová technika
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ Měřící a senzorová technika Semestrální projekt Vypracovali: Petr Osadník Akademický rok: 2006/2007 Semestr: zimní Původní zadání úlohy
PŘECHODOVÁ CHARAKTERISTIKA
PŘECHODOVÁ CHARAKTERISTIKA Schéma Obr. 1 Schéma úlohy Popis úlohy Dynamická soustava na obrázku obr. 1 je tvořena stejnosměrným motorem M, který je prostřednictvím spojky EC spojen se stejnosměrným generátorem
1. GPIB komunikace s přístroji M1T330, M1T380 a BM595
1. GPIB komunikace s přístroji M1T330, M1T380 a BM595 Přístroje se programují a ovládají tak, že se do nich z řídícího počítače pošle řetězec, který obsahuje příslušné pokyny. Ke každému programovatelnému
Bezpečnost chemických výrob N111001
Bezpečnost chemických výrob N111001 Petr Zámostný místnost: A-72a tel.: 4222 e-mail: petr.zamostny@vscht.cz Základní pojmy z regulace a řízení procesů Účel regulace Základní pojmy Dynamické modely regulačních
Digitální panelový programovatelný PID regulátor REX - C100
Digitální panelový programovatelný PID regulátor REX - C100 Digitální panelový programovatelný teplotní/procesový PID regulátor REX-C100 (dále jen přístroj ). Je určen pro ovládání veškerých náročných
1. Vkládání čísel a základní funkce DO
Bezdrátový radiofrekvenční ovladač s modře podsvícenou klávesnicí Dvouřádkový OLED 2 řádky x 12 znaků: napájecí adaptér 5V nebo USB. Displej ovladače se rozsvítí cca do vteřiny po zapnutí napájení 5V.
Nespojité (dvou- a třípolohové ) regulátory
Nespojité (dvou- a třípolohové ) regulátory Jaroslav Hlava TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,
Dodatky k dokumentaci Elektronické zátěže (PE 5/2008)
Dodatky k dokumentaci Elektronické zátěže (PE 5/2008) EGMedical, s.r.o. Křenová 19, 602 00 Brno CZ www.strasil.net 2009 Obsah 1. Hardwarové úpravy...3...4 2.1. Základní ovládání přístroje...4 2.1.1. Zapnutí
11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr
11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr Otázky k úloze (domácí příprava): Pro jakou teplotu je U = 0 v případě použití převodníku s posunutou nulou dle obr. 1 (senzor Pt 100,
- + C 2 A B V 1 V 2 - U cc
RIEDL 4.EB 10 1/6 1. ZADÁNÍ a) Změřte frekvenční charakteristiku operačního zesilovače v invertujícím zapojení pro růžné hodnoty zpětné vazby (1, 10, 100, 1000kΩ). Vstupní napětí volte tak, aby nedošlo
NASTAVENÍ PROPORCIONÁLNÍO REGULÁTORU
NASTAVENÍ PROPORCIONÁLNÍO REGULÁTORU Proporcionální regulátor má 3 a 1/2 místný displej a tři tlačítka touchpadu, jejichž prostřednictvím lze získat informace o stavu regulátoru a lze jimi nastavit funkční
1.6 Operační zesilovače II.
1.6 Operační zesilovače II. 1.6.1 Úkol: 1. Ověřte funkci operačního zesilovače ve funkci integrátoru 2. Ověřte funkci operačního zesilovače ve funkci derivátoru 3. Ověřte funkci operačního zesilovače ve
Pájecí a odpájecí stanice ZD-912
Pájecí a odpájecí stanice ZD-912 1. Popis ZD-912 je výkonná multifunkční pájecí a odpájecí stanice. Může být použita v oblastech výzkumu, výuky i výrobě elektroniky. Uplatní se pro pájení a odpájení všech
SAUNOVÝ REGULÁTOR S 2000
SAUNOVÝ REGULÁTOR S 2000 Návod na obsluhu www.mctsro.com Saunový regulátor S2000 Návod na obsluhu Stránka 1/7 1. Popis Saunový regulátor S2000 je určen k ovládání a řízení provozu sauny. Je určen k řízení
Číslicové multimetry. základním blokem je stejnosměrný číslicový voltmetr
Měření IV Číslicové multimetry základním blokem je stejnosměrný číslicový voltmetr Číslicové multimetry VD vstupní dělič a Z zesilovač slouží ke změně rozsahů a úpravu signálu ST/SS usměrňovač převodník
1 Zadání. 2 Teoretický úvod. 7. Využití laboratorních přístrojů v elektrotechnické praxi
1 7. Využití laboratorních přístrojů v elektrotechnické praxi 1 Zadání Zapojte pracoviště podle pokynů v pracovním postupu. Seznamte se s ovládáním přístrojů na pracovišti a postupně realizujte jednotlivé
Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u
Fyzikální praktikum č.: 7 Datum: 7.4.2005 Vypracoval: Tomáš Henych Název: Operační zesilovač, jeho vlastnosti a využití Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící,
Čísla, reprezentace, zjednodušené výpočty
Čísla, reprezentace, zjednodušené výpočty Přednáška 5 A3B38MMP kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 1 Čísla 4 bitová dec bin. hex. 0 0000 0 1 0001
CW01 - Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2014/2015 tm-ch-spec. 1.p 2014 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a
NÁVOD K OBSLUZE. Zimní sada SWK-20
NÁVOD K OBSLUZE Zimní sada SWK-20 - plynulá regulace otáček ventilátoru - ovládání ohřívače podle okolní teploty -alarm při vysoké kondenzační teplotě - zobrazení aktuální teploty - mikroprocesorové řízení
PiKRON s.r.o. ( http://www.pikron.com ) 16. července 2002. 2.1.4 Filtrace vstupních dat z AD převodníků... 3
ULAD 10 - Uživatelský manuál PiKRON s.r.o. ( http://www.pikron.com ) 16. července 2002 Obsah 1 Specifikace převodníku ULAD 10 1 2 Ovládání z PC po lince RS-485 2 2.1 Slovník přístupných proměnných....................
ECL Comfort 110 230 V AC a 24 V AC
230 V AC a 24 V AC Popis a použití V aplikacích vytápění lze řídicí jednotku ECL Comfort 110 integrovat s řešením Danfoss Link prostřednictvím rozhraní DLG pro použití v jednogeneračních aplikacích. Řídicí
7. Určete frekvenční charakteristiku zasilovače v zapojení jako dolní propust. U 0 = R 2 U 1 (1)
Úkoly 7 Operační zesilovač. Ověřte platnost vztahu pro výstupní napětí zesilovače při zapojení s invertujícím vstupem.. Určete frekvenční charakteristiku zesilovače při zapojení s neinvertujícím vstupem.
Operační zesilovače. U výst U - U +
Operační zesilovače Analogové obvody zpracovávají signál spojitě se měnící v čase. Nejpoužívanější součástkou v současné době je operační zesilovač. Název operační pochází z dob, kdy se používal (v elektronkovém
VARIPULSE 04/07 1/10 NÁVOD NA INSTALACI ŘÍDÍCÍ JEDNOTKA VARIPULSE
VARIPULSE 04/07 1/10 NÁVOD NA INSTALACI ŘÍDÍCÍ JEDNOTKA VARIPULSE Tento návod je určen pro osoby, které budou odpovídat za instalaci, provoz a údržbu. Platí od: 04/2007 VARIPULSE 04/07 2/10 Řídící jednotka
Ovládací panel pro nastavení a monitorování funkce interního teplotního regulátoru modulu UTI-INV-xx TECHNICKÝ MANUÁL. UTI-ATWD ovládací panel
Ovládací panel pro nastavení a monitorování funkce interního teplotního regulátoru modulu UTI-INV-xx TECHNICKÝ MANUÁL UTI-ATWD ovládací panel POUŽITÍ Ovládací panel UTI-ATWD (dále jen panel) slouží k uživatelskému
k DUM 08. pdf ze šablony 1_šablona_automatizační_technika_I 03 tematický okruh sady: regulátor
METODICKÝ LIST k DUM 08. pdf ze šablony 1_šablona_automatizační_technika_I 03 tematický okruh sady: regulátor Téma DUM: spojitá regulace test 1 Anotace: Digitální učební materiál DUM - slouží k výuce regulátorů
ADEX SL3.3 REGULÁTOR KOTLE VARIMATIK
KTR U Korečnice 1770 Uherský Brod 688 01 tel. 572 633 985 s.r.o. nav_sl33.doc Provedení: Skříňka na kotel ADEX SL3.3 REGULÁTOR KOTLE VARIMATIK Obr.1 Hmatník regulátoru ADEX SL-3.3 1. POPIS REGULÁTORU Regulátor
TENZOMETRICKÝ PŘEVODNÍK
TENZOMETRICKÝ PŘEVODNÍK S DIGITÁLNÍM NULOVÁNÍM typ TENZ 2215 ve skříňce DIN35 www.aterm.cz 1 1. ÚVOD...3 2. OBECNÝ POPIS TENZOMETRICKÉHO PŘEVODNÍKU...4 3. TECHNICKÝ POPIS TENZOMETRICKÉHO PŘEVODNÍKU...4
EUROSTER 1100WB 1.POUŽITÍ 2.POPIS PŘÍSTROJE
EUROSTER 1100WB NÁVOD K OBSLUZE 1 EUROSTER 1100WB 1.POUŽITÍ Euroster 1100WB je moderní digitální přístroj pro ovládání systémů s kotli na pevná paliva. Zásadní funkcí přístroje je optimalizace procesu
BASPELIN CPM. Popis obsluhy čtyřkanálového prostorového termostatu CPM CCU02
BASPELIN CPM Popis obsluhy čtyřkanálového prostorového termostatu CPM CCU02 únor 2000 Baspelin CPM K1 Vlastnosti regulátoru baspelin CPM 4 analogové vstupy, 5 binárních vstupů (230V, 50Hz), 4 nezávislé
OVLÁDÁNÍ FAN COIL JEDNOTKY 02
Typová aplikace řeší regulaci teploty prostoru místnosti pomocí dvoutrubkové Fan Coil jednotky nebo skupiny Fan Coil jednotek s topnými nebo chladicími výměníky se zabudovaným jednorychlostním ventilátorem.
Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 03 Technické předměty Ing. Otakar Maixner 1 Spojité