Lineární činitel prostupu tepla
|
|
- Mária Lišková
- před 6 lety
- Počet zobrazení:
Transkript
1 Lineární činitel prostupu tepla Zyněk Svooda, FSv ČVUT Původní text ze skript Stavení fyzika 31 z roku Částečně aktualizováno v roce 2015 především s ohledem na změny v normách. Lineární činitel prostupu tepla e poměrně nová veličina, která charakterizue tepelně technické vlastnosti dvourozměrných tepelných mostů a vaze. Vyadřue množství tepla ve W, které prochází při ednotkovém teplotním rozdílu ednotkovou délkou tepelného mostu. Jedná se tedy vlastně trochu populárněi řečeno o odou součinitele prostupu tepla u plošných konstrukcí Požadavky Požadavky na lineární činitel prostupu tepla uvádí ČSN v čl Pro každou tepelnou vazu mezi konstrukcemi musí ýt splněna podmínka ψ ψ N, [W/(m.K)] (1) kde ψ e vypočtený lineární činitel prostupu tepla tepelné vazy mezi konstrukcemi a ψ N e eho normou požadovaná hodnota ve W/(m.K), která e uvedena v Ta. 1. Ta. 1: Požadovaný lineární činitel prostupu tepla ψ N podle ČSN Styk vněší stěny a další konstrukce s výimkou výplně otvoru (např. styk se základem, stropem, inou stěnou, střechou, alkonem apod.) Styk vněší stěny a výplně otvoru (parapet, ostění, nadpraží) Styk střechy a výplně otvoru (střešní okno, světlík apod.) Požadované hodnoty ψ N Doporučené hodnoty ψ rec Doporučené hodnoty pro pasivní udovy ψ pas [W/(m K)] [W/(m K)] [W/(m K)] 0,20 0,10 0,05 0,10 0,03 0,01 0,30 0,10 0,02 Splnění požadavků na lineární činitel prostupu tepla se nemusí hodnotit, e-li návrhem i provedením zaručeno, že e půsoení tepelných vaze mezi konstrukcemi velmi malé (ČSN konkrétně uvádí, že musí ýt menší než 5 % nenižšího součinitele prostupu tepla navazuících konstrukcí). Ovykle se edná o případy s tepelnou izolací kontinuálně proíhaící přes veškeré styky konstrukcí (např. při venkovním zateplení) Postup výpočtu Orientační (taulkové) hodnoty lineárních činitelů prostupu tepla uvádí pro vyrané detaily ČSN EN ISO Jeich použití e omezené pravidly uvedenými v citované normě a e pochopitelně vždy zatíženo chyou (až 20 %). Lineární činitel prostupu tepla lze ovšem relativně snadno i vypočítat a získat tak eho dosti přesnou hodnotu. Pro detaily, na které půsoí pouze dvě okraové teploty, se lineární činitel prostupu tepla určí ze vztahu
2 = L U ψ, [W/(m.K)] (2) kde L e vypočtená tepelná propustnost hodnoceným detailem ve W/(m.K), U e součinitel prostupu tepla -té dílčí plošné konstrukce ve W/(m 2.K) a e šířka -té konstrukce v m. Vztah (2) patří ohužel k těm vztahům, které nesou na první pohled zcela srozumitelné. Slovně y ho ylo možné vyádřit ako rozdíl celkového tepelného toku prostupem tepelnou vazou L a součtu tepelných toků prostupem plošnými konstrukcemi (t. U ii ), které vazu tvoří. Pro vysvětlení se podíveme na Or. 1, kde sou vidět ěžné příklady staveních detailů s ednou či dvěma dílčími plošnými konstrukcemi. Ze schématu e zřemé umístění dílčích plošných konstrukcí a vola rozměru. Na Or. 1 sou zásadně používány rozměry měřené z vněší strany, které sou v ČR standardně používány pro daný typ výpočtu (a pro navazuící hodnocení energetické náročnosti udov). Sloup ve stěně U U Příklady detailů s ednou plošnou konstrukcí 2 Styk stropu a stěny U 2 U 1 Příklad detailu se dvěma plošnými konstrukcemi 1 (ukončeno na hraně tepelné izolace) Styk střechy a stěny Or. 1 Dílčí plošné konstrukce v detailu Vraťme se však eště na okamžik ke vztahu (2). Zvídavěší čtenáři si totiž možná kladou otázku, proč e vůec nutné odečítat člen U i i od tepelné propustnosti L. Pro oasnění se podíveme na Or. 2, kde e vidět modelová místnost, pro kterou se stanovue tepelná ztráta prostupem, a vyraný detail koutu dvou vněších stěn. Tepelnou ztrátu prostupem s vlivem dvourozměrných tepelných mostů e možné oecně vyádřit vztahem Φ T = U A θ + ψ l θ, [W] (3) kde U e součinitel prostupu tepla -té plošné konstrukce ve W/(m 2.K), A e eí plocha v m 2, ψ e lineární činitel prostupu tepla -tého tepelného mostu či vazy ve W/(m.K), l e eho délka v m a θ e rozdíl mezi návrhovou vnitřní teplotou a teplotou na vněší straně -té konstrukce či mostu ve C. Ze vztahu (3) e zřemé, že hodnota ψ nesmí vyadřovat nic více, než ednotkový prostup tepla tepelným mostem či vazou. Pokud ychom totiž lineární činitel prostupu tepla koutu dvou stěn na Or. 2 ztotožnili s vypočtenou tepelnou propustností (t. ψ = L), osahoval y i vliv prostupu tepla přes části ovodových stěn tvořících kout. Po dosazení takové hodnoty do vztahu (3) y pak celková tepelná ztráta místnosti prostupem osahovala dvakrát tu část ovodového pláště, kde se stěna a hodnocený tepelný most překrývaí. Na Or. 2 e tato část označena překrývaícím se šrafováním. Lineární činitel
3 prostupu tepla e proto třea vždy vyčíslit tak, ay neosahoval vliv těch plošných staveních konstrukcí, které se při výpočtu tepelné ztráty místnosti prostupem hodnotí samostatně. a l 1 Místnost hodnocená z hlediska tepelné ztráty Detail zadaný ve výpočtu teplotního pole Or. 2 Hodnocený detail a eho vztah k hodnocené místnosti A eště edno velmi důležité upozornění. Všechny veličiny ve vztahu (2) musí ýt vypočteny při použití shodných tepelných odporů při přestupu tepla či součinitelů přestupu tepla. Pokud y tomu tak neylo, výsledný lineární činitel prostupu tepla y vykazoval výraznou chyu. Lineární činitel prostupu tepla může vycházet kladný i záporný. Častěší kladná hodnota znamená, že přes hodnocený tepelný most dochází k přídavné tepelné ztrátě. Méně častá záporná hodnota ovykle znamená, že vliv hodnoceného tepelného mostu na tepelnou ztrátu místnosti prostupem e iž ve skutečnosti osažen v tepelné ztrátě přes plošné konstrukce. Půsoí-li na hodnocený detail více než dvě teploty, e nutné stanovit více lineárních činitelů prostupu tepla (například pro tři prostředí y ylo nutné stanovit celkem tři hodnoty ψ). Podroný postup výpočtu pro tento méně častý případ uvádí ČSN EN ISO Podíveme se závěrem eště na eden specifický postup výpočtu, který e definován v ČSN EN ISO a který se používá při hodnocení styku ovodové stěny a podlahy na zemině (Or. 3). Lze e použít ve vhodných modifikacích i u dalších detailů v kontaktu se zeminou. Při zadávání detailu do programu pro výpočet 2D teplotních polí se hranice zeminy volí podle Or. 2 v části Okraové podmínky (varianta pro výpočet tepelných toků). Hodnota na Or. 2 v části Okraové podmínky se uvažue uď ako menší půdorysný rozměr oektu, neo ako charakteristický rozměr podlahy podle vztahu (18) v části Součinitel prostupu tepla, a neo ako 8 m, pokud není o udově nic ližšího známo.
4 exteriér w U w interiér Model detailu a umístění okraových podmínek pro výpočet propustnosti L f,i f,e exteriér interiér Model detailu a umístění okraových podmínek pro výpočet propustnosti L g Or. 3 Modely základu stěny Samotný lineární činitel prostupu tepla tepelné vazy mezi stěnou a podlahou na zemině lze stanovit pro standardní vněší rozměry ze vztahu f, e ψ = L U w w Lg, [W/(m.K)] (4) f, i kde L e tepelná propustnost celým detailem ve W/(m.K), U w e součinitel prostupu tepla stěny ve W/(m 2.K), w e výška stěny měřený z vněší strany v m, L g e tepelná propustnost podlahou včetně vlivu zeminy ve W/.(m.K), f,e e vodorovný rozměr podlahy měřený z vněší strany v m a f,i e vodorovný rozměr podlahy měřený z vnitřní strany v m. Výpočet tepelné propustnosti L ve vztahu (4) se provádí pro celý detail, přičemž se okraové podmínky zadávaí na všech površích, které sou v kontaktu s vnitřním a s vněším vzduchem. Výpočet tepelné propustnosti L g se provádí pro upravený detail, v němž e zcela vynechána ovodová stěna a v němž e základ nahrazen zeminou (zůstane tedy pouze podlahová konstrukce o šířce f,i ). Okraové podmínky se pak zadávaí pouze na vnitřním povrchu podlahy a na vněším povrchu původní zeminy. Názorně tento postup ukazue Or. 3. Uvedený postup e nutné použít proto, že v tepelné propustnosti L g e přímo vyádřen kompletní přenos tepla mezi interiérem a exteriérem přes plochu podlahy, a to včetně vlivu cesty zeminou (hodnota L g vlastně odpovídá součinu šířky podlahy f,i a eího součinitele prostupu tepla U g stanoveného s vlivem zeminy). Alternativně ke vztahu (4) lze podle ČSN EN ISO použít - opět pro vněší rozměry - i dosti diskutailní vztah = L U w w U g ψ, [W/(m.K)] (5) g kde U g e součinitel prostupu tepla podlahy včetně vlivu zeminy stanovený podle ČSN EN ISO ve W/(m 2.K) a g e vodorovný rozměr podlahy měřený z vněší strany v m. Při použití vztahu (5) postačí provést pouze výpočet tepelné propustnosti celým detailem L, výpočet tepelné propustnosti
5 podlahou L g není třea. Prolémem vztahu (5) e nicméně součinitel prostupu tepla podlahy s vlivem zeminy U g, protože tato hodnota závisí rozhoduícím způsoem na tvaru podlahy (např. pro podlahu ve tvaru dlouhého úzkého odélníku ude výrazně vyšší než pro podlahu ve tvaru čtverce o stené ploše). Lineární činitel prostupu tepla podle vztahu (5) tak může pro naprosto stený detail styku stěny, základu a podlahy vycházet u geometricky různých podlah různě, což znemožňue využití vztahu (5) při tvorě katalogů tepelných vaze. Otázkou e i použití pro energetické hodnocení konkrétní udovy, protože součin U g * g ve vztahu (5) ude těžko kdy skutečně odpovídat tepelné propustnosti L g stanovené výpočtem hodnocené 2D tepelné vazy. Chya vnesená touto nekonzistencí může ýt i dosti významná. vynechaný prostor v místě stěny či základu podlaha základ nahrazený zeminou Or. 4 Model podlahy s tep. izolací pod terénem pro výpočet hodnoty L g Za upozornění eště stoí specifický případ, kdy e tepelná izolace v podlaze umístěna pod úrovní okolního terénu. V takovém případě e třea vytvořit model pro výpočet tepelné propustnosti L g podle Or. 4, t. vynechat vedle podlahy volný prostor, ay yly tepelné toky podlahou orientovány pouze směrem dolů a nikoli vodorovně. Kdyy tomu tak neylo, vykazovala y hodnota tepelné propustnosti L g výraznou chyu Příklady Na Or. 5 e uveden první příklad výpočtu lineárního činitele prostupu tepla. Jedná se o železoetonový sloup 400 x 400 mm umístěný v sendvičové stěně (děrované cihly 300 mm, polystyren 80 mm, lícové cihly 115 mm) o součiniteli prostupu tepla U = 0,30 W/(m 2.K) Or. 5 Detail železoetonového sloupu
6 Výpočtem s pomocí programu Area yla stanovena tepelná propustnost L = 0,618 W/(m.K). Lineární činitel prostupu tepla stanovený podle vztahu (3) činí: ψ = = 0,618 1,8 0, 30 = 0,08 W/(m.K). e ψ i Hodnocený tepelný most splňue požadavek ČSN na lineární činitel prostupu tepla, protože eho vypočtená hodnota e nižší než požadovaných 0,20 W/(m.K). Na Or. 6 e další hodnocený detail v tomto případě konzola nad oknem o součiniteli prostupu tepla U w =1,4 W/(m 2.K). Ovodová stěna z děrovaných cihel tl. 400 mm e opatřena vněším kontaktním zateplením tl. 80 mm. Součinitel prostupu tepla stěny e 0,24 W/(m 2.K) tep. izolace θ e θ i 730 tep. izolace okno θ i 400 Or. 6 Detail konzoly nad oknem Při výpočtu programem Area yl detail vhodným způsoem zednodušen - okno ylo nahrazeno ediným odélníkem tl. 50 mm o ekvivalentní tepelné vodivosti 0,092 W/(m.K). Takto lze zaistit, ay ak ve výpočtu teplotního pole, tak ve vztahu (3) figurovalo okno přesně steným způsoem. Tepelná propustnost stanovená výpočtem činí L = 1,522 W/(m.K). Lineární činitel prostupu tepla ude v tomto případě odlišný pro vnitřní a pro vněší rozměry. Pro vnitřní rozměry ude ψ = 1,522 0,4 1,4 ( 0,25 + 0,73 ) 0, 24 = 0,73 W/(m.K). Pro vněší rozměry ude poněkud nižší: i ψ e = 1,522 0,4 1,4 1,2 0, 24 = 0,67 W/(m.K). Hodnocená tepelná vaza v tomto případě nesplňue požadavek ČSN na lineární činitel prostupu tepla vypočtená hodnota e vyšší než požadovaných 0,20 W/(m.K).
Lineární činitel prostupu tepla
Lineární činitel prostupu tepla Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2018 především s ohledem na změny v normách. Lineární činitel
BH059 Tepelná technika budov
BH059 Tepelná technika budov Ing. Danuše Čuprová, CSc. Ing. Sylva Bantová, Ph.D. Výpočet součinitele prostupu okna Lineární a bodový činitel prostupu tepla Nejnižší vnitřní povrchová teplota konstrukce
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Stavební fyzika (L) Jan Tywoniak A428
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Stavební fyzika (L) 4 Jan Tywoniak A428 tywoniak@fsv.cvut.cz volba modelu pro výpočet vícerozměrného vedení tepla Lineární a bodový tepelný most Lineární
Téma: Průměrný součinitel prostupu tepla
Poznámky k zadání: ) Základní pomy éma: Průměrný součinitel prostupu tepla k výpočtu průměrného součinitele prostupu tepla budovy e nutné znát hodnoty součinitele prostupu tepla a plochy všech konstrukcí,
BH059 Tepelná technika budov
BH059 Tepelná technika budov Stavebně energetické vlastnosti budovy - Průměrný součinitel prostupu tepla Energetická náročnost budovy Prostup tepla obálkou budovy vyadřue základní vliv stavebního řešení
Nejnižší vnitřní povrchová teplota a teplotní faktor
Nejnižší vnitřní povrchová teplota a teplotní faktor Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2014 především s ohledem na změny v normách.
Průměrný součinitel prostupu tepla budovy
Průměrný součinitel prostupu tepla budovy Zbyněk Svoboda, FSv ČVUT Praha Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2014 především s ohledem na změny v normách.
Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost
Výňatek z normy ČSN EN ISO 13370 Tepelně technické vlastnosti zeminy Použijí se hodnoty odpovídající skutečné lokalitě, zprůměrované pro hloubku. Pokud je druh zeminy znám, použijí se hodnoty z tabulky.
BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D.
Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D. Průběh zkoušky, literatura Tepelně
EFEKTIVNÍ ENERGETICKÝ REGION ECHY DOLNÍ BAVORSKO
EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍČECHY ECHY DOLNÍ BAVORSKO Vytápěnía využitíobnovitelných zdrojůenergie se zaměřením na nízkoenergetickou a pasivní výstavbu Parametry pasivní výstavby Investice do Vaší
2. Tepelné ztráty dle ČSN EN
Základy vytápění (2161596) 2. Tepelné ztráty dle ČSN EN 12 831-1 19. 10. 2018 Ing. Jindřich Boháč ČSN EN 12 831-1 ČSN EN 12 831-1 Energetická náročnost budov Výpočet tepelného výkonu Část 1: Tepelný výkon
rekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva
rekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva Jiří Novák činnost technických poradců v oblasti stavebnictví květen 2006 Obsah Obsah...1 Zadavatel...2
VÝPOČET TEPELNÝCH ZTRÁT
VÝPOČET TEPELNÝCH ZTRÁT A. Potřebné údaje pro výpočet tepelných ztrát A.1 Výpočtová vnitřní teplota θ int,i [ C] normová hodnota z tab.3 určená podle typu a účelu místnosti A.2 Výpočtová venkovní teplota
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: BD Ulice: Družstevní 279 PSČ: 26101 Město: Příbram Stručný popis budovy
Tepelná technika 1D verze TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: Bytový dům čp. 357359 Ulice: V Lázních 358 PSČ: 252 42 Město: Jesenice Stručný
Oblast podpory A Snižování energetické náročnosti stávajících rodinných domů. Oblast podpory C.2 Efektivní využití zdrojů energie, výměna zdrojů tepla
Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek pro podprogram Nová zelená úsporám - RODINNÉ DOMY v rámci 2. Výzvy k podávání žádostí Oblast podpory A Snižování energetické náročnosti
BH059 Tepelná technika budov Konzultace č. 3
Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov Konzultace č. 3 Zadání P7 (Konzultace č. 2) a P8 P7 Kondenzace vodní páry uvnitř konstrukce P8 Prostup
VÝPOČET TEPELNÝCH ZTRÁT
VÝPOČET TEPELNÝCH ZTRÁT A. Potřebné údaje pro výpočet tepelných ztrát A.1 Výpočtová vnitřní teplota θ int,i [ C] normová hodnota z tab.3 určená podle typu a účelu místnosti A.2 Výpočtová venkovní teplota
Tepelné mosty pro pasivní domy
Tepelné mosty pro pasivní domy Část: 4 / 5 Publikace byla zpracována za finanční podpory Ministerstva životního prostředí na realizaci projektů NNO z hlavní oblasti Ochrana životního prostředí, udržitelný
Protokol č. V- 213/09
Protokol č. V- 213/09 Stanovení součinitele prostupu tepla U, lineárního činitele Ψ a teplotního činitele vnitřního povrchu f R,si podle ČSN EN ISO 10077-1, 2 ; ČSN EN ISO 10211-1, -2, a ČSN 73 0540 Předmět
BH059 Tepelná technika budov Konzultace č.1
Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov Konzultace č.1 Literatura, podmínky zápočtu Zadání, protokoly Součinitel prostupu tepla U, teplotní
Tepelně technické vlastnosti zdiva
Obsah 1. Úvod 2 2. Tepelná ochrana budov 3-4 2.1 Závaznost požadavků 3 2.2 Budovy které musí splňovat normové požadavky 4 ČSN 73 0540-2(2007) 5 2.3 Ověřování požadavků 4 5 3. Vlastnosti použitých materiálů
Předmět VYT ,
Předmět VYT 216 1085, 216 2114 Podmínky získání zápočtu: 75 % docházka na cvičení (7 cvičení = minimálně 5 účastí) Konzultační hodiny: po dohodě Roman.Vavricka@fs.cvut.cz Místnost č. 215 Fakulta strojní,
TZB Městské stavitelsví
Katedra prostředí staveb a TZB TZB Městské stavitelsví Zpracovala: Ing. Irena Svatošová, Ph.D. Nové výukové moduly vznikly za podpory projektu EU a státního rozpočtu ČR: Inovace a modernizace studijního
Tepelné mosty pro pasivní domy
Tepelné mosty pro pasivní domy Část: 3 / 5 Publikace byla zpracována za finanční podpory Ministerstva životního prostředí na realizaci projektů NNO z hlavní oblasti Ochrana životního prostředí, udržitelný
Oblast podpory A Snižování energetické náročnosti stávajících bytových domů
Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek pro podprogram Nová zelená úsporám - BYTOVÉ DOMY v rámci 1. Výzvy k podávání žádostí Oblast podpory A Snižování energetické náročnosti
Tepelné mosty pro pasivní domy
Tepelné mosty pro pasivní domy Část: 2 / 5 Publikace byla zpracována za finanční podpory Ministerstva životního prostředí na realizaci projektů NNO z hlavní oblasti Ochrana životního prostředí, udržitelný
1. Hodnocení budov z hlediska energetické náročnosti
H O D N O C E N Í B U D O V Z H L E D I S K A E N E R G E T I C K É N Á R O Č N O S T I K A P I T O L A. Hodnocení budov z hlediska energetické náročnosti Hodnocení stavebně energetické vlastnosti budov
Katalog konstrukčních detailů oken SONG
Katalog konstrukčních detailů oken SONG Květen 2018 Ing. Vítězslav Calta Ing. Michal Bureš, Ph.D. Stránka 1 z 4 Úvod Tento katalog je vznikl za podpory programu TAČR TH01021120 ve spolupráci ČVUT UCEEB
Školení DEKSOFT Tepelná technika 1D
Školení DEKSOFT Tepelná technika 1D Program školení 1. Blok Požadavky na stavební konstrukce Okrajové podmínky Nové funkce Úvodní obrazovka Zásobník materiálů Uživatelské skupiny Vlastní katalogy Zásady
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: Obecní úřad Suchonice Ulice: 29 PSČ: 78357 Město: Stručný popis budovy Seznam
SF2 Podklady pro cvičení
SF Podklady pro cvičení Úloha 7 D přenos tepla riziko růstu plísní a kondenzace na vnitřním povrchu konstrukce Ing. Kamil Staněk 11/010 kamil.stanek@fsv.cvut.cz 1 D přenos tepla 1.1 Úvodem Dosud jsme se
WiFi: název: InternetDEK heslo: netdekwifi. Školení DEKSOFT Tepelná technika
WiFi: název: InternetDEK heslo: netdekwifi Školení DEKSOFT Tepelná technika Program školení 1. Blok Legislativa Normy a požadavky Představení aplikací pro tepelnou techniku Představení dostupných studijních
Výpočet potřeby tepla na vytápění
Výpočet potřeby tepla na vytápění Výpočty a posouzení byly provedeny při respektování zásad CSN 73 05 40-2:2011, CSN EN ISO 13789, CSN EN ISO 13790 a okrajových podmínek dle TNI 73 029, TNI 73 030. Vytvořeno
Oblast podpory B Výstavba rodinných domů s velmi nízkou energetickou náročností
Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek pro podprogram Nová zelená úsporám - RODINNÉ DOMY v rámci 2. Výzvy k podávání žádostí Oblast podpory B Výstavba rodinných domů s velmi
ing. Roman Šubrt Tepelné mosty ve stavebních konstrukcích e-mail: roman@e-c.cz web: www.e-c.cz tel.: 777 196 154 roman@e-c.cz roman@e-c.
ing. Roman Šubrt Energy Consulting o.s. Tepelné mosty ve stavebních konstrukcích e-mail: web: www.e-c.cz tel.: Vykonzolovaný železobetonový balkón o délce m může mít z hlediska energetiky stejné tepelné
SCHEMA OBJEKTU POPIS OBJEKTU. Obr. 3: Pohled na rodinný dům
Klasický rodinný dům pro tři až čtyři obyvatele se sedlovou střechou a obytným podkrovím. Obvodové stěny vystavěny ze škvárobetonových tvárnic tl. 300 mm, šikmá střecha zateplena mezi krokvemi. V rámci
Prezentace: Martin Varga SEMINÁŘE DEKSOFT 2016 ČINITELÉ TEPLOTNÍ REDUKCE
Prezentace: Martin Varga www.stavebni-fyzika.cz SEMINÁŘE DEKSOFT 2016 ČINITELÉ TEPLOTNÍ REDUKCE Co to je činitel teplotní redukce b? Činitel teplotní redukce b je bezrozměrná hodnota, pomocí které se zohledňuje
Tepelnětechnický výpočet kondenzace vodní páry v konstrukci
Zakázka číslo: 2015-1201-TT Tepelnětechnický výpočet kondenzace vodní páry v konstrukci Bytový dům Kozlovská 49, 51 750 02 Přerov Objednatel: Společenství vlastníků jednotek domu č.p. 2828 a 2829 v Přerově
Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek
Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek Oblast podpory A Snižování energetické náročnosti stávajících rodinných domů Pro účely programu Nová zelená úsporám 2013 se rozumí:
Oblast podpory B Výstavba rodinných domů s velmi nízkou energetickou náročností
Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek pro podprogram Nová zelená úsporám - RODINNÉ DOMY v rámci 3. Výzvy k podávání žádostí Oblast podpory B Výstavba rodinných domů s velmi
Detail nadpraží okna
Detail nadpraží okna Zpracovatel: Energy Consulting, o.s. Alešova 21, 370 01 České Budějovice 386 351 778; 777 196 154 roman@e-c.cz Autor: datum: leden 2007 Ing. Roman Šubrt a kolektiv Lineární činitelé
Tepelné mosty v pasivních domech
ing. Roman Šubrt Energy Consulting Tepelné mosty v pasivních domech e-mail: web: roman@e-c.cz www.e-c.cz tel.: 777 96 54 Sdružení Energy Consulting - KATALOG TEPELNÝCH MOSTŮ, Běžné detaily - Podklady pro
Požárně otevřený prostor, odstupové vzdálenosti Václav Kupilík
Požárně otevřený prostor, odstupové vzdálenosti Václav Kupilík 1. Požárně bezpečnostní řešení a) Rozdělení objektu do požárních úseků a stanovení stupně požární bezpečnosti, b) Porovnání normových a navrhovaných
Oblast podpory A Snižování energetické náročnosti stávajících rodinných domů
Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek pro podprogram Nová zelená úsporám - RODINNÉ DOMY v rámci 3. Výzvy k podávání žádostí Oblast podpory A Snižování energetické náročnosti
Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství. BH059 Tepelná technika budov Konzultace č.1
Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov Konzultace č.1 Literatura: Studijní opory: BH10 Tepelná technika budov Normy: ČSN 73 0540 Tepelná
Autor: Ing. Martin Varga. Na formuláři zadání TEPELNÉ VAZBY přibyla v roletě další možnost možnost zadání tepelných vazeb:
Podrobné zadání tepelných vazeb - katalog 2D a 3D tepelných vazeb 15. 12. 2016 Autor: Ing. Martin Varga Od verze programu ENERGETIKA 4.2.8 v modulech (MĚS, HOD, NZÚ), resp. od verze 4.2.9 v modulu ECB
NÁVRH STANDARTU REVITALIZACE A ZATEPLENÍ OBJEKTU
ČVUT V PRAZE, FAKULTA ARCHITEKTURY ÚSTAV STAVITELSTVÍ II. SGS14/160/OHK1/2T/15 ENERGETICKÁ EFEKTIVNOST OBNOVY VYBRANÝCH HISTORICKÝCH BUDOV 20. STOLETÍ. SGS14/160/OHK1/2T/15 ENERGETICAL EFFICIENCY OF RENEWAL
VÝSTUP Z ENERGETICKÉHO AUDITU
CENTRUM STAVEBNÍHO INŽENÝRSTVÍ a.s. Autorizovaná osoba 212; Notifikovaná osoba 1390; 102 21 Praha 10 Hostivař, Pražská 16 / 810 Certifikační orgán 3048 VÝSTUP Z ENERGETICKÉHO AUDITU Auditovaný objekt:
Obr. 3: Pohled na rodinný dům
Samostatně stojící dvoupodlažní rodinný dům s obytným podkrovím. Obvodové stěny jsou vystavěny z keramických tvarovek CDm tl. 375 mm, střecha je sedlová s obytným podkrovím. Střecha je sedlová a zateplena
Obr. 3: Pohled na rodinný dům
Samostatně stojící dvoupodlažní rodinný dům. Obvodové stěny jsou vystavěny z keramických zdících prvků tl. 365 mm, stropy provedeny z keramických tvarovek typu Hurdis. Střecha je pultová bez. Je provedeno
Vlastnosti konstrukcí. Součinitel prostupu tepla
Vlastnosti konstrukcí Součinitel prostupu tepla U = 1 si se = Požaavky ČSN 730540-2: závisí na vnitřní H a na převažující vnitřní návrhové teplotě: o 60 % na 60 % o 18 o 22 C jiný rozsah teplot U U N Požaavky
Tepelná technika 1D verze TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: Základní škola Slatina nad Zdobnicí Ulice: Slatina nad zdobnicí 45 PSČ:
POSOUZENÍ KCÍ A OBJEKTU
PROTOKOL TEPELNĚ TECHNICKÉ POSOUZENÍ KCÍ A OBJEKTU dle ČSN 73 0540 Studentská cena ENVIROS Nízkoenergetická výstavba 2006 Kateřina BAŽANTOVÁ studentka 5.ročníku VUT Brno - fakulta stavební obor NAVRHOVÁNÍ
TEPELNĚ TECHNICKÉ POSOUZENÍ DETAILŮ OBLUKOVÝCH PŘEKLADŮ ATBET
STOPTERM spol. s r.o.,plamínkové 1564 / 5, Praha 4 tel. / fax : 241 400 533 TEPELNĚ TECHNICKÉ POSOUZENÍ DETAILŮ OBLUKOVÝCH PŘEKLADŮ ATBET Zadavatel : Roman Čejka Hrdlořezy 208 293 07 Zpracoval : Robert
1.2. Postup výpočtu. d R =, [m 2.K/W] (6)
1. Součinitel prostupu tepla Součinitel prostupu tepla a tepelný odpor jsou základními veličinami charakterizujícími tepelně izolační vlastnosti stavebních konstrukcí. 1.1. Požadavky Požadavky na součinitel
TECHNICKÁ PŘÍPRAVA FASÁD WWW.TPF.CZ TECHNICKÁ PŘÍPRAVA FASÁD KONZULTACEO U C PROJEKTY DOZORY POSUDKY VÝPOČTY NÁVRHY SOFTWARE. ing.
TECHNICKÁ Odborná inženýrská, projekční a poradenská kancelář v oblasti oken/dveří, lehkých obvodových plášťů (LOP) a jiných fasádních konstrukcí. KONZULTACEO U C PROJEKTY DOZORY POSUDKY VÝPOČTY NÁVRHY
Obr. 3: Řez rodinným domem
Dvoupodlažní rodinný dům pro pětičlennou rodinu se sedlovou střechou a neobytnou půdou. Obvodové stěny vystavěny z keramických zdících prvků tl. 365 mm, stropy provedeny z keramických tvarovek typu Hurdis.
SCHEMA OBJEKTU. Obr. 3: Řez rodinným domem POPIS OBJEKTU
Dvoupodlažní rodinný dům pro pětičlennou rodinu se sedlovou střechou a neobytnou půdou. Obvodové stěny vystavěny z pórobetonových tvárnic tl. 250 mm, konstrukce stropů provedena z železobetonových dutinových
Studie vlivu tepelných mostů na energetické hodnocení budov ze zdicího systému HELUZ pro cihly HELUZ Family a HELUZ Family 2in1
Studie vlivu tepelných mostů na energetické hodnocení budov ze zdicího systému HELUZ pro cihly HELUZ a HELUZ 2in1 zpracoval: ing. Roman Šubrt leden 2014 objednatel: HELUZ cihlářský průmysl v.o.s. sídlo:
Konstrukční detaily pro cihly Porotherm T Profi plněné minerální vatou
Řešení pro cihelné zdivo pro cihly Porotherm T Profi plněné minerální vatou 3. vydání Příručka projektanta pro navrhování nízkoenergetických a pasivních domů Řešení pro cihelné zdivo Porotherm T Profi
Termografická diagnostika pláště objektu
Termografická diagnostika pláště objektu Firma AFCITYPLAN s.r.o. Jindřišská 17 Praha 1 Zkušební technik: Ing. Daniel Bubenko Telefon: EMail: +420 739 057 826 daniel.bubenko@afconsult. com Přístroj TESTO
VÝPOČET ENERGETICKÉ NÁROČNOSTI BUDOV A PRŮMĚRNÉHO SOUČINITELE PROSTUPU TEPLA podle vyhlášky č. 148/2007 Sb. a ČSN 730540
VÝPOČET ENERGETICKÉ NÁROČNOSTI BUDOV A PRŮMĚRNÉHO SOUČINITELE PROSTUPU TEPLA podle vyhlášky č. 148/2007 Sb. a ČSN 730540 a podle ČSN EN ISO 13790 a ČSN EN 832 Energie 2009 FM1 Název úlohy: Zpracovatel:
TEPELNĚ TECHNICKÉ POSOUZENÍ STAVEBNÍ KONSTRUKCE. Varianta B Hlavní nosná stěna
TEPELNĚ TECHNICKÉ POSOUZENÍ STAVEBNÍ KONSTRUKCE Varianta B Hlavní nosná stěna ZÁKLADNÍ KOMPLEXNÍ TEPELNĚ TECHNICKÉ POSOUZENÍ STAVEBNÍ KONSTRUKCE podle ČSN EN ISO 13788, ČSN EN ISO 6946, ČSN 730540 a STN
VÝPOČTOVÉ MODELOVÁNÍ KONSTRUKCÍ PODKROVÍ
VÝPOČTOVÉ MODELOVÁNÍ KONSTRUKCÍ PODKROVÍ Zbyněk Svoboda FSv ČVUT v Praze, Thákurova 7, Praha 6, e-mail: svobodaz@fsv.cvut.cz The following paper contains overview of recommended calculation methods for
Mapa větrových oblastí pro ČR oblast 1 2 v b,o 24 m/s 26 m/s. Úprava v b,o součinitelem nadmořské výšky c alt (altitude) oblast 1 2 >1300-1,27
Zatížení větrem - pravidla pro zatížení větrem pro pozemní stavy výšky 200m, pro mosty o rozpětí 200m - uvádí se pro celou konstrukci neo její části (např. ovod. plášť a jeho kotvení) - klasifikace: zatížení
Posouzení konstrukce podle ČS :2007 TOB v PROTECH, s.r.o. Nový Bor Datum tisku:
Posouzení konstrukce podle ČS 050-:00 TOB v...0 00 POTECH, s.r.o. Nový Bor 080 - Ing.Petr Vostal - Třebíč Datum tisku:..009 Tepelný odpor, teplota rosného bodu a průběh kondenzace. Firma: Stavba: Místo:
TEPELNÁ TECHNIKA OKEN A LOP
TEPELNÁ TECHNIKA OKEN A LOP změny související s vydáním ČSN 73 0540-2 (2011) Ing. Olga Vápeníková ČSN 73 0540-2 (říjen 2011, platnost listopad 2011) PROJEKČNÍ NORMA okna + dveře = výplně otvorů ostatní
8 Zatížení mostů větrem
8 Zatížení mostů větrem 8.1 Všeoecně Tento Eurokód je určen pro mosty s konstantní šířkou a s průřezy podle or. 8.1, tvořenými jednou hlavní nosnou konstrukcí o jednom neo více polích. Stanovení zatížení
Komplexní vzdělávací program pro podporu environmentálně šetrných technologií ve výstavbě a provozování budov
Komplexní vzdělávací program pro podporu environmentálně šetrných technologií ve výstavbě a provozování budov Ing. Jan Schwarzer, Ph.D. ČVUT v Praze Ústav techniky prostředí Technická 4 166 07 Praha 6
kde U součinitel prostupu tepla stavební konstrukce [W/m2 K] Rsi vnitřní tepelný odpor při přestupu tepla (internal) [W/m2 K] Rse vnější tepelný
VYTÁPĚNÍ - cvičení č. Výpočet tepelných ztrát Ing. Roman Vavřička Vavřička,, Ph.D Ph.D.. ČVUT v Praze, Fakulta strojní Ústav techniky prostředí Roman.Vavricka@ Roman.Vavricka @fs.cvut.cz neprůsvitné části
Autor: Ing. Martin Varga
Konstrukce přilehlé k zemině - zadání dle ČSN EN ISO 13 370 (1. část) 3. 4. 2018 Autor: Ing. Martin Varga V tomto článku obecně popíšeme výpočetní případy dle ČSN EN ISO 13 370 pro konstrukce přilehlé
Autor: Ing. Martin Varga
Načtení 2D detailů z programu TT2D do programu ENERGETIKA 5. 12. 2018 Autor: Ing. Martin Varga V tomto článku detailněji popíšeme nově doplněnou funkci: Umožnění načítání vypočtených liniových činitelů
TOB v PROTECH spol. s r.o ARCHEKTA-Ing.Mikovčák - Čadca Datum tisku: MŠ Krasno 2015.TOB 0,18 0,18. Upas,20,h = Upas,h =
Tepelný odpor, teplota rosného bodu a průběh kondenzace. Stavba: MŠ Krasno Místo: Zadavatel: Zpracovatel: Zakázka: Archiv: Projektant: E-mail: Datum: Telefon:..0 Výpočet je proveden dle STN 00:00 SCH -
1. Energetický štítek obálky budovy. 2. Energetický průkaz budov a grafické vyjádření průkazu ENB. 3. Energetický audit
1. Energetický štítek obálky budovy 2. Energetický průkaz budov a grafické vyjádření průkazu ENB 3. Energetický audit Energetický průkaz budov a grafické vyjádření průkazu ENB ENB obsahuje informace o
Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek pro program Nová zelená úsporám
Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek pro program Nová zelená úsporám Oblast podpory A Snižování energetické náročnosti stávajících rodinných domů Oblast podpory C.2 Snižování
VÝPOČET ENERGETICKÉ NÁROČNOSTI A PRŮMĚRNÉHO SOUČINITELE PROSTUPU TEPLA NÍZKOENERGETICKÝCH RODINNÝCH DOMŮ
VÝPOČET ENERGETICKÉ NÁROČNOSTI A PRŮMĚRNÉHO SOUČINITELE PROSTUPU TEPLA NÍZKOENERGETICKÝCH RODINNÝCH DOMŮ podle TNI 730329 Energie 2009 RD 722/38 EPD Název úlohy: Zpracovatel: Ing.Kučera Zakázka: RD 722/38
SCHEMA OBJEKTU. Obr. 3: Pohled na rodinný dům
Samostatně stojící dvoupodlažní rodinný dům s obytným podkrovím. Obvodové stěny jsou vystavěny z pórobetonových tvárnic tl. 250mm. Střecha je sedlová se m nad krokvemi. Je provedeno fasády kontaktním zateplovacím
ICS Listopad 2005
ČESKÁ TECHNICKÁ NORMA ICS 91. 120. 10 Listopad 2005 Tepelná ochrana budov - Část 3: Návrhové hodnoty veličin ČSN 73 0540-3 Thermal protection of buildings - Part 3: Design value quantities La protection
Ústřední vytápění 2012/2013 ZIMNÍ SEMESTR. PŘEDNÁŠKA č. 1
Ústřední vytápění 2012/2013 ZIMNÍ SEMESTR PŘEDNÁŠKA č. 1 Stavby pro bydlení Druh konstrukce Stěna vnější Požadované Hodnoty U N,20 0,30 Součinitel prostupu tepla[ W(/m 2. K) ] Doporučené Doporučené
TECHNICKÁ ZPRÁVA. 1. Účel objektu. 2. Charakteristika stavby. Obecní úřad a základní škola praktická
TECHNICKÁ ZPRÁVA 1. Účel objektu Obecní úřad a základní škola praktická 2. Charakteristika stavby Objekt obecního domu a základní školy praktické má tři nadzemní podlaží + podstřešní (půdní) prostor a
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2006, ročník VI, řada stavební
Sorník vědekýh prí Vysoké školy áňské - Tehniké univerzity Ostrv číslo, rok 2006, ročník VI, řd stvení Ivet SKOTNICOVÁ ZMĚNY VE VÝPOČTOVÝCH METODÁCH TEPELNĚ TECHNICKÝCH NOEM Astrt The rtile desries the
OBSAH ŠKOLENÍ. Internet DEK netdekwifi
OBSAH ŠKOLENÍ 1) základy stavební tepelné techniky pro správné posuzování skladeb 2) samotné školení práce v aplikaci TEPELNÁ TECHNIKA 1D Internet DEK netdekwifi 1 Základy TEPELNÉ OCHRANY BUDOV 2 Legislativa
Minimální rozsah dokumentace přikládané k žádosti o dotaci v programu Zelená úsporám, v oblasti podpory B
Minimální rozsah dokumentace přikládané k žádosti o dotaci v programu Zelená úsporám, v oblasti podpory B K žádosti o poskytnutí dotace se přikládá z níž je patrný rozsah a způsob provedení podporovaných
s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y Tepelně technické vlastnosti l i s t o p a d 2 0 0 8
s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y Tepelně technické vlastnosti l i s t o p a d 2 0 0 8 s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y
102FYZB-Termomechanika
České vysoké učení technické v Praze Fakulta stavební katedra fyziky 102FYZB-Termomechanika Sbírka úloh (koncept) Autor: Doc. RNDr. Vítězslav Vydra, CSc Poslední aktualizace dne 20. prosince 2018 OBSAH
ZAKLÁDÁNÍ PASIVNÍCH DOMŮ V ENERGETICKÝCH A EKONOMICKÝCH SOUVISLOSTECH. Ing. Ondřej Hec ATELIER DEK
1 ZAKLÁDÁNÍ PASIVNÍCH DOMŮ V ENERGETICKÝCH A EKONOMICKÝCH SOUVISLOSTECH Ing. Ondřej Hec ATELIER DEK 2 ÚVOD PASIVNÍ DOMY JSOU OBJEKTY S VELMI NÍZKOU POTŘEBOU ENERGIE NA VYTÁPĚNÍ PRO DOSAŽENÍ TOHOTO STAVU
BH059 Tepelná technika budov
BH059 Tepelná technika budov Neustálený teplotní stav Teplotní útlum a fázové posunutí teplotního kmitu konstrukce Pokles dotykové teploty podlahy θ 10 O ustáleném (stacionárním)teplotním stavu mluvíme
Protokol pomocných výpočtů
Protokol pomocných výpočtů STN-1: příčka - strojovna Pomocný výpočet korekce součinitele prostupu tepla ΔU Korekce pro vzduchové vrstvy dle ČSN EN ISO 6946 Korekční úroveň: Vzduchové spáry propojující
PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY
energetické hodnocení budov Plamínkové 1564/5, Praha 4, tel. 241 400 533, www.stopterm.cz PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY Oravská č.p. 1895-1896, Praha 10 září 2015 Průkaz energetické náročnosti budovy
Projektová dokumentace adaptace domu
Projektová dokumentace adaptace domu Fotografie: Obec Pitín Starší domy obvykle nemají řešenu žádnou tepelnou izolaci nebo je nedostatečná. Při celkové rekonstrukci domu je jednou z důležitých věcí snížení
Autor: Ing. Martin Varga
Redukční faktor "b" při výpočtu potřeby tepla na vytápění část 1 24. 2. 2016 Autor: Ing. Martin Varga Tento příspěvek blíže vysvětluje, jaký vliv má použitý výpočetní postup na stanovení potřeby tepla
BH059 Tepelná technika budov
BH059 Tepelná technika budov Přednáška č. 4 Přídavný difúzní odpor Výpočet roční bilance kondenzace a vypařování vodní páry v konstrukci -ručně Výpočet roční bilance kondenzace a vypařování vodní páry
vyrobeno technologií GREEN LAMBDA
IZOLACE PODLAH A STROPŮ vyrobeno technologií GREEN LAMBDA Společnost Synthos S.A. vznikla spojením společnosti Firma Chemiczna Dwory S.A. a Kaučuk a.s. Současný název firmy SYNTHOS (zaveden v roce 2007)
TZB Městské stavitelsví
Katedra prostředí staveb a TZB TZB Městské stavitelsví Zpracovala: Ing. Irena Svatošová, Ph.D. Nové výukové moduly vznikly za podpory projektu EU a státního rozpočtu ČR: Inovace a modernizace studijního
EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO
EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO Projektování nízkoenergetických a pasivních staveb konkrétní návrhy budov RD Martin Doležal, TÜV SÜD Czech Investice do Vaší budoucnosti Projekt
SNÍŽENÍ ENERGETICKÉ NÁROČNOSTI BUDOVY RESTAURACE S UBYTOVÁNÍM PROJEKTOVÁ DOKUMENTACE PRO PROVÁDĚNÍ STAVBY
INVESTOR: BŘETISLAV JIRMÁSEK, Luční 1370, 539 01 Hlinsko Počet stran: 10 STAVBA: SNÍŽENÍ ENERGETICKÉ NÁROČNOSTI BUDOVY RESTAURACE S UBYTOVÁNÍM, 271, 269, 270 PROJEKTOVÁ DOKUMENTACE PRO PROVÁDĚNÍ STAVBY
Energetické systémy budov 1
Energetické systémy budov 1 Energetické výpočty Výpočtová vnitřní teplota θint,i. (c) Katedra TZB FSv ČVUT v Praze 1 Vnější výpočtové parametry Co je to t e? www.japantimes.co.jp http://www.dreamstime.com/stock-photography-roof-colapsed-under-snow-image12523202
SCHÖCK NOVOMUR LIGHT SCHÖCK NOVOMUR. Uspořádání v konstrukci...18. Dimenzační tabulka / rozměry / možnosti...19. Tepelně technické parametry...
SCHÖCK NOVOMUR Nosný hydrofobní tepelně izolační prvek zabraňující vzniku tepelných mostů u paty zdiva pro použití u rodinných domů Schöck typ 6-17,5 Oblast použití: První vrstva zdiva na stropu suterénu
ZÁKLADNÍ KOMPLEXNÍ TEPELNĚ TECHNICKÉ POSOUZENÍ STAVEBNÍ KONSTRUKCE
ZÁKLADNÍ KOMPLEXNÍ TEPELNĚ TECHNICKÉ POSOUZENÍ STAVEBNÍ KONSTRUKCE podle ČSN EN ISO 13788, ČSN EN ISO 6946, ČSN 730540 a STN 730540 Teplo 2005 Název úlohy : Obvodova konstrukce Zpracovatel : Pokorny Zakázka