Nastavení parametrů PID a PSD regulátorů

Rozměr: px
Začít zobrazení ze stránky:

Download "Nastavení parametrů PID a PSD regulátorů"

Transkript

1 Fakulta elektrotechniky a informatiky Univerzita Pardubice Nastavení parametrů PID a PSD regulátorů Semestrální práce z předmětu Teorie řídicích systémů Jméno: Jiří Paar Datum:

2 Zadání Je dána soustava popsaná ve tvaru, jejichž parametry mají hodnoty Doba do ustálení = 21.0 bb 1 = bb 0 = aa 2 = 1,8333 aa 1 = aa 0 = bb 1. ss + bb 0 FF(ss) = ss 3 + aa 2. ss 2 + aa 1. ss + aa 0 I. Určete kritické hodnoty a. výpočetně s využitím znalosti spojitého přenosu soustavy rr 0kk = TT kk = b. experimentálně v SIMULINKu pomocí relé ve zpětné vazbě s diskrétním vzorkováním (interval vzorkování TT = DD 100 ) rr 0kk = TT kk = II. III. IV. Určete parametry aproximační soustavy ve tvaru experimentálně v SIMULINKu. ZZ = ττ = TT dd = Určete parametry a. PID regulátoru z vypočtených kritických hodnot b. PID regulátoru z odhadovaných parametrů aproximační soustavy c. PSD regulátoru z kritických hodnot určených pomocí relé ve zpětné vazbě. Pro přepočet kritických hodnot parametrů na parametry diferenční rovnice použijte stejný interval vzorkování, co byl použit pro diskrétní relé. Proveďte simulační regulační experiment pro zadaný průběh žádané hodnoty dle obrázku s oběma spojitými a jedním diskrétním regulátorem. Pro každý průběh vyhodnoťte kritérium kvality ITAE na intervalu 0-2D (dvojnásobek doby do ustálení soustavy). PID1: rr 0 = TT ii = TT dd = II TTTTTT = PSD2: rr 0 = TT ii = TT dd = TT = qq 0 = qq 1 = qq 2 = II TTTTTT = PID3: rr 0 = TT ii = TT dd = II TTTTTT = Kromě číselných výsledků zobrazte a. v jednom grafu přechodové charakteristiky zadané soustavy a aproximační soustavy I. řádu s dopravním zpožděním b. v jednom grafu průběhy všech tří regulačních průběhů FF(ss) = w 1 ZZ ττ. ss + 1. ee TT dd.ss II TTTTTT = tt. ee(tt). dddd 0 D 2D t tt 0

3 Určení kritických hodnot Početně s využitím znalosti spojitého přenosu soustavy Pro určení kritických hodnot použijeme metodu Ziegler-Nichols. Tato metoda je založena na faktu, že při nahrazení regulátoru pouze proporcionální složkou rr 0, docházení při určité velikosti této složky k nestabilitě systému. Systém začne kmitat na kritické periodě TT kk, ze které je odvozena kritická frekvence ωω kk. Hodnota rr 0, při které začíná soustava kmitat, se nazývá kritické zesílení a značí se rr 0kk. K určení obou těchto hodnot musíme znát polynom přenosu celého uzavřeného regulačního obvodu. Celý uzavřený regulační obvod si lze představit podle následujícího obrázku: B/A jsou polynomy přenosu regulované soustavy, Q/P jsou polynomy přenosu regulátoru, u je akční veličina, y je výstup soustavy, w je žádaná hodnota a e je regulační odchylka. Pro tento obvod lze napsat tyto jednoduché vztahy: u B/A Q/P e y w yy = BB AA. uu uu = QQ PP. ee ee = ww yy Následně lze z těchto vztahů vypočítat celkový přenos uzavřeného regulačního obvodu, tedy závislost mezi výstupem a žádanou hodnotou: yy = BB AA. QQ PP. ee = BB AA. QQ. (ww yy) PP yy = yy + BB. QQ BB. QQ. ww AA. PP AA. PP. yy BB. QQ BB. QQ. yy = AA. PP AA. PP. ww BB. QQ BB. QQ BB. QQ yy. 1 + =. ww yy = AA. PP. ww = AA. PP AA. PP BB. QQ 1 + AA. PP BB. QQ AA. PP. ww AA. PP + BB. QQ AA. PP Přenos uzavřeného regulačního obvodu je tedy roven polynomu polynomem proměnné ss, tedy přenos je roven komplexní a je rovna ss = jj. ωω kk. = BB(ss).QQ(ss) AA(ss).PP(ss)+BB(ss).QQ(ss) BB. QQ AA. PP + BB. QQ. ww BB.QQ AA.PP+BB.QQ. Tento polynom je. Proměnná ss je ryze

4 Při použití metody Ziegler-Nichols je polynom přenosu regulátoru roven pouze hodnotě rr 0kk, tedy QQ = rr 0kk a PP = 1. Celý přenos systému lze tedy zjednodušit na následující tvar: BB(ss). rr 0kk AA(ss) + BB(ss). rr 0kk Z tohoto přenosu je nejdůležitější jeho jmenovatel, který se musí rovnat nule. Protože se jedná o komplexní číslo, musí se rovnat nule reálná i imaginární část. Přenos soustavy je zadán tímto polynomem: bb 1. ss + bb 0 FF(ss) = ss 3 + aa 2. ss 2 = BB(ss) + aa 1. ss + aa 0 AA(ss) Dosadíme do přenosu systému a vypočteme hodnoty rr 0kk a ωω kk. AA(ss) + BB(ss). rr 0kk = 0 ss = jj. ωω kk AA(jj. ωω kk ) + BB(jj. ωω kk ). rr 0kk = 0 (jj. ωω kk ) 3 + aa 2. (jj. ωω kk ) 2 + aa 1. (jj. ωω kk ) + aa 0 + [bb 1. (jj. ωω kk ) + bb 0 ]. rr 0kk = 0 jj. ωω 3 kk aa 2. ωω 2 kk + jj. aa 1. ωω kk + aa 0 + jj. bb 1. ωω kk. rr 0kk + bb 0. rr 0kk = 0 Rozdělíme na reálnou složku: aa 2. ωω kk 2 + aa 0 + bb 0. rr 0kk = 0 rr 0kk = aa 2. ωω kk 2 aa 0 bb 0 A na imaginární složku: ωω kk 3 + aa 1. ωω kk + bb 1. ωω kk. rr 0kk = 0 Z reálné složky si můžeme vyjádřit hodnotu rr 0kk a dosadit do druhé rovnice, ze které spočítáme ωω kk : ωω kk 3 + aa 1. ωω kk + bb 1. ωω kk. aa 2. ωω kk 2 aa 0 bb 0 = 0 ωω 3 + aa 1. ωω kk + bb 1. ωω kk. aa 2. ωω kk 2 ωω 3 kk + ωω kk + 0.1,8333. ωω kk 3 0,1667 =0 bb 0 bb 1. ωω kk. aa 0 bb 0 = 0 0. ωωkk. 0,1667 = 0 0,1667 =0 Získali jsme rovnici, která má tři reálné výsledky: ωω kk. ( ωω kk 2 + 1) = 0 ωω kk1 = 0 ωω kk = 0 ωω kk2,3 = ±1 Nulová a záporná frekvence nás nezajímá. Získáme jedinou hodnotu ωω kk = 1. Nyní stačí již dopočítat hodnoty kritické periody TT kk a kritického zesílení rr 0kk. ωω kk = 1[ss 1 2. ππ ] TT kk = = 2. ππ 6,28[ss] ωω kk

5 1, ,1667 rr 0kk = = 9,9976 0,1667 Kritické hodnoty získané výpočtem z přenosu soustavy jsou: TT kk = 6,28[ss] rr 0kk = 9,9976 Experimentálně v SIMULINKu pomocí relé ve zpětné vazbě Tato metoda stejně jako metoda Zeigler-Nichols umožňuje zjistit hodnoty rr 0kk a TT kk. Pro použití této metody je potřeba upravit regulátor tak, aby při hodnotě ee 0 měl na výstupu konstantní hodnotu RR a při hodnotě ee < 0 byl výstup roven RR. Tím budou na výstupu soustavy stabilní kmity. Perioda výstupu regulátoru je poté rovna kritické periodě TT kk a kritické zesílení rr 0kk se určí podle následujícího vztahu: 4. RR rr 0kk = ππ. ee mmmmmm Nejprve je nutné si v programu SIMULINK připravit model zadané soustavy. K tomu využijeme blok Transfer function a nastavíme jeho polynom přenosu dle zadání: Tento blok zapouzdříme do nového bloku a použijeme masku pro zadání hodnot koeficientů přenosu. Tyto koeficienty následně v masce vyplníme. Upravený systém s relé ve zpětné vazbě si lze představit podle následujícího obrázku: u 0 ±R u B/A Výstup regulátoru může nabývat pouze hodnot ±RR. Hodnota uu 0 posouvá výstup regulátoru na hodnotu rovnou s žádanou veličinou. Proto se uu 0 = ww, kde ZZ je zesílení soustavy. ZZ Zapojení v SIMULINKu podle předchozího obrázku bude vypadat následovně: ±R e y w

6 Zesílení zadané soustavy je rovna podílu absolutních členů přenosu, zesílení je rovno ZZ = 1. Proto se k výstupu regulátoru přičítá hodnota 1, což je výsledek podílu ww. Hodnotu RR zvolíme ZZ např. rovnu 2. Podle zadání má relé (Switch) nastavenu vzorkovací periodu na Zobrazíme výsledné hodnoty, ze kterých odečteme kritickou periodu TT kk a ee mmmmmm. TT kk ee mmmmmm Kritické zesílení je tedy rovno: TT kk = 7,14[ss] ee mmmmmm = 0,3327 rr 0kk = 4. RR 4.2 = ππ. ee mmmmmm ππ. 0,3327 = 7,654 Kritické hodnoty pro výpočet s relé ve zpětné vazbě jsou: TT kk = 7,14[ss] rr 0kk = 7,654

7 Určení parametrů aproximační soustavy Pro určení parametrů aproximační soustavy je nutná znalost přechodové charakteristiky. Pro zjištění přechodové charakteristiky zapojíme soustavu podle následujícího obrázku: Zobrazíme výsledné průběhy: TT uu TT nn Z tohoto grafu můžeme jednoznačně určit zesílení soustavy, které je rovno poměru ustáleného výstupu k ustálenému vstupu, tedy zesílení je rovno ZZ = 1. Můžeme také určit dobu průtahu TT uu 1,2 a dobu náběhu TT nn 7,8. Pro aproximační soustavu musíme ještě kromě zesílení ZZ určit zpoždění TT dd a časovou konstantu ττ. Tyto hodnoty musíme určit zcela náhodně, ovšem k jejich určení nám mohou pomoci hodnoty TT uu (TT dd ) a TT nn (ττ), které upravujeme do té doby, než se průběh výstupu nejvíce podobá výstupu spojité soustavy.

8 Nejprve si ale budeme muset připravit model přenosu soustavy v SIMULINKu podle následujícího zapojení. Blok Transfer function nahrazuje tuto část přenosu aproximační soustavy: ZZ ττ. ss + 1 Dopravní zpoždění přenosu ee TT dd.ss je nahrazeno blokem Transport Delay. Všechny hodnoty ZZ, ττ a TT dd jsou nově vytvořenému bloku předány pomocí masky. Můžeme si zobrazit přenosovou charakteristiku aproximační soustavy s přechodovou charakteristikou původní spojité soustavy. TT dd ττ

9 Pro tento průběh byly nastaveny hodnoty aproximační soustavy takto: ZZ = 1 TT dd = 2 ττ = 4,7 Určení hodnot regulátorů Hodnoty PID regulátoru z vypočtených kritických hodnot PID regulátor navrhneme podle následujícího vztahu: uu(tt) = rr 0. ee(tt) + 1 TT ii. ee(tt). dddd Této rovnici odpovídá následující zapojení v SIMULINKu: 0 tt + TT dd. dddd(tt) dddd V tomto zapojení se konstanta rr ii = 1 TT ii a konstanta rr dd = TT dd. Toto zapojení je vytvořeno jako blok a parametry jsou mu předány prostřednictvím masky. Pro přepočet kritických hodnot rr 0kk a TT kk lze využít následujících vztahů: rr 0 = 0,6. rr 0kk TT ii = 0,5. TT kk TT dd = 0,125. TT kk Pro naše vypočtené hodnoty tedy vychází: rr 0 = 0,6.9,9976 = 5,9986 TT ii = 0,5.6,28 = 3,14 TT dd = 0,125.6,28 = 0,785 Hodnoty PID regulátoru z odhadovaných parametrů aproximační soustavy Pro tento PID je použita stejná rovnice jako v předešlém případě. Pro aproximační soustavu prvního řádu s dopravním zpožděním platí následující přepočty pro parametry PID regulátoru: ττ rr 0 = 0,6. ZZ. TT dd TT ii = ττ TT dd = 0,5. TT dd

10 Pro námi odhadované parametry platí: rr 0 = 0,6. 4,7 1.2 = 1,41 TT ii = 4,7 TT dd = 0,5.2 = 1 Hodnoty PSD regulátoru z kritických hodnot určených pomocí relé ve zpětné vazbě Pro PSD regulátor využijeme dokonalejší náhradu pomocí následující rovnice (polohový tvar): uu(kk) = uu(kk 1) + (qq 0 + qq 1 + qq 2 ). ww(kk) qq 0. yy(kk) qq 1. yy(kk 1) qq 2. yy(kk 2) Tuto rovnici lze zapsat v programu SIMULINK následovně: Blokům Unit Delay i Zero-Order Hold jsou nastaveny vlastnosti Sample Time na T, která určuje vzorkovací periodu. Proměnná qq = qq 0 + qq 1 + qq 2. Všechny tyto hodnoty jsou vytvořenému bloku předány prostřednictvím masky. Blok vypočítává i regulační odchylku ee(kk), která bude potřebná v další části. Pro přepočet parametrů spojitého PID regulátoru na parametry diskrétního PSD regulátoru existují následující vztahy: qq 0 = rr TT + TT dd 2. TT ii TT qq 1 = rr 0. 1 TT + 2. TT dd 2. TT ii TT qq 2 = rr 0. TT dd TT Pro hodnoty rr 0, TT ii a TT dd použijeme naměřené hodnoty rr 0kk a TT kk pomocí relé ve zpětné vazbě. rr 0 = 0,6.7,654 = 4,5924 TT ii = 0,5.7,14 = 3,57

11 TT dd = 0,125.7,14 = 0,8925 Tyto hodnoty se dosadí do vztahů pro výpočet parametrů PSD regulátoru (perioda vzorkování je rovna TT = 0,21[ss]): qq 0 = 4, ,21 2.3,57 + 0,8925 = 24, ,21 qq 1 = 4, ,21 2.3, ,8925 = 43,4927 0,21 qq 2 = 4, ,8925 0,21 = 19,5177 Regulační experiment pro zadaný průběh žádané hodnoty Pro tento experiment je nutné si připravit blok, který vytvoří požadovaný průběh žádané hodnoty. w 1 0 D 2D t Blok může vypadat následovně: Blok Step má nastavenu hodnotu výstupu od 0 do 1 a čas skoku na DD = 21ss. Doba simulace musí probíhat přesně 2. DD = 42ss.

12 Výstup bloku Buzeni je přesně podle zadání: K vyhodnocení kritéria kvality II TTTTTT sestavíme nový blok: Porovnání přechodových charakteristik původní a aproximační soustavy

13

14 Vyhodnocení kritéria stability PID1: rr = 5, TT = 3,14 ii TT = 0,785 dd II = 115,1 TTTTTT PID2: rr 0 = 1,41 TT ii = 4,7 TT dd = 1 II TTTTTT = 124,8 PSD3: rr 0 =4,5924 TT ii = 3,57 TT dd = 0,8925 TT = 0,21 qq 0 = 24,24517 qq 1 = 43,4927 qq 2 = 19,5177 II TTTTTT = 113,1

15

Ṡystémy a řízení. Helikoptéra Petr Česák

Ṡystémy a řízení. Helikoptéra Petr Česák Ṡystémy a řízení Helikoptéra 2.......... Petr Česák Letní semestr 2001/2002 . Helikoptéra 2 Identifikace a řízení modelu ZADÁNÍ Identifikujte laboratorní model vodárny č. 2.; navrhněte a odzkoušejte vhodné

Více

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 23. 1. 2009 Číslo: Kontroloval: Datum: 4 Pořadové číslo žáka: 24

Více

Zpětná vazba, změna vlastností systému. Petr Hušek

Zpětná vazba, změna vlastností systému. Petr Hušek Zpětná vazba, změna vlastností systému etr Hušek Zpětná vazba, změna vlastností systému etr Hušek husek@fel.cvut.cz katedra řídicí techniky Fakulta elektrotechnická ČVUT v raze MAS 2012/13 ČVUT v raze

Více

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné

Více

Příloha A návod pro cvičení 1. SESTAVENÍ MODELU V PROSTŘEDÍ MATLAB SIMULINK Zapojení motoru

Příloha A návod pro cvičení 1. SESTAVENÍ MODELU V PROSTŘEDÍ MATLAB SIMULINK Zapojení motoru Příloha A návod pro cvičení 1. SESTAVENÍ MODELU V PROSTŘEDÍ MATLAB SIMULINK Sestavte model real-time řízení v prostředí Matlab Simulink. 1.1. Zapojení motoru Začněte rozběhem motoru. Jeho otáčky se řídí

Více

k DUM 08. pdf ze šablony 1_šablona_automatizační_technika_I 03 tematický okruh sady: regulátor

k DUM 08. pdf ze šablony 1_šablona_automatizační_technika_I 03 tematický okruh sady: regulátor METODICKÝ LIST k DUM 08. pdf ze šablony 1_šablona_automatizační_technika_I 03 tematický okruh sady: regulátor Téma DUM: spojitá regulace test 1 Anotace: Digitální učební materiál DUM - slouží k výuce regulátorů

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 203 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská

Více

Srovnání PID regulace a anisochronního řízení na PLC Tecomat Foxtrot

Srovnání PID regulace a anisochronního řízení na PLC Tecomat Foxtrot Srovnání PID regulace a anisochronního řízení na PLC Tecomat Foxtrot Martin Hunčovský 1,*, Petr Siegelr 1,* 1 ČVUT v Praze, Fakulta strojní, Ústav přístrojové a řídící techniky, Technická 4, 166 07 Praha

Více

Automatizační technika. Regulační obvod. Obsah

Automatizační technika. Regulační obvod. Obsah 30.0.07 Akademický rok 07/08 Připravil: Radim Farana Automatizační technika Regulátory Obsah Analogové konvenční regulátory Regulátor typu PID Regulátor typu PID i Regulátor se dvěma stupni volnosti Omezení

Více

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) 8) Kvalita

Více

DUM 19 téma: Digitální regulátor výklad

DUM 19 téma: Digitální regulátor výklad DUM 19 téma: Digitální regulátor výklad ze sady: 03 Regulátor ze šablony: 01 Automatizační technika I Určeno pro 4. ročník vzdělávací obor: 26-41-M/01 Elektrotechnika ŠVP automatizační technika Vzdělávací

Více

Nespojité (dvou- a třípolohové ) regulátory

Nespojité (dvou- a třípolohové ) regulátory Nespojité (dvou- a třípolohové ) regulátory Jaroslav Hlava TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Praha technic/(4 -+ (/T'ERATU"'P. ))I~~

Praha technic/(4 -+ (/T'ERATU'P. ))I~~ Jaroslav Baláte Praha 2003 -technic/(4 -+ (/T'ERATU"'P ))I~~ @ ZÁKLADNí OZNAČENí A SYMBOLY 13 O KNIZE 24 1 SYSTÉMOVÝ ÚVOD PRO TEORII AUTOMATICKÉHO iízení 26 11 VYMEZENí POJMU - SYSTÉM 26 12 DEFINICE SYSTÉMU

Více

PŘECHODOVÁ CHARAKTERISTIKA

PŘECHODOVÁ CHARAKTERISTIKA PŘECHODOVÁ CHARAKTERISTIKA Schéma Obr. 1 Schéma úlohy Popis úlohy Dynamická soustava na obrázku obr. 1 je tvořena stejnosměrným motorem M, který je prostřednictvím spojky EC spojen se stejnosměrným generátorem

Více

Práce s PID regulátorem regulace výšky hladiny v nádrži

Práce s PID regulátorem regulace výšky hladiny v nádrži Práce s PID regulátorem regulace výšky hladiny v nádrži Cíl úlohy Zopakování základní teorie regulačního obvodu a PID regulátoru Ukázka praktické aplikace regulačního obvodu na regulaci výšky hladiny v

Více

Spojité regulátory Zhotoveno ve školním roce: 2011/2012. Spojité regulátory. Jednoduché regulátory

Spojité regulátory Zhotoveno ve školním roce: 2011/2012. Spojité regulátory. Jednoduché regulátory Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou

Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou Funkce jedné reálné proměnné lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou lineární y = ax + b Průsečíky s osami: Px [-b/a; 0] Py [0; b] grafem je přímka (získá se pomocí

Více

25.z-6.tr ZS 2015/2016

25.z-6.tr ZS 2015/2016 Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace Typové členy 2 25.z-6.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ třetí část tématu předmětu pokračuje. A oblastí

Více

Nejjednodušší, tzv. bang-bang regulace

Nejjednodušší, tzv. bang-bang regulace Regulace a ovládání Regulace soustavy S se od ovládání liší přítomností zpětné vazby, která dává informaci o stavu soustavy regulátoru R, který podle toho upravuje akční zásah do soustavy, aby bylo dosaženo

Více

Robustnost regulátorů PI a PID

Robustnost regulátorů PI a PID Proceedings of International Scientific Conference of FME Session 4: Automation Control and Applied Informatics Paper 45 Robustnost regulátorů PI a PID VÍTEČKOVÁ, Miluše Doc. Ing., CSc., katedra ATŘ, FS

Více

Integrální počet funkcí jedné proměnné

Integrální počet funkcí jedné proměnné Integrální počet funkcí jedné proměnné V diferenciálním počtu jsme určovali derivaci funkce jedné proměnné a pomocí ní vyšetřovali řadu vlastností této funkce. Pro připomenutí: derivace má uplatnění tam,

Více

Diskretizace. 29. dubna 2015

Diskretizace. 29. dubna 2015 MSP: Domácí příprava č. 3 Vnitřní a vnější popis diskrétních systémů Dopředná Z-transformace Zpětná Z-transformace Řešení diferenčních rovnic Stabilita diskrétních systémů Spojování systémů Diskretizace

Více

Přenos pasivního dvojbranu RC

Přenos pasivního dvojbranu RC Střední průmyslová škola elektrotechnická Pardubice VIČENÍ Z ELEKTRONIKY Přenos pasivního dvojbranu R Příjmení : Česák Číslo úlohy : 1 Jméno : Petr Datum zadání : 7.1.97 Školní rok : 1997/98 Datum odevzdání

Více

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Kvalita regulačního pochodu

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Kvalita regulačního pochodu Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) Stabilita

Více

VLIV VELIKOSTI VZORKOVACÍ PERIODY NA NÁVRH DISKRÉTNÍHO REGULAČNÍHO OBVODU

VLIV VELIKOSTI VZORKOVACÍ PERIODY NA NÁVRH DISKRÉTNÍHO REGULAČNÍHO OBVODU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE

Více

HPS - SEŘÍZENÍ PID REGULÁTORU PODLE PŘECHODOVÉ CHARAKTERISTIKY

HPS - SEŘÍZENÍ PID REGULÁTORU PODLE PŘECHODOVÉ CHARAKTERISTIKY Schéma PS - SEŘÍZENÍ PID REGULÁTORU PODLE PŘECODOVÉ CARAKTERISTIKY A1 K1L U1 K1R A2 PC K2L K2R B1 U2 B2 PjR PjR F C1 S1 h L S2 F C2 h R A/D, D/A PŘEVODNÍK A OVLÁDACÍ JEDNOTKA u R u L Obr. 1 Schéma úlohy

Více

Odpružená sedačka. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

Odpružená sedačka. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Petr Školník, Michal Menkina TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247, který je spolufinancován

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace

Více

Stanovení typu pomocného regulátoru v rozvětvených regulačních obvodech

Stanovení typu pomocného regulátoru v rozvětvených regulačních obvodech Proceedings of International Scientific onference of FME Session 4: Automation ontrol and Applied Informatics Paper 7 Stanovení typu pomocného regulátoru v rozvětvených regulačních obvodech DAVIDOVÁ, Olga

Více

15 - Stavové metody. Michael Šebek Automatické řízení

15 - Stavové metody. Michael Šebek Automatické řízení 15 - Stavové metody Michael Šebek Automatické řízení 2016 10-4-16 Stavová zpětná vazba Když můžeme měřit celý stav (všechny složky stavového vektoru) soustavy, pak je můžeme využít k řízení u = K + r [

Více

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Vlastnosti regulátorů

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Vlastnosti regulátorů Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) 7) Stabilita regulačního obvodu

Více

Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction

Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction Analýza lineárních regulačních systémů v časové doméně V Modelice (ale i v Simulinku) máme blok TransfeFunction Studijní materiály http://physiome.cz/atlas/sim/regulacesys/ Khoo: Physiological Control

Více

M - Příprava na 3. čtvrtletní písemnou práci

M - Příprava na 3. čtvrtletní písemnou práci M - Příprava na 3. čtvrtletní písemnou práci Určeno pro třídu ODK VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

Regulační obvody se spojitými regulátory

Regulační obvody se spojitými regulátory Regulační obvody se spojitými regulátory U spojitého regulátoru výstupní veličina je spojitou funkcí vstupní veličiny. Regulovaná veličina neustále ovlivňuje akční veličinu. Ta může dosahovat libovolné

Více

Diferenciální rovnice 1

Diferenciální rovnice 1 Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.

Více

Obr. 1 Činnost omezovače amplitudy

Obr. 1 Činnost omezovače amplitudy . Omezovače Čas ke studiu: 5 minut Cíl Po prostudování tohoto odstavce budete umět definovat pojmy: jednostranný, oboustranný, symetrický, nesymetrický omezovač popsat činnost omezovače amplitudy a strmosti

Více

Úloha 5 Řízení teplovzdušného modelu TVM pomocí PC a mikropočítačové jednotky CTRL

Úloha 5 Řízení teplovzdušného modelu TVM pomocí PC a mikropočítačové jednotky CTRL VŠB-TUO 2005/2006 FAKULTA STROJNÍ PROSTŘEDKY AUTOMATICKÉHO ŘÍZENÍ Úloha 5 Řízení teplovzdušného modelu TVM pomocí PC a mikropočítačové jednotky CTRL SN 72 JOSEF DOVRTĚL HA MINH Zadání:. Seznamte se s teplovzdušným

Více

ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI

ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE, FAKULTA ELEKTROTECHNICKÁ, KATEDRA ŘÍDICÍ TECHNIKY Modelování a simulace systémů cvičení 9 ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI Petr Hušek (husek@fel.cvut.cz)

Více

Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony.

Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony. Nelineární obvody Dosud jsme se zabývali analýzou lineárních elektrických obvodů, pasivní lineární prvky měly zpravidla konstantní parametr, v těchto obvodech platil princip superpozice a pro analýzu harmonického

Více

Modelování a simulace Lukáš Otte

Modelování a simulace Lukáš Otte Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast

Více

Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +,

Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +, Příklad 1 Najděte body, v nichž má funkce (,) vázané extrémy, případně vázané lokální extrémy s podmínkou (,)=0, je-li: a) (,)= + 1, (,)=+ 1 lok.max.v 1 2,3 2 b) (,)=+, (,)= 1 +1 1 c) (,)=, (,)=+ 1 lok.max.v

Více

Rovnice přímky vypsané příklady. Parametrické vyjádření přímky

Rovnice přímky vypsané příklady. Parametrické vyjádření přímky Rovnice přímky vypsané příklady Zdroj: Vše kromě příkladu 3.4: http://kdm.karlin.mff.cuni.cz/diplomky/jan_koncel/rovina.php?kapitola=parametrickevyjadre ni Příklady 3.5 a 3.7-1 a 3: http://kdm.karlin.mff.cuni.cz/diplomky/jan_koncel/rovina.php?kapitola=obecnarovnice

Více

Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky v Brně

Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky v Brně Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky Algoritmy řízení topného článku tepelného hmotnostního průtokoměru Autor práce: Vedoucí

Více

OBECNÉ METODY VYROVNÁNÍ

OBECNÉ METODY VYROVNÁNÍ OBECNÉ METODY VYROVNÁNÍ HYNČICOVÁ TEREZA, H2IGE1 2014 ÚVOD Z DŮVODU VYLOUČENÍ HRUBÝCH CHYB A ZVÝŠENÍ PŘESNOSTI NIKDY NEMĚŘÍME DANOU VELIČINU POUZE JEDNOU VÝSLEDKEM OPAKOVANÉHO MĚŘENÍ NĚKTERÉ VELIČINY JE

Více

Řízení tepelné soustavy s dopravním zpožděním pomocí PLC

Řízení tepelné soustavy s dopravním zpožděním pomocí PLC Řízení tepelné soustavy s dopravním zpožděním pomocí PLC Jan Beran TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1. Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ

Více

Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK

Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK a/ PNEUMATICKÉHO PROPORCIONÁLNÍHO VYSÍLAČE b/ PNEUMATICKÉHO P a PI REGULÁTORU c/ PNEUMATICKÉHO a SOLENOIDOVÉHO VENTILU ad a/ Cejchování

Více

Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení

Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení Polynom nad R = zobrazení f : R R f(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, kde a i R jsou pevně daná

Více

Regulační obvody s nespojitými regulátory

Regulační obvody s nespojitými regulátory Regulační obvody s nespojitými regulátory Dvoupolohový regulátor ve spojení s regulovanou statickou a astatickou soustavou. Známe již funkci regulovaných soustav a nespojitých regulátorů a můžeme přejít

Více

Měření modulů pružnosti G a E z periody kmitů pružiny

Měření modulů pružnosti G a E z periody kmitů pružiny Měření modulů pružnosti G a E z periody kmitů pružiny Online: http://www.sclpx.eu/lab2r.php?exp=2 V tomto experimentu vycházíme z pojetí klasického pokusu s pružinovým oscilátorem. Z periody kmitů se obvykle

Více

Převodníky fyzikálních veličin (KKY/PFV)

Převodníky fyzikálních veličin (KKY/PFV) Fakulta aplikovaných věd Katedra kybernetiky Převodníky fyzikálních veličin (KKY/PFV) 1. semestrální práce Měření statických charakteristik snímačů a soustav pro účely regulace Jméno, Příjmení Ivan Pirner,

Více

TEPELNÉ ÚČINKY EL. PROUDU

TEPELNÉ ÚČINKY EL. PROUDU Univerzita Pardubice Fakulta elektrotechniky a informatiky Materiály pro elektrotechniku Laboratorní cvičení č 1 EPELNÉ ÚČINKY EL POUDU Jméno(a): Jiří Paar, Zdeněk Nepraš Stanoviště: 6 Datum: 21 5 28 Úvod

Více

ρ = měrný odpor, ρ [Ω m] l = délka vodiče

ρ = měrný odpor, ρ [Ω m] l = délka vodiče 7 Kapitola 2 Měření elektrických odporů 2 Úvod Ohmův zákon definuje ohmický odpor, zkráceně jen odpor, R elektrického vodiče jako konstantu úměrnosti mezi stejnosměrným proudem I, který protéká vodičem

Více

UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky. NASTAVENÍ PARAMETRŮ PID REGULÁTORU JAKO OPTIMALIZAČNÍ ÚLOHA Ondřej Zouhar

UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky. NASTAVENÍ PARAMETRŮ PID REGULÁTORU JAKO OPTIMALIZAČNÍ ÚLOHA Ondřej Zouhar UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky NASTAVENÍ PARAMETRŮ PID REGULÁTORU JAKO OPTIMALIZAČNÍ ÚLOHA Ondřej Zouhar Bakalářská práce 2015 1 2 3 Prohlášení Prohlašuji: Tuto práci jsem vypracoval

Více

POPIS, IDENTIFIKACE SYSTÉMU A NÁVRH REGULÁTORU POMOCÍ MATLABU V APLIKACI FOTBAL ROBOTŮ

POPIS, IDENTIFIKACE SYSTÉMU A NÁVRH REGULÁTORU POMOCÍ MATLABU V APLIKACI FOTBAL ROBOTŮ POPIS, IDENTIFIKACE SYSTÉMU A NÁVRH REGULÁTORU POMOCÍ MATLABU V APLIKACI FOTBAL ROBOTŮ Z.Macháček, V. Srovnal Katedra měřicí a řídicí techniky, Fakulta elektrotechniky a informatiky, VŠB-TU Ostrava Abstrakt

Více

PŘECHODOVÝ DĚJ VE STEJNOSMĚRNÉM EL. OBVODU zapnutí a vypnutí sériového RC členu ke zdroji stejnosměrného napětí

PŘECHODOVÝ DĚJ VE STEJNOSMĚRNÉM EL. OBVODU zapnutí a vypnutí sériového RC členu ke zdroji stejnosměrného napětí Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB -TU Ostrava PŘEHODOVÝ DĚJ VE STEJNOSMĚNÉM EL. OBVODU zapnutí a vypnutí sériového členu ke zdroji stejnosměrného napětí Návod do

Více

Regulace. Dvoustavová regulace

Regulace. Dvoustavová regulace Regulace Dvoustavová regulace Využívá se pro méně náročné aplikace. Z principu není možné dosáhnout nenulové regulační odchylky. Měřená hodnota charakteristickým způsobem kmitá kolem žádané hodnoty. Regulační

Více

Vstupní signál protne zvolenou úroveň. Na základě získaných údajů se dá spočítat perioda signálu a kmitočet. Obrázek č.2

Vstupní signál protne zvolenou úroveň. Na základě získaných údajů se dá spočítat perioda signálu a kmitočet. Obrázek č.2 2. Vzorkovací metoda Určení kmitočtu z vzorkovaného průběhu. Tato metoda založena na pozorování vstupního signálu pomocí osciloskopu a nastavení určité úrovně, pro zjednodušování považujeme úroveň nastavenou

Více

Západočeská univerzita. Lineární systémy 2

Západočeská univerzita. Lineární systémy 2 Západočeská univerzita FAKULTA APLIKOVANÝCH VĚD Lineární systémy Semestrální práce vypracoval: Jan Popelka, Jiří Pročka 1. květen 008 skupina: pondělí 7-8 hodina 1) a) Jelikož byly měřící přípravky nefunkční,

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

KYBERNETIKA. Prof. Ing. Vilém Srovnal, CSc. Vysoká škola báňská Technická univerzita Ostrava

KYBERNETIKA. Prof. Ing. Vilém Srovnal, CSc. Vysoká škola báňská Technická univerzita Ostrava KYBERNETIKA Prof. Ing. Vilém Srovnal, CSc. Vysoká škola báňská Technická univerzita Ostrava 28 . ÚVOD DO TECHNICKÉ KYBERNETIKY... 5 Co je to kybernetika... 5 Řídicí systémy... 6 Základní pojmy z teorie

Více

Regulační obvod s měřením akční veličiny

Regulační obvod s měřením akční veličiny Regulační obvod s měřením akční veličiny Zadání Soustava vyššího řádu je vytvořena z několika bloků nižšího řádu, jak je patrno z obrázku. Odvoďte výsledný přenos soustavy vyššího řádu popisující dané

Více

Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2)

Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2) Předmět: Ročník: Vytvořil: Datum: AUTOMATIZACE DRUHÝ ZDENĚK KOVAL Název zpracovaného celku: 27. 3. 2013 Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2) 5.5 REGULOVANÉ SOUSTAVY Regulovaná

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2. Plzeň, 2008 Pavel Jedlička

Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2. Plzeň, 2008 Pavel Jedlička Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2 Semestrální práce Plzeň, 2008 Jan Krčmář Pavel Jedlička 1 Měřený model Je zadán systém (1), který budeme diskretizovat použitím funkce c2d

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

Regulační obvod s měřením regulováné veličiny

Regulační obvod s měřením regulováné veličiny Regulační obvod s měřením regulováné veličiny Zadání Soustava vyššího řádu je vytvořena z několika bloků nižšího řádu, jak je patrno z obrázku. Odvoďte výsledný přenos soustavy vyššího řádu popisující

Více

Obsah. Gain scheduling. Obsah. Linearizace

Obsah. Gain scheduling. Obsah. Linearizace Regulace a řízení II Řízení nelineárních systémů Regulace a řízení II Řízení nelineárních systémů - str. 1/29 Obsah Obsah Gain scheduling Linearizace Regulace a řízení II Řízení nelineárních systémů -

Více

Test z matematiky. Přijímací zkoušky na bakalářský obor Bioinformatika

Test z matematiky. Přijímací zkoušky na bakalářský obor Bioinformatika Test z matematiky Přijímací zkoušky na bakalářský obor Bioinformatika 5. 6. 2019 Na provedení testu máte 60 minut. Při testu nelze používat kalkulátory, tabulky ani jakákoli komunikační média. Test obsahuje

Více

6 Algebra blokových schémat

6 Algebra blokových schémat 6 Algebra blokových schémat Operátorovým přenosem jsme doposud popisovali chování jednotlivých dynamických členů. Nic nám však nebrání, abychom přenosem popsali dynamické vlastnosti složitějších obvodů,

Více

The Optimization of Modules for M68HC08 Optimalizace modulů pro M68HC08

The Optimization of Modules for M68HC08 Optimalizace modulů pro M68HC08 XXX. ASR '005 Seminar, Instruments and Control, Ostrava, April 9, 005 6 he Optimization of Modules for M68HC08 Optimalizace modulů pro M68HC08 DOLEŽEL, Petr & VAŠEK, Vladimír Ing., Univerzita omáše Bati

Více

KNIHOVNA MODELŮ TECHNOLOGICKÝCH PROCESŮ

KNIHOVNA MODELŮ TECHNOLOGICKÝCH PROCESŮ KNIHOVNA MODELŮ TECHNOLOGICKÝCH PROCESŮ Radim Pišan, František Gazdoš Fakulta aplikované informatiky, Univerzita Tomáše Bati ve Zlíně Nad stráněmi 45, 760 05 Zlín Abstrakt V článku je představena knihovna

Více

Opakování z předmětu TES

Opakování z předmětu TES Opakování z předmětu TES A3B35ARI 6..6 Vážení studenti, v následujících měsících budete každý týden z předmětu Automatické řízení dostávat domácí úkol z látky probrané v daném týdnu na přednáškách. Jsme

Více

DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska

DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav mechaniky DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska 2004 Jan KRYŠTŮFEK Motivace Účel diplomové práce: Porovnání nelineárního řízení

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

Příklady k přednášce 8 - Geometrické místo kořenů aneb Root Locus

Příklady k přednášce 8 - Geometrické místo kořenů aneb Root Locus Příklady k přednášce 8 - Geometrické místo kořenů aneb Root Locus Michael Šebek Automatické řízení 018 1-3-18 Automatické řízení - Kybernetika a robotika Pro bod na RL platí (pro nějaké K>0) KL( s) = (k

Více

Klasické pokročilé techniky automatického řízení

Klasické pokročilé techniky automatického řízení Klasické pokročilé techniky automatického řízení Jaroslav Hlava TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Ivan Švarc. Radomil Matoušek. Miloš Šeda. Miluše Vítečková. c..~"f~ AKADEMICKÉ NAKlADATEL.STVf. Brno 20 I I

Ivan Švarc. Radomil Matoušek. Miloš Šeda. Miluše Vítečková. c..~f~ AKADEMICKÉ NAKlADATEL.STVf. Brno 20 I I Ivan Švarc. Radomil Matoušek Miloš Šeda. Miluše Vítečková AUTMATICKÉ RíZENí c..~"f~ AKADEMICKÉ NAKlADATEL.STVf Brno 0 I I n ~~ IU a ~ o ~e ~í ru ly ry I i ~h ~" BSAH. ÚVD. LGICKÉ RÍZENÍ. ""''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''oooo

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 1. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská

Více

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t. 1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co

Více

Měřicí přístroje a měřicí metody

Měřicí přístroje a měřicí metody Měřicí přístroje a měřicí metody Základní elektrické veličiny určují kvalitativně i kvantitativně stav elektrických obvodů a objektů. Neelektrické fyzikální veličiny lze převést na elektrické veličiny

Více

Příklady k přednášce 13 - Návrh frekvenčními metodami

Příklady k přednášce 13 - Návrh frekvenčními metodami Příklady k přednášce 13 - Návrh frekvenčními metodami Michael Šebek Automatické řízení 2015 30-3-15 Nastavení šířky pásma uzavřené smyčky Na přechodové frekvenci v otevřené smyčce je (z definice) Hodnota

Více

POUŽITÍ REAL TIME TOOLBOXU PRO REGULACI HLADIN V PROPOJENÝCH VÁLCOVÝCH ZÁSOBNÍCÍCH

POUŽITÍ REAL TIME TOOLBOXU PRO REGULACI HLADIN V PROPOJENÝCH VÁLCOVÝCH ZÁSOBNÍCÍCH POUŽITÍ REAL TIME TOOLBOXU PRO REGULACI HLADIN V PROPOJENÝCH VÁLCOVÝCH ZÁSOBNÍCÍCH P. Chalupa Univerzita Tomáše Bati ve Zlíně Fakulta technologická Ústav řízení procesů Abstrakt Příspěvek se zabývá problémem

Více

Podpora cvičení z předmětu: Teorie automatického řízení I.

Podpora cvičení z předmětu: Teorie automatického řízení I. Podpora cvičení z předmětu: Teorie automatického řízení I. Support exercising from subject: Automatic control theory I Jana Vyoralová Bakalářská práce 2007 UTB ve Zlíně, Fakulta aplikované informatiky,

Více

PROSTŘEDKY AUTOMATICKÉHO ŘÍZENÍ

PROSTŘEDKY AUTOMATICKÉHO ŘÍZENÍ NS72 2005/2006 PROSTŘEDKY AUTOMATICKÉHO ŘÍZENÍ Úloha č.2 - Průmyslová sběrnice RS485 Vypracoval: Ha Minh 7. 5. 2006 Spolupracoval: Josef Dovrtěl Zadání. Seznamte se s úlohou distribuovaného systému řízení

Více

Teoretický úvod: [%] (1)

Teoretický úvod: [%] (1) Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy ZESILOVAČ OSCILÁTOR 101-4R Zadání 1. Podle přípravku

Více

SERIOVÉ A PARALELNÍ ZAPOJENÍ PRUŽIN

SERIOVÉ A PARALELNÍ ZAPOJENÍ PRUŽIN SERIOVÉ A PARALELNÍ ZAPOJENÍ PRUŽIN ANNA MOTYČKOVÁ 2015/2016, 8. Y Obsah Teoretický rozbor... 3 Zjištění tuhosti pružiny... 3 Sériové zapojení pružin... 3 Paralelní zapojení pružin... 3 Praktická část...

Více

Studijní opory k předmětu 6AA. 6AA Automatizace. Studijní opory k předmětu. Ing. Petr Pokorný 1/40 6AA AUTOMATIZACE 6AA - cvičení

Studijní opory k předmětu 6AA. 6AA Automatizace. Studijní opory k předmětu. Ing. Petr Pokorný 1/40 6AA AUTOMATIZACE 6AA - cvičení 6AA Automatizace Studijní opory k předmětu Ing. Petr Pokorný 1/40 6AA Obsah: Logické řízení - Boolova algebra... 4 1. Základní logické funkce:... 4 2. Vyjádření Booleových funkcí... 4 3. Zákony a pravidla

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

TEPELNÉ ÚČINKY EL. PROUDU

TEPELNÉ ÚČINKY EL. PROUDU Univerzita Pardubice Fakulta elektrotechniky a informatiky Materiály pro elektrotechniku Laboratorní cvičení č. 1 TEPELNÉ ÚČINKY EL. POUDU Jméno(a): Mikulka oman, Havlíček Jiří Stanoviště: 6 Datum: 19.

Více

Operační zesilovač, jeho vlastnosti a využití:

Operační zesilovač, jeho vlastnosti a využití: Truhlář Michal 6.. 5 Laboratorní práce č.4 Úloha č. VII Operační zesilovač, jeho vlastnosti a využití: Úkol: Zapojte operační zesilovač a nastavte jeho zesílení na hodnotu přibližně. Potvrďte platnost

Více

Flexibilita jednoduché naprogramování a přeprogramování řídícího systému

Flexibilita jednoduché naprogramování a přeprogramování řídícího systému Téma 40 Jiří Cigler Zadání Číslicové řízení. Digitalizace a tvarování. Diskrétní systémy a jejich vlastnosti. Řízení diskrétních systémů. Diskrétní popis spojité soustavy. Návrh emulací. Nelineární řízení.

Více

Metody výpočtu limit funkcí a posloupností

Metody výpočtu limit funkcí a posloupností Metody výpočtu limit funkcí a posloupností Martina Šimůnková, 6. listopadu 205 Učební tet k předmětu Matematická analýza pro studenty FP TUL Značení a terminologie R značí množinu reálných čísel, rozšířenou

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

Automatizace Úloha č.1. Identifikace regulované soustavy Strejcovou metodou

Automatizace Úloha č.1. Identifikace regulované soustavy Strejcovou metodou Automatizace Úloha č. Identifikace regulované outavy Strejcovou metodou Petr Luzar 008/009 Zadání. Zapojte regulační obvod reálnou tepelnou outavou a eznamte e monitorovacím a řídicím programovým ytémem

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ BRNO, KOUNICOVA 16 PRO 3. ROČNÍK OBORU SLABOPROUDÁ ELEKTROTECHNIKA 2. ČÁST

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ BRNO, KOUNICOVA 16 PRO 3. ROČNÍK OBORU SLABOPROUDÁ ELEKTROTECHNIKA 2. ČÁST STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ BRNO, KOUNICOVA 6 PRO 3. ROČNÍK OBORU SLABOPROUDÁ ELEKTROTECHNIKA. ČÁST ZPRACOVALA ING. MIROSLAVA ODSTRČILÍKOVÁ BRNO 3 OBSAH.ÚVOD...5..Charakteristika jednotlivých

Více

24 - Diskrétní řízení

24 - Diskrétní řízení 24 - Diskrétní řízení Michael Šebek Automatické řízení 213 13-5-14 Metody návrhu diskrétního řízení Automatické řízení - Kybernetika a robotika Návrh pro čistě diskrétní systémy Mnohé metody jsou analogické

Více

Pozorovatel, Stavová zpětná vazba

Pozorovatel, Stavová zpětná vazba Pozorovatel, Stavová zpětná vazba Teorie dynamických systémů Obsah Úvod 2 Příklady 2 3 Domácí úlohy 6 Reference 8 Úvod Pozorovatel stavu slouží k pozorování (odhadování) zejména neměřitelných stavů systému.

Více

Identifikace a řízení nelineárního systému pomocí Hammersteinova modelu

Identifikace a řízení nelineárního systému pomocí Hammersteinova modelu 1 Portál pre odborné publikovanie ISSN 1338-0087 Identifikace a řízení nelineárního systému pomocí Hammersteinova modelu Brázdil Michal Elektrotechnika 25.04.2011 V praxi se často setkáváme s procesy,

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE

Více