ENS. Nízkoenergetické a pasivní stavby. Přednáška č. 5. Vysoká škola technická a ekonomická V Českých Budějovicích

Rozměr: px
Začít zobrazení ze stránky:

Download "ENS. Nízkoenergetické a pasivní stavby. Přednáška č. 5. Vysoká škola technická a ekonomická V Českých Budějovicích"

Transkript

1 Vysoká škola technická a ekonomická V Českých Budějovicích ENS Nízkoenergetické a pasivní stavby Přednáška č. 5 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: Ing. Michal Kraus, Ph.D. Katedra stavebnictví

2 Vývoj tepelně technických požadavků Přehled základních požadavků na stavební konstrukce, konstrukční detaily, spoje konstrukcí, části budov a budovy z pohledu tepelné ochrany budov podle ČSN Po oddělení ČR a SR v květnu 1994 vydána samostatná česká norma ČSN Tepelná ochrana budov, která byla rozdělena do 4 samostatných celků: ČSN : Tepelná ochrana budov. Část 1 Termíny a definice ČSN : Tepelná ochrana budov. Část 2 - Funkční požadavky ČSN : Tepelná ochrana budov. Část 3 Výpočtové hodnoty veličin pro navrhování a ověřování ČSN : Tepelná ochrana budov. Část 4 - Výpočtové metody pro navrhování a ověřování V roce 2002 byla vydána revize 2. části normy, které zapracovaly změny v souladu evropskými požadavky. Revize zpřísňuje požadavky na prostup tepla a přináší změny v oblasti hodnocení energetických požadavků pomocí měrné spotřeby tepla na vytápění. 2

3 Vývoj tepelně technických požadavků V roce 2005 proběhla další revize normy a zároveň došlo ke změně názvů: ČSN : Tepelná ochrana budov. Část 1 Terminologie ČSN : Tepelná ochrana budov. Část 2 - Požadavky ČSN : Tepelná ochrana budov. Část 3 Návrhové hodnoty veličin ČSN : Tepelná ochrana budov. Část 4 - Výpočtové metody V roce 2007 byla vydána revidovaná 2. část normy. Změny se týkaly požadavků na nejnižší povrchovou teplotu pomocí teplotního faktoru a pro prostup tepla obálkou budovy. 3

4 Vývoj tepelně technických požadavků Zatím poslední změna je novelizovaná 2. část (Požadavky) z roku 2011: Přehledněji formulovány požadavky na teplotu vnitřních povrchů s využitím teplotního faktoru vnitřního povrchu Upraveny a doplněny hodnoty součinitele prostupu tepla konstrukcí Úprava hodnocení prostupu tepla obálkou budovy pomocí metody referenční budovy Upravena kapitola na neprůvzdušnost konstrukcí a větrání V příloze A podrobně popsány nízkoenergetické, pasivní a orientačně u energeticky nulové budovy 4

5 Závaznost normy ČSN Závazná povinnost dodržet požadavky na budovy a jejich konstrukce z hlediska nízké spotřeby energie a tepelné ochrany. Požadavky tepelné ochrany budov jsou nyní závazně uvedeny ve dvou okruzích předpisů: V zákoně 183/2006 Sb., o územním plánování a stavebním řádu (stavební zákon) a jeho vyhláškách (např. o technických požadavcích na stavbu) V zákoně o hospodaření energií ve znění pozdějších předpisů Splnění požadavků nemusí být vždy snadné, zejména v kontextu požadavků z dalších oblastí (statika, akustika, denní osvětlení). 5

6 Tepelně technické požadavky Požadavky stavební tepelné techniky lze obecně rozdělit na: Ochrana uživatelů budov (požadavky na zdravé prostředí a komfort) Ochrana stavebních konstrukcí (prodloužení životností konstrukcí) Ekonomie provozu (zajištění nízkých provozních nákladů) Ochrana vnějšího prostředí (ochrana životního prostředí) Tepelně technická kritéria zohledňují fyzikální děje v konstrukcích: Šíření tepla konstrukcí Šíření vlhkosti konstrukcí (kondenzace vodní páry uvnitř k-ce) Šíření vzduchu konstrukcí (průvzdušnost, větrání) Tepelná stabilita místností (letní a zimní období) 6

7 Tepelně technické požadavky Šíření tepla konstrukcí: Součinitel prostupu tepla Nejnižší vnitřní povrchová teplota konstrukce Lineární činitel prostupu tepla Bodový činitel prostupu tepla Pokles dotykové teploty podlahy 7

8 Součinitel prostupu tepla Součinitel prostupu tepla se hodnotí dvěma způsoby: Součinitel prostupu tepla U [W/(m 2.K)] jednotlivých konstrukcí Průměrný součinitel prostupu tepla U em [W/(m 2.K)] budovy Oba požadavky musí být splněny současně Součinitel prostupu tepla vyjadřuje, kolik tepla unikne konstrukcí o ploše 1 m 2 při rozdílu teplot jejích povrchů 1 K. Dle zákonných požadavků je nutné splnit požadované hodnoty součinitele tepla konstrukcí Doporučené hodnoty se doporučuje splnit vždy, pokud tomu nebrání technické, ekonomické či legislativní překážky. Hodnoty označené jako doporučené pro pasivní budovy se použijí při návrhu konstrukcí pro pasivní a podobné objekty. Doporučené hodnoty pro pasivní domy mají široké rozpětí. Horní hranice intervalu je určena pro větší a kompaktní budovy. Z 8

9 Součinitel prostupu tepla konstrukcí Konstrukce vytápěných budov musí mít v prostorech s návrhovou relativní vlhkostí vnitřního vzduchu i 60% součinitel prostupu tepla U [W/(m 2.K)] takový, aby splňoval podmínku: kde U U N U N je požadovaná hodnota součinitele prostupu tepla Požadovaná hodnota U N se stanoví: Pro budovy s převažující návrhovou vnitřní teplotou im v intervalu 18 až 22 C včetně a pro všechny návrhové venkovní teploty podle tabulky. Převažující návrhová vnitřní teplota im [ C] odpovídá návrhové vnitřní teploty i většiny prostorů v budově nebo zóně budovy. Za budovy s převažující návrhovou vnitřní teplotou i od 18 až 22 C včetně se považují všechny obytné, občanské budovy s převážně dlouhodobým pobytem lidí. 9

10 Součinitel prostupu tepla 10

11 Součinitel prostupu tepla Pro budovy s odlišnou převažující návrhovou vnitřní teplotou ze vztahu: U N = U N,20.e 1 kde U N,20 je součinitel prostupu tepla z tabulky e 1 je součinitel typu budovy, který se stanoví ze vztahu: e 1 = 16/( im -4) kde im je převažující návrhová vnitřní teplota im [ C] e 1 [-] 1,45 1,33 1,23 1,00 0,84 0,80 0,86 0,73 0,70 0,67 11

12 Součinitel prostupu tepla Pro budovy s relativní vlhkostí vnitřního vzduchu i 60% se požadovaná hodnota součinitele prostupu tepla stanoví jako nejnižší z hodnot: dle tabulky U N = U N,20.e 1 U w,n = 0,6 θ ai θ w R si θ ai θ e kde ai návrhová teplota vnitřního vzduchu ve C w teplota rosného bodu ve C e návrhová venkovní teplota ve C R si odpor při přestupu tepla na vnitřní straně k-ce ve W/(m 2 K) 12

13 Součinitel prostupu tepla U budov s odlišnými vytápěnými zónami ve smyslu ČSN EN ISO se požadavky stanovují pro každou vytápěnou zónu samostatně podle převažující návrhové vnitřní teploty vytápěné zóny. Při návrhu a posuzování konstrukcí se doporučuje uvažovat i předvídatelné změny v užívání budovy, a tím i změny převažujících teplot. Součinitel prostupu tepla by měl zahrnovat i vliv lokálních, pravidelně opakujících zhoršení izolační kvality v důsledku nepravidelnosti jako jsou prostupující nosné prvky. Hodnoty doporučené pro pasivní budovy se dále použijí jak pro nové stavby a celkové změny staveb, tak v případě celkových nebo dílčích změn. 13

14 Součinitel prostupu tepla Výpočet součinitele prostupu tepla závisí na konstrukci: Plošně homogenní konstrukce bez tepelných mostů Konstrukce s tepelnými mosty Pro plošně homogenní konstrukce bez vlivu tepelných mostů se součinitel prostupu tepla U [W/(m 2.K)] vypočte podle vztahu: U = 1/R T kde R T je odpor při prostupu tepla [(m 2.K)/W] kde R T = R si + R + R se R = σ d j λ j R je tepelný odpor konstrukce [(m 2.K)/W] R si je odpor při přestupu tepla na vnitřní straně k-ce [(m 2.K)/W] R se je odpor při přestupu tepla na vnější straně k-ce [(m 2.K)/W] d je tloušťka vrstvy materiálu [m] je součinitel tepelné vodivosti dílčí vrstvy materiálu [W/(m.K)] 14

15 Součinitel prostupu tepla Konstrukce se systematickými tepelnými mosty Místa v konstrukci ve kterých dochází ke zvýšenému úniku tepla Vliv tepelných mostů v konstrukci je nutné zahrnout do výpočtu V případě, že je souhrnný vliv tepelných mostů 5% lze vliv tepelných mostů zanedbat. Kritickou chybou je stanovení součinitele prostupu tepla pouze v ideálním výseku konstrukce bez vlivu systematických tepelných mostů. 15

16 Požadavky tepelné ochrany budov Výpočet součinitele prostupu tepla U s vlivem tepelných mostů Nesystematické tepelné mosty Metody charakteristických TM Systematické tepelné mosty Metody charakteristického výseku Přibližná metoda výpočtu Přesná metoda výpočtu Metoda řešením teplotního pole Fokinova metoda Metoda ekv pro nehomogenní vrstvu Metoda horní a dolní meze 16

17 Průměrný součinitel prostupu tepla Průměrný součinitel prostupu tepla U em [W/(m 2.K)] budovy nebo vytápěné zóny budovy musí splňovat podmínku: U em U em,n kde U em,n je požadovaná hodnota průměrného součinitele prostupu tepla. Požadovaná hodnota U em,n návrhové vnitřní teplotě: se stanová v závislosti na převažující Pro budovy s převažující návrhovou vnitřní teplotou 18 až 22 C podle tabulky Pro budovy s odlišnou převažující návrhovou vnitřní teplotou ze vztahu: U em,n = U em,n,20.e 1 17

18 Průměrný součinitel prostupu tepla Požadovaná hodnota U em,n se stanoví výpočtem pro každý hodnocení případ metodou referenční budovy, nejvýše je však rovna tabulkové hodnotě. Referenční budova je virtuální budova, která: Má stejné rozměry a stejné prostorové uspořádání Plní stejný účel a má shodné umístění Plochy obálky budovy tvoří konstrukce s normovými požadovanými hodnotami součinitele prostupu tepla Doporučená hodnota U em,n se stanoví ze vztahu: U em,rec = 0,75.U em,n Doporučené hodnoty se uplatní tam, kde tomu nebrání technické ani ekonomické překážky. 18

19 Průměrný součinitel prostupu tepla Požadované hodnoty pro budovy s převažující návrhovou vnitřní teplotou 18 až 22 C včetně, kde tomu nebrání technické ani ekonomické překážky 19

20 Průměrný součinitel prostupu tepla Pro pasivní budovy se uplatní tabulka 20

21 Nejnižší povrchová teplota Hodnotí se v poměrném tvaru jako teplotní faktor vnitřního povrchu f Rsi [-] Splnění normového požadavku se zabrání povrchové kondenzaci i možnému riziku vzniku plísní, které se mohou objevit na konstrukci již při 80 % povrchové relativní vlhkosti. V zimním období musí konstrukce v prostorech s relativní vlhkostí vnitřního vzduchu i 60 % vykazovat v každém místě teplotní faktor vnitřního povrchu podle vztahu: f Rsi f Rsi,N = f Rsi,cr kde f Rsi,N je kritický teplotní faktor vnitřního povrchu [-] f Rsi,cr je požadovaná hodnota nejnižšího teplotního faktoru vnitřního povrchu [-] 21

22 Lineární a bodový činitel prostupu Obě veličiny vyjadřují navýšení tepelného toku v místě tepelné vazby (bodová nebo lineární) mezi konstrukcemi. Činitele vyjadřují kolek tepla ve W prochází při jednotkové teplotním rozdílu jednotkovou délkou tepelné vazby Význam hodnocení tepelných vazeb narůstá se snižování prostupu tepla jednotlivými konstrukcemi zejména u nízkoenergetických a pasivních domů. Pro tyto konstrukce je třeba optimalizované řešení detailů vzájemného spojení konstrukcí z hlediska prostupu tepla. Lineární a bodový činitel prostupu tepla musí splňovat: ψ k ψ k,n (W/(m.K) χ k χ k,n (W/K) 22

23 Lineární a bodový činitel prostupu Požadované a doporučené hodnoty lineárního a bodového činitele prostupu tepla tepelných vazeb mezi konstrukcemi: 23

24 Lineární a bodový činitel prostupu 24

25 Lineární a bodový činitel prostupu Pokud je návrhem i provedením zaručeno, že působení tepelných vazeb mezi konstrukcemi je menší než 5 % nejnižšího součinitele prostupu tepla navazujících konstrukcí, pak se splnění požadované normové hodnoty lineárního a bodového činitele prostupu tepla v těchto stycích nemusí hodnotit. Souhrnné působení tepelných vazeb je menší než 5 % obvykle v těch případech, kdy hlavní tepelněizolační vrstva ve stycích mezi konstrukcemi navazuje souvisle, nemá výrazná zeslabení tloušťky a neprochází jí vodivější prvky. 25

26 Hodnocení podlahových konstrukcí Hodnocení podlahových konstrukcí z hlediska odnímatelnosti tepla charakterizující požadavky na komfort vnitřního prostředí při kontaktu chodidla s podlahou. Podlahy lze z hlediska poklesu dotykové teploty podlahy 10,N do kategorií členit: Kategorie podlahy Pokles dotykové teploty 10,N [ C] I. Velmi teplé do 3,8 včetně II. Teplé III. Méně teplé do 5,5 včetně do 6,9 včetně IV. Studené od 6,9 26

27 Hodnocení podlahových konstrukcí Pro zatřízení do odpovídající kategorie musí být splněna podmínka poklesu dotykové teploty 10 [ C]: 10 10,N kde 10,N je požadovaná hodnota poklesu dotykové teploty dle tabulky. Požadavek se nemusí ověřovat u podlah s trvalou nášlapnou vrstvou z textilní podlahoviny a u podlah s povrchovou teplotou trvale vyšší než 26 C. Tyto podlahy jsou zařazeny do kategorie I. Podle účelu budovy a místnosti jsou stanoveny požadované a doporučené kategorie podlah z hlediska poklesu dotykové teploty. Pokles dotykové teploty podlahy 10 se stanoví na základě tepelné jímavosti podlahy B a vnitřní povrchové teploty si. Pro podlahy s podlahovým vytápěním se pokles dotykové teploty 10 stanovuje a ověřuje pro vnitřní povrchovou teplotu si stanovenou bez vlivu vytápění. 27

28 Kategorie podlah 28

29 Šíření vlhkosti Normou definovaným výpočtovým postupem se zjišťuje při standardních zimních podmínkách výskyt kondenzace vodní páry ve skladbě konstrukce. Pokud ke kondenzaci nedochází, je konstrukce vyhovující. Pokud ke kondenzaci dochází, můžeme konstrukci považovat za vyhovující pokud: Kondenzát nemůže ohrozit požadovanou funkci konstrukce Množství kondenzátu není velké Roční bilance dokládá, že v průběhu let nemůže dojít ke hromadění vlhkosti v konstrukci 29

30 Šíření vlhkosti Ohrožením požadované funkce je: Zkrácení předpokládané životnosti konstrukce Snížení vnitřní povrchové teploty konstrukce vedoucí ke vzniku plísní Objemové změny a výrazné zvýšení hmotnosti konstrukce Zvýšení hmotnostní vlhkosti materiálu způsobující jeho degradaci Při zabudování dřeva nebo materiálů na dřevěné bázi do stavební konstrukce je nutné dodržet povolenou maximální vlhkost. Při překročení rovnovážné vlhkosti dřeva (18%) je požadovaná funkce konstrukce ohrožena. Požadavky na šíření vlhkosti a kondenzaci uvnitř konstrukce se uplatňují pro vnější i vnitřní konstrukce s výjimkou konstrukcí přilehlých k zemině a prokazují se bilančním měsíčním výpočtem. 30

31 Šíření vlhkosti Zkondenzována vodní pára uvnitř konstrukce Splnění požadavku je určeno zejména pro konstrukce s dřevěnými prvky nebo organickými materiály, ve kterých by případná kondenzace vodní páry uvnitř konstrukce mohla způsobit poškození a ohrozit funkci konstrukce: M c = 0 V ostatních stavebních konstrukcích, kde kondenzace vodní páry uvnitř konstrukce neohrozí její funkci, lze připustit omezené roční množství zkondenzované vodní páry: M c M c,n kde M c je množství zkondenzované vodní páry uvnitř konstrukce v kg/(m 2.a) M c,n je maximální normová hodnota množství zkondenzované vodní páry uvnitř konstrukce v kg/(m 2.a) 31

32 Šíření vlhkosti Zkondenzována vodní pára uvnitř konstrukce Maximální normová hodnota M c,n se stanoví: Pro jednoplášťové střechy, konstrukce s vnějším tepelně izolačním systémem, vnějším obkladem nebo konstrukci s difuzně málo propustnými konstrukcemi jako nižší z hodnot: M c,n = 0,10 kg/(m 2.a) 3 % plošné hmotnosti materiálu, ve kterém dochází ke kondenzaci vodní páry, je-li jeho objemová hmotnost vyšší než 100 kg/m 3 ; pro materiál s objemovou hmotností větší než 100 kg/m 3 se použije 6 % jeho plošné hmotnosti. Pro ostatní konstrukce jako nižší z hodnot: M c,n = 0,50 kg/(m 2.a) 5 % plošné hmotnosti materiálu, ve kterém dochází ke kondenzaci vodní páry, je-li jeho objemová hmotnost vyšší než 100 kg/m 3 ; pro materiál s objemovou hmotností větší než 100 kg/m 3 se použije 10 % jeho plošné hmotnosti; 32

33 Šíření vlhkosti Roční bilance kondenzace a vypařování vodní páry V průběhu roku nesmí v konstrukci s připuštěnou omezenou kondenzací vodní páry zůstat řádné zkondenzované množství vody páry, které by trvale zvyšovalo vlhkost konstrukce a zhoršovalo tepelně izolační vlastnosti konstrukce. Pro roční bilanci platí podmínka: M c M ev kde M ev je množství vypařitelné vodní páry uvnitř konstrukce v kg/(m 2.a) 33

34 Šíření vzduchu konstrukcí a budovou Šíření vzduchu je posuzováno z důvodů: Zajištění přívodu vzduchu s dostatečnou kvalitou do interiéru Zajištění odvodu škodlivin a vlhkosti z interiéru budov Výměnou vzduchu se rozumí tok mezi vnitřním a vnějším prostředím, který může probíhat samovolně nebo řízeně. Šíření vzduchu konstrukcí a budovu zahrnuje požadavky: Průvzdušnost spár lehkých obvodových plášťů Průvzdušnost spár a netěsností ostatních konstrukcí obálky Celková průvzdušnost obálky budovy Průvzdušnost místnosti s nuceným větráním nebo klimatizací Intenzita větrání nevyužívané místnosti Intenzita větrání užívané místnosti Zpětné získávání tepla z odpadního vzduchu 34

35 Šíření vzduchu konstrukcí a budovou Průvzdušnost spár lehkých obvodových plášťů Průvzdušnost představuje množství vzduchu v m 3, které projde za jednotku času stavební konstrukcí, konstrukčním stykem nebo funkční spárou při daném rozdílu statických tlaků vzduchů působících na jeho vnitřní a vnější straně a při daném atmosférickém tlaku, teplotě a relativní vlhkosti vzduchu. Funkční spáry lehkých obvodových plášťů musí splnit požadavek pro příslušnou hodnotu třídy neprůvzdušnosti. Třídy LP1 a LP2 odpovídají klasifikaci LOP vztažené na délku spáry dle ČSN EN

36 Šíření vzduchu konstrukcí a budovou Průvzdušnost spár a netěsností ostatních konstrukcí Všechny napojení konstrukcí mezi sebou musí být provedena trvale vzduchotěsně V obvodových konstrukcích se nepřipouští netěsnosti a neutěsněné spáry, kromě funkčních spár otvorů a funkčních spár LOP Požadavek je stanoven zejména na spáry mezi jednotlivými konstrukčními částmi a dílci (spáry mezi panely, skládané konstrukce) Tepelně izolační vrstva konstrukce musí být účinně chráněna proti působení větru Minimalizace průvzdušnosti konstrukcí se zajistí: Návaznost vzduchotěsných roviny v napojovaných konstrukcích Minimalizace počtu a rozsahu styků a spár, prostupů a připojení Trvalým těsněním vzduchotěsných vrstvy ve stycích a spárách V projektové dokumentaci dokladováním záruk vzduchotěsnosti u navržených konstrukčních řešení 36

37 Šíření vzduchu konstrukcí a budovou Celková průvzdušnost obálky budovy Celková průvzdušnost obálky budovy nebo její ucelené části, se ověřuje pomocí celkové intenzity výměny vzduchu n 50 [h -1 ] při tlakovém rozdílu 50 Pa, stanovené experimentálně podle ČSN EN Doporučuje se splnění podmínky: n 50 n 50,N kde n 50,N je doporučená hodnota celkové intenzity výměny vzduchu při tlakovém rozdílu 50 Pa [h -1 ], jejíž hodnoty jsou stanoveny v ČSN

38 Šíření vzduchu konstrukcí a budovou Celková průvzdušnost obálky budovy Hodnoty na úrovni I se doporučuje splnit vždy Hodnoty na úrovni II se doporučuje splnit přednostně 38

39 Šíření vzduchu konstrukcí a budovou Průvzdušnost místnosti s nuceným větráním nebo klimatizací V případě budovy se systémem nuceného větrání nebo klimatizací se doporučuje splnit podmínky: n 0,05 kde n je intenzita přirozené výměny vzduchu bez započtení funkce větracího nebo klimatizačního zařízení pro zimní návrhové podmínky 39

40 Šíření vzduchu konstrukcí a budovou Intenzita větrání nevyužívané místnosti Výměna vzduchu v místnosti je nutná z hygienického hlediska (zajištění kvality vzduchu v místnosti). Pravidelnou výměnou vzduchu v místnosti dojde k zabránění nárůstu škodlivin Množství výměny vzduchu je rozlišné v závislosti na užívání místnosti Intenzita větrání místnosti n min [h -1 ] v době, kdy není užívaná, se doporučuje minimálně taková, aby splňovala podmínku: n min n min,n kde n min,n je doporučená nejnižší intenzita větrání místnosti [h -1 ], není-li její hodnota stanovena zvláštními předpisy, je rovna n min,n = 0,1 h

41 Šíření vzduchu konstrukcí a budovou Intenzita větrání užívané místnosti V době, kdy je místnost užívána, musí intenzita větrání místnosti v splňovat požadavek: n n N kde n N je požadovaná intenzita větrání místnosti [h -1 ], přepočtená z minimálních průtoků čerstvého vzduchu Současně musí intenzita větrání užívané místnosti splnit požadavek: n 1,5 n N Požadované hodnoty n N se stanovují bilančním výpočtem. 41

42 Šíření vzduchu konstrukcí a budovou Intenzita větrání užívané místnosti Pro obytné a podobné budovy je požadovaná intenzita větrání přepočtená z minimálních množství potřebného čerstvého vzduchu mezi hodnotami n N 0,3 0,6 h -1. Pro pobytové místnosti je nutné zajistit nejméně 15 m 3 /h čerstvého vzduchu na osobu při klidové aktivitě (při metabolické aktivitě až 25 m 3 /h). V učebnách se zpravidla požaduje zajistit výměnu vzduchu m 3 /h na žáka. 42

43 Šíření vzduchu konstrukcí a budovou Zpětné získávání tepla při nuceném větrání V případě, že je u novostaveb z hygienických a provozních důvodů celková intenzita větrání v budově vyšší než n = 1 h -1 po dobu nejméně 8 hodin denně, doporučuje se osazení účinného zařízení ke zpětnému získávání tepla z odpadního vzduchu s ověřenou celkovou účinností 60 %. 43

44 Hodnocení tepelné stability Tepelná stabilita místností se hodnotí zvlášť pro: Zimní období Letní období V zimním období je kriteriálním hlediskem: Pokles výsledné teploty v místnosti v(t) ve C V letním období je kritériem: Nejvyšší denní vzestup teploty vzduchu ai,max ve C Nebo nejvyšší denní teplota vzduchu v místnosti ai,max ve C 44

45 Hodnocení tepelné stability Požadavek na tepelnou stabilitu místnosti v zimním období Tepelná stabilita v zimním období se posuzuje zejména pro místnosti s přerušovaným nebo tlumeným vytápěním. Kritická místnost (vnitřní prostor) musí na konci dob chladnutí t vykazovat pokles výsledné teploty v místnosti v zimním období v(t) [ C] dle vztahu: v(t) v,n(t) kde v,n(t) požadovaná hodnota poklesu výsledné teploty v místnosti v zimním období Hodnocení předpokládá, že výkon otopné soustavy v době chladnutí je nulový. 45

46 Hodnocení tepelné stability Požadavek na tepelnou stabilitu místnosti v zimním období Požadované hodnoty poklesu výsledné teploty v místnosti 46

47 Hodnocení tepelné stability Požadavek na tepelnou stabilitu místnosti v letním období Dodržení požadavku zabraňuje přehřívání v letním období Kritická místnost (vnitřní prostor) musí vykazovat nejvyšší denní teplotu vzduchu v místnosti v letním období ai,max, ve C, podle vztahu: ai,max ai,max,n kde ai,max,n je požadovaná hodnota nejvyšší denní teploty vzduchu v místnosti v letním období, ve C, která se stanoví podle tabulky. 47

48 Dotazy či připomínky: ENS Děkuji za pozornost Ing. Michal Kraus, Ph.D. 48

Vysoká škola technická a ekonomická V Českých Budějovicích. Energetický audit budov EAB. Seminář č. 2. Ing. Michal Kraus, Ph.D. Katedra stavebnictví

Vysoká škola technická a ekonomická V Českých Budějovicích. Energetický audit budov EAB. Seminář č. 2. Ing. Michal Kraus, Ph.D. Katedra stavebnictví Vysoká škola technická a ekonomická V Českých Budějovicích Energetický audit budov Seminář č. 2 Ing. Michal Kraus, Ph.D. Katedra stavebnictví Tepelná ochrana budov Přehled základních požadavků na stavební

Více

NPS. Nízkoenergetické a pasivní stavby. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích

NPS. Nízkoenergetické a pasivní stavby. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích Vysoká škola technická a ekonomická V Českých Budějovicích NPS Nízkoenergetické a pasivní stavby Přednáška č. 3 Přednášky: Ing. Michal Kraus, Ph.D. Garant: Ing. Michal Kraus, Ph.D. Katedra stavebnictví

Více

PTV. Progresivní technologie budov. Seminář č. 5 a 6. Vysoká škola technická a ekonomická V Českých Budějovicích

PTV. Progresivní technologie budov. Seminář č. 5 a 6. Vysoká škola technická a ekonomická V Českých Budějovicích Vysoká škola technická a ekonomická V Českých Budějovicích PTV Progresivní technologie budov Seminář č. 5 a 6 Seminář: Ing. Michal Kraus, Ph.D. Garant: Ing. Michal Kraus, Ph.D. Katedra stavebnictví Vývoj

Více

WiFi: název: InternetDEK heslo: netdekwifi. Školení DEKSOFT Tepelná technika

WiFi: název: InternetDEK heslo: netdekwifi. Školení DEKSOFT Tepelná technika WiFi: název: InternetDEK heslo: netdekwifi Školení DEKSOFT Tepelná technika Program školení 1. Blok Legislativa Normy a požadavky Představení aplikací pro tepelnou techniku Představení dostupných studijních

Více

Školení DEKSOFT Tepelná technika 1D

Školení DEKSOFT Tepelná technika 1D Školení DEKSOFT Tepelná technika 1D Program školení 1. Blok Požadavky na stavební konstrukce Okrajové podmínky Nové funkce Úvodní obrazovka Zásobník materiálů Uživatelské skupiny Vlastní katalogy Zásady

Více

TZB II Architektura a stavitelství

TZB II Architektura a stavitelství Katedra prostředí staveb a TZB TZB II Architektura a stavitelství Zpracovala: Ing. Irena Svatošová, Ph.D. Nové výukové moduly vznikly za podpory projektu EU a státního rozpočtu ČR: Inovace a modernizace

Více

TZB Městské stavitelsví

TZB Městské stavitelsví Katedra prostředí staveb a TZB TZB Městské stavitelsví Zpracovala: Ing. Irena Svatošová, Ph.D. Nové výukové moduly vznikly za podpory projektu EU a státního rozpočtu ČR: Inovace a modernizace studijního

Více

Ústřední vytápění 2012/2013 ZIMNÍ SEMESTR. PŘEDNÁŠKA č. 1

Ústřední vytápění 2012/2013 ZIMNÍ SEMESTR. PŘEDNÁŠKA č. 1 Ústřední vytápění 2012/2013 ZIMNÍ SEMESTR PŘEDNÁŠKA č. 1 Stavby pro bydlení Druh konstrukce Stěna vnější Požadované Hodnoty U N,20 0,30 Součinitel prostupu tepla[ W(/m 2. K) ] Doporučené Doporučené

Více

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO KONKRÉTNÍ ROZBOR TEPELNĚ TECHNICKÝCH POŽADAVKŮ PRO VYBRANĚ POROVNÁVACÍ UKAZATELE Z HLEDISKA STAVEBNÍ FYZIKY příklady z praxe Ing. Milan Vrtílek,

Více

1. Hodnocení budov z hlediska energetické náročnosti

1. Hodnocení budov z hlediska energetické náročnosti H O D N O C E N Í B U D O V Z H L E D I S K A E N E R G E T I C K É N Á R O Č N O S T I K A P I T O L A. Hodnocení budov z hlediska energetické náročnosti Hodnocení stavebně energetické vlastnosti budov

Více

POROVNÁNÍ TEPELNĚ TECHNICKÝCH VLASTNOSTÍ MINERÁLNÍ VLNY A ICYNENE

POROVNÁNÍ TEPELNĚ TECHNICKÝCH VLASTNOSTÍ MINERÁLNÍ VLNY A ICYNENE POROVNÁNÍ TEPELNĚ TECHNICKÝCH VLASTNOSTÍ MINERÁLNÍ VLNY A ICYNENE Řešitel: Doc. Ing. Miloš Kalousek, Ph.D. soudní znalec v oboru stavebnictví, M-451/2004 Pod nemocnicí 3, 625 00 Brno Brno ČERVENEC 2009

Více

1. Energetický štítek obálky budovy. 2. Energetický průkaz budov a grafické vyjádření průkazu ENB. 3. Energetický audit

1. Energetický štítek obálky budovy. 2. Energetický průkaz budov a grafické vyjádření průkazu ENB. 3. Energetický audit 1. Energetický štítek obálky budovy 2. Energetický průkaz budov a grafické vyjádření průkazu ENB 3. Energetický audit Energetický průkaz budov a grafické vyjádření průkazu ENB ENB obsahuje informace o

Více

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO Zakládání staveb Legislativní požadavky Martin Doležal, TÜV SÜD Czech Investice do Vaší budoucnosti Projekt je spolufinancován Evropskou Unií prostřednictvím

Více

BH059 Tepelná technika budov

BH059 Tepelná technika budov BH059 Tepelná technika budov Ing. Danuše Čuprová, CSc. Ing. Sylva Bantová, Ph.D. Výpočet součinitele prostupu okna Lineární a bodový činitel prostupu tepla Nejnižší vnitřní povrchová teplota konstrukce

Více

ČESKÁ TECHNICKÁ NORMA

ČESKÁ TECHNICKÁ NORMA ČESKÁ TECHNICKÁ NORMA ICS 91.120.10 Říjen 2011 ČSN 73 0540-2 Tepelná ochrana budov Část 2: Požadavky Thermal protection of buildings Part 2: Requirements Nahrazení předchozích norem Touto normou se nahrazuje

Více

148 VYHLÁŠKA ze dne 18. června 2007 o energetické náročnosti budov

148 VYHLÁŠKA ze dne 18. června 2007 o energetické náročnosti budov 148 VYHLÁŠKA ze dne 18. června 2007 o energetické náročnosti budov Ministerstvo průmyslu a obchodu (dále jen "ministerstvo") stanoví podle 14 odst. 5 zákona č. 406/2000 Sb., o hospodaření energií, ve znění

Více

BH059 Tepelná technika budov

BH059 Tepelná technika budov BH059 Tepelná technika budov Přednáška č. 4 Přídavný difúzní odpor Výpočet roční bilance kondenzace a vypařování vodní páry v konstrukci -ručně Výpočet roční bilance kondenzace a vypařování vodní páry

Více

Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy

Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy Ing. arch. Tereza Vojancová Technický poradce tech.poradce@uralita.com 602 439 813 www.ursa.cz OBSAH 1 ÚVOD 2 ENERGETICKY

Více

s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y Tepelně technické vlastnosti l i s t o p a d 2 0 0 8

s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y Tepelně technické vlastnosti l i s t o p a d 2 0 0 8 s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y Tepelně technické vlastnosti l i s t o p a d 2 0 0 8 s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y

Více

BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D.

BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D. Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D. Průběh zkoušky, literatura Tepelně

Více

POŽADAVKY NA TEPELNOU OCHRANU BUDOV, STAVEBNÍ ŘEŠENÍ

POŽADAVKY NA TEPELNOU OCHRANU BUDOV, STAVEBNÍ ŘEŠENÍ POŽADAVKY NA TEPELNOU OCHRANU BUDOV, STAVEBNÍ ŘEŠENÍ Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci

Více

BH059 Tepelná technika budov

BH059 Tepelná technika budov BH059 Tepelná technika budov Tepelná stabilita místnosti v zimním období Tepelná stabilita místnosti v letním období Tepelná stabilita charakterizuje teplotní vlastnosti prostoru, tvořeného stavebními

Více

TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem

TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: Obecní úřad Suchonice Ulice: 29 PSČ: 78357 Město: Stručný popis budovy Seznam

Více

Průměrný součinitel prostupu tepla budovy

Průměrný součinitel prostupu tepla budovy Průměrný součinitel prostupu tepla budovy Zbyněk Svoboda, FSv ČVUT Praha Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2014 především s ohledem na změny v normách.

Více

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO Legislativní a normativní požadavky, definice, historie a budoucnost Martin Doležal, TÜV SÜD Czech Investice do Vaší budoucnosti Projekt je spolufinancován

Více

VÝVOJ A ZÁVAZNOS TEPELNĚ-TECHNICKÝCH PO

VÝVOJ A ZÁVAZNOS TEPELNĚ-TECHNICKÝCH PO VÝVOJ A ZÁVAZNOS TEPELNĚ-TECHNICKÝCH PO VZHLEDEM K POLOZE ČESKÉ REPUBLIKY PATŘÍ TEPELNĚ-VLHKOSTNÍ VLASTNOSTI KONSTRUKCÍ A STAVBY MEZI ZÁKLADNÍ POŽADAVKY SLEDOVANÉ ZÁVAZNOU LEGISLATIVOU. NAŠÍM CÍLEM JE

Více

Protokol k průkazu energetické náročnosti budovy

Protokol k průkazu energetické náročnosti budovy Protokol k průkazu energetické náročnosti budovy (1) Protokol a) identifikační údaje budovy Adresa budovy (místo, ulice, číslo, PSČ): Účel budovy: Broumov Velká ves u Broumova parc. č. 259 Bydlení Kód

Více

Protokol k průkazu energetické náročnosti budovy

Protokol k průkazu energetické náročnosti budovy Protokol k průkazu energetické náročnosti budovy (1) Protokol a) identifikační údaje budovy Adresa budovy (místo, ulice, číslo, PSČ): Účel budovy: Kód obce: Kód katastrálního území: Parcelní číslo: Vlastník

Více

Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství. BH059 Tepelná technika budov Konzultace č.1

Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství. BH059 Tepelná technika budov Konzultace č.1 Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov Konzultace č.1 Literatura: Studijní opory: BH10 Tepelná technika budov Normy: ČSN 73 0540 Tepelná

Více

Dřevostavby - Rozdělení konstrukcí - Vybraná kri;cká místa. jan.kurc@knaufinsula;on.com

Dřevostavby - Rozdělení konstrukcí - Vybraná kri;cká místa. jan.kurc@knaufinsula;on.com Dřevostavby - Rozdělení konstrukcí - Vybraná kri;cká místa jan.kurc@knaufinsula;on.com Zateplená dřevostavba Prvky které zásadně ovlivňují tepelně technické vlastnos; stěn - Elementy nosných rámových konstrukcí

Více

BH059 Tepelná technika budov Konzultace č.1

BH059 Tepelná technika budov Konzultace č.1 Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov Konzultace č.1 Literatura, podmínky zápočtu Zadání, protokoly Součinitel prostupu tepla U, teplotní

Více

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY energetické hodnocení budov Plamínkové 1564/5, Praha 4, tel. 241 400 533, www.stopterm.cz PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY Oravská č.p. 1895-1896, Praha 10 září 2015 Průkaz energetické náročnosti budovy

Více

TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem

TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: BD Ulice: Družstevní 279 PSČ: 26101 Město: Příbram Stručný popis budovy

Více

Protokol k průkazu energetické náročnosti budovy

Protokol k průkazu energetické náročnosti budovy Protokol k průkazu energetické náročnosti budovy (1) Protokol a) identifikační údaje budovy Adresa budovy (místo, ulice, číslo, PSČ): Účel budovy: Praha 7 Jateční 1195-1197 170 00 bytový dům Kód obce:

Více

termín pasivní dům se používá pro mezinárodně uznávaný standard budov s velmi nízkou spotřebou energie a vysokým komfortem bydlení pasivní domy jsou

termín pasivní dům se používá pro mezinárodně uznávaný standard budov s velmi nízkou spotřebou energie a vysokým komfortem bydlení pasivní domy jsou Michal Kovařík, 3.S termín pasivní dům se používá pro mezinárodně uznávaný standard budov s velmi nízkou spotřebou energie a vysokým komfortem bydlení pasivní domy jsou současně základem pro téměř nulové

Více

BH059 Tepelná technika budov Konzultace č. 3

BH059 Tepelná technika budov Konzultace č. 3 Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov Konzultace č. 3 Zadání P7 (Konzultace č. 2) a P8 P7 Kondenzace vodní páry uvnitř konstrukce P8 Prostup

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Stavební fyzika (L) Jan Tywoniak A428

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Stavební fyzika (L) Jan Tywoniak A428 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Stavební fyzika (L) 4 Jan Tywoniak A428 tywoniak@fsv.cvut.cz volba modelu pro výpočet vícerozměrného vedení tepla Lineární a bodový tepelný most Lineární

Více

Ing. Viktor Zbořil BAHAL SYSTEM VĚTRÁNÍ RODINNÝCH DOMŮ

Ing. Viktor Zbořil BAHAL SYSTEM VĚTRÁNÍ RODINNÝCH DOMŮ VĚTRÁNÍ RODINNÝCH DOMŮ (PŘEDEVŠÍM V PASIVNÍCH STANDARDECH) 1. JAK VĚTRAT A PROČ? VĚTRÁNÍ K ZAJIŠTĚNÍ HYGIENICKÝCH POŽADAVKŮ FYZIOLOGICKÁ POTŘEBA ČLOVĚKA Vliv koncentrace CO 2 na člověka 360-400 ppm - čerstvý

Více

VÝPOČET TEPELNÝCH ZTRÁT

VÝPOČET TEPELNÝCH ZTRÁT VÝPOČET TEPELNÝCH ZTRÁT A. Potřebné údaje pro výpočet tepelných ztrát A.1 Výpočtová vnitřní teplota θ int,i [ C] normová hodnota z tab.3 určená podle typu a účelu místnosti A.2 Výpočtová venkovní teplota

Více

Seminář pro gestory a členy pracovních skupin pro TN

Seminář pro gestory a členy pracovních skupin pro TN Seminář pro gestory a členy pracovních skupin pro TN Výzkumný ústav pozemních staveb Certifikační Společnost AO 227 NO 1516 Technické požadavky na vybrané stavební výrobky z hlediska základního požadavku

Více

Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost

Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost Výňatek z normy ČSN EN ISO 13370 Tepelně technické vlastnosti zeminy Použijí se hodnoty odpovídající skutečné lokalitě, zprůměrované pro hloubku. Pokud je druh zeminy znám, použijí se hodnoty z tabulky.

Více

TEPELNĚ TECHNICKÉ POSOUZENÍ

TEPELNĚ TECHNICKÉ POSOUZENÍ TEPELNĚ TECHNICKÉ POSOUZENÍ BD Obsah: 1. Zadání... 2 2. Seznam podkladů... 2 2.1. Normy a předpisy... 2 2.2. Odborný software... 2 3. Charakteristika situace... 2 4. Místní šetření... 2 5. Obecné podmínky

Více

Protokol k průkazu energetické náročnosti budovy

Protokol k průkazu energetické náročnosti budovy Protokol k průkazu energetické náročnosti budovy (1) Protokol a) identifikační údaje budovy Adresa budovy (místo, ulice, číslo, PSČ): Na Chmelnicích 69 a 71, Mutěnická 6 a 8 Účel budovy: Bytový dům Kód

Více

PS01 POZEMNÍ STAVBY 1

PS01 POZEMNÍ STAVBY 1 PS01 POZEMNÍ STAVBY 1 SVISLÉ NOSNÉ KONSTRUKCE 1 Funkce a požadavky Ctislav Fiala A418a_ctislav.fiala@fsv.cvut.cz Konstrukční rozdělení stěny (tlak (tah), ohyb v xz, smyk) sloupy a pilíře (tlak (tah), ohyb)

Více

základní informace pro kombinované studium obor TECHNOLOGIE A MANAGEMENT ZPRACOVÁNÍ DŘEVA

základní informace pro kombinované studium obor TECHNOLOGIE A MANAGEMENT ZPRACOVÁNÍ DŘEVA základní informace pro kombinované studium obor TECHNOLOGIE A MANAGEMENT ZPRACOVÁNÍ DŘEVA CÍL PŘEDMĚTU Studenti by měli zvládnout zpracování stavebně truhlářských výrobků (okna, dveře, podlahoviny, schodiště,

Více

Nejnižší vnitřní povrchová teplota a teplotní faktor

Nejnižší vnitřní povrchová teplota a teplotní faktor Nejnižší vnitřní povrchová teplota a teplotní faktor Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2014 především s ohledem na změny v normách.

Více

Nestacionární šíření tepla. Pokles dotykové teploty podlah

Nestacionární šíření tepla. Pokles dotykové teploty podlah Nestacionární šíření tepla Pokles dotykové teploty podlah Pokles dotykové teploty θ 10 termoregulační proces: výměna tepla Pokles dotykové teploty Požadavek ČSN 730540-2: θ 10 θ 10,N v závislosti na druhu

Více

TOB v PROTECH spol. s r.o ARCHEKTA-Ing.Mikovčák - Čadca Datum tisku: MŠ Krasno 2015.TOB 0,18 0,18. Upas,20,h = Upas,h =

TOB v PROTECH spol. s r.o ARCHEKTA-Ing.Mikovčák - Čadca Datum tisku: MŠ Krasno 2015.TOB 0,18 0,18. Upas,20,h = Upas,h = Tepelný odpor, teplota rosného bodu a průběh kondenzace. Stavba: MŠ Krasno Místo: Zadavatel: Zpracovatel: Zakázka: Archiv: Projektant: E-mail: Datum: Telefon:..0 Výpočet je proveden dle STN 00:00 SCH -

Více

OBSAH ŠKOLENÍ. Internet DEK netdekwifi

OBSAH ŠKOLENÍ. Internet DEK netdekwifi OBSAH ŠKOLENÍ 1) základy stavební tepelné techniky pro správné posuzování skladeb 2) samotné školení práce v aplikaci TEPELNÁ TECHNIKA 1D Internet DEK netdekwifi 1 Základy TEPELNÉ OCHRANY BUDOV 2 Legislativa

Více

STOPTERM spol. s r.o.,plamínkové 1564 / 5, Praha 4 tel. / fax : 241 400 533. Zadavatel: Ing. Marian Groch Třemblat 93 251 65 Ondřejov

STOPTERM spol. s r.o.,plamínkové 1564 / 5, Praha 4 tel. / fax : 241 400 533. Zadavatel: Ing. Marian Groch Třemblat 93 251 65 Ondřejov STOPTERM spol. s r.o.,plamínkové 1564 / 5, Praha 4 tel. / fax : 241 400 533 PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY reprezentant rodinných domů EKORD 182 t 78 a POSOUZENÍ POROVNÁVACÍCH UKAZATELŮ stavebních

Více

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY energetické hodnocení budov Plamínkové 1564/5, Praha 4, tel. 241 400 533, www.stopterm.cz PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY U Krbu č.p. 2021-2024, Praha 10 prosinec 2016 Průkaz energetické náročnosti

Více

VLIV LOKÁLNÍCH TEPELNÝCH MOSTŮ NA TEPELNÉ CHOVÁNÍ LOP

VLIV LOKÁLNÍCH TEPELNÝCH MOSTŮ NA TEPELNÉ CHOVÁNÍ LOP VLIV LOKÁLNÍCH TEPELNÝCH MOSTŮ NA TEPELNÉ CHOVÁNÍ LOP ING. ROMAN JIRÁK, PH.D. soudní znalec v oboru stavebnictví energetický specialista roman.jirak@decoen.cz 1. Legislativa 2. Lokální tepelné mosty 3.

Více

VÝPOČET TEPELNÝCH ZTRÁT

VÝPOČET TEPELNÝCH ZTRÁT VÝPOČET TEPELNÝCH ZTRÁT A. Potřebné údaje pro výpočet tepelných ztrát A.1 Výpočtová vnitřní teplota θ int,i [ C] normová hodnota z tab.3 určená podle typu a účelu místnosti A.2 Výpočtová venkovní teplota

Více

Stavební tepelná technika 1

Stavební tepelná technika 1 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Stavební tepelná technika 1 Prof.Ing.Jan Tywoniak,CSc. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Stavební tepelná

Více

Stavební tepelná technika 1

Stavební tepelná technika 1 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Stavební tepelná technika 1 Část B Prof.Ing.Jan Tywoniak,CSc. Praha 2011 04/11/2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Stavební fyzika (L) Jan Tywoniak A428

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Stavební fyzika (L) Jan Tywoniak A428 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Stavební fyzika (L) 3 Jan Tywoniak A428 tywoniak@fsv.cvut.cz Bilanci lze sestavit pro krátký nebo dlouhý časový úsek odlišná využitelnost (proměňujících

Více

Téma: Roční bilance zkondenzované a vypařitelné vodní páry v konstrukci

Téma: Roční bilance zkondenzované a vypařitelné vodní páry v konstrukci Téma: Roční bilance zkondenzované a vypařitelné vodní páry v konstrukci Poznámky k zadání: Roční množství zkondenzované a vypařitelné vodní páry v konstrukci se ve cvičení určí pro zadanou konstrukci početně-grafickou

Více

SEMINÁŘE DEKSOFT SEKCE TEPELNÁ OCHRANA BUDOV. Úvod

SEMINÁŘE DEKSOFT SEKCE TEPELNÁ OCHRANA BUDOV. Úvod SEMINÁŘE DEKSOFT SEKCE TEPELNÁ OCHRANA BUDOV Úvod Normy Klíčovou normou pro tepelnou ochranu budov v ČR je norma ČSN 73 0540-1 až 4 ČSN 73 0540-1 (2005) Část 1: Terminologie ČSN 73 0540-2 (2011) Část 2:

Více

Vysoká škola technická a ekonomická V Českých Budějovicích. Energetický audit budov EAB. Seminář č. 4. Ing. Michal Kraus, Ph.D. Katedra stavebnictví

Vysoká škola technická a ekonomická V Českých Budějovicích. Energetický audit budov EAB. Seminář č. 4. Ing. Michal Kraus, Ph.D. Katedra stavebnictví Vysoká škola technická a ekonomická V Českých Budějovicích Energetický audit budov Seminář č. 4 Ing. Michal Kraus, Ph.D. Katedra stavebnictví Výpočet energetické náročnosti budovy Program ENERGIE je určen

Více

Protokol k průkazu energetické náročnosti budovy

Protokol k průkazu energetické náročnosti budovy Protokol k průkazu energetické náročnosti budovy (1) Protokol a) identifikační údaje budovy Adresa budovy (místo, ulice, číslo, PSČ): Účel budovy: Kód obce: 535389 Kód katastrálního území: 793353 Parcelní

Více

N_SFB. Stavebně fyzikální aspekty budov. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích

N_SFB. Stavebně fyzikální aspekty budov. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích Vysoká škola technická a ekonomická V Českých Budějovicích N_ Stavebně fyzikální aspekty budov Přednáška č. 3 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: prof. Ing. Ingrid

Více

EFEKTIVNÍ ENERGETICKÝ REGION ECHY DOLNÍ BAVORSKO

EFEKTIVNÍ ENERGETICKÝ REGION ECHY DOLNÍ BAVORSKO EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍČECHY ECHY DOLNÍ BAVORSKO Vytápěnía využitíobnovitelných zdrojůenergie se zaměřením na nízkoenergetickou a pasivní výstavbu Parametry pasivní výstavby Investice do Vaší

Více

TEPELNÁ TECHNIKA OKEN A LOP

TEPELNÁ TECHNIKA OKEN A LOP TEPELNÁ TECHNIKA OKEN A LOP změny související s vydáním ČSN 73 0540-2 (2011) Ing. Olga Vápeníková ČSN 73 0540-2 (říjen 2011, platnost listopad 2011) PROJEKČNÍ NORMA okna + dveře = výplně otvorů ostatní

Více

Technologie staveb Tomáš Coufal, 3.S

Technologie staveb Tomáš Coufal, 3.S Technologie staveb Tomáš Coufal, 3.S Co je to Pasivní dům? Aby bylo možno navrhnout nebo certifikovat dům jako pasivní, je třeba splnit následující podmínky: měrná roční potřeba tepla na vytápění je maximálně

Více

Icynene. chytrá tepelná izolace. Šetří Vaše peníze, chrání Vaše zdraví

Icynene. chytrá tepelná izolace. Šetří Vaše peníze, chrání Vaše zdraví Icynene chytrá tepelná izolace Šetří Vaše peníze, chrání Vaše zdraví Icynene chytrá izolační pěna z Kanady, která chrání teplo Vašeho domova Co je to Icynene Icynene [:ajsinýn:] je stříkaná izolační pěna

Více

Posouzení konstrukce podle ČS :2007 TOB v PROTECH, s.r.o. Nový Bor Datum tisku:

Posouzení konstrukce podle ČS :2007 TOB v PROTECH, s.r.o. Nový Bor Datum tisku: Posouzení konstrukce podle ČS 050-:00 TOB v...0 00 POTECH, s.r.o. Nový Bor 080 - Ing.Petr Vostal - Třebíč Datum tisku:..009 Tepelný odpor, teplota rosného bodu a průběh kondenzace. Firma: Stavba: Místo:

Více

ŘÍZENÉ VĚTRÁNÍ RODINÝCH DOMŮ A BYTŮ. Elektrodesign ventilátory s.r.o

ŘÍZENÉ VĚTRÁNÍ RODINÝCH DOMŮ A BYTŮ. Elektrodesign ventilátory s.r.o ŘÍZENÉ VĚTRÁNÍ RODINÝCH DOMŮ A BYTŮ 1 Legislativní předpisy pro byty a bytové domy Vyhláška č.268/2009 Sb. o technických požadavcích na stavby 11 WC a prostory pro osobní hygienu a vaření musí být účinně

Více

TOB v PROTECH spol. s r.o Pavel Nosek - Kaplice Datum tisku: DP_RDlow-energy. 6 c J/(kg K) 5 ρ kg/m 3.

TOB v PROTECH spol. s r.o Pavel Nosek - Kaplice Datum tisku: DP_RDlow-energy. 6 c J/(kg K) 5 ρ kg/m 3. TOB v... POTECH spol. s r.o. 00 - Pavel Nosek - Kaplice Datum tisku:..0 Tepelný odpor, teplota rosného bodu a průběh kondenzace. Stavba: Místo: Zpracovatel: odinný dům Kaplice Zadavatel: Zakázka: Projektant:

Více

Icynene chytrá tepelná izolace

Icynene chytrá tepelná izolace Icynene chytrá tepelná izolace Šetří Vaše peníze, chrání Vaše zdraví Icynene šetří Vaše peníze Využití pro průmyslové objekty zateplení průmyslových a administrativních objektů zateplení novostaveb i rekonstrukcí

Více

KOMPLEXNÍ POSOUZENÍ SKLADBY STAVEBNÍ KONSTRUKCE Z HLEDISKA ŠÍŘENÍ TEPLA A VODNÍ PÁRY

KOMPLEXNÍ POSOUZENÍ SKLADBY STAVEBNÍ KONSTRUKCE Z HLEDISKA ŠÍŘENÍ TEPLA A VODNÍ PÁRY KOMPLEXNÍ POSOUZENÍ SKLADBY STAVEBNÍ KONSTRUKCE Z HLEDISKA ŠÍŘENÍ TEPLA A VODNÍ PÁRY podle EN ISO 13788, EN ISO 6946, ČSN 730540 a STN 730540 Teplo 2014 EDU stěna obvodová Název úlohy : Zpracovatel : Jan

Více

ICS Listopad 2005

ICS Listopad 2005 ČESKÁ TECHNICKÁ NORMA ICS 91. 120. 10 Listopad 2005 Tepelná ochrana budov - Část 3: Návrhové hodnoty veličin ČSN 73 0540-3 Thermal protection of buildings - Part 3: Design value quantities La protection

Více

F- 4 TEPELNÁ TECHNIKA

F- 4 TEPELNÁ TECHNIKA F- 4 TEPELNÁ TECHNIKA Obsah: 1. Úvod 2. Popis objektu 3. Normové požadavky na tepelně technické vlastnosti obvodových konstrukcí 3.1. Součinitel prostupu tepla 3.2. Nejnižší vnitřní povrchová teplota 3.3.

Více

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO Projektování nízkoenergetických a pasivních staveb konkrétní návrhy budov RD Martin Doležal, TÜV SÜD Czech Investice do Vaší budoucnosti Projekt

Více

Příloha č. 5 k vyhlášce č. xxx/2006 Sb. 17.10.2005 Vzor protokolu pro průkaz energetické náročnosti budovy. 1. Identifikační údaje

Příloha č. 5 k vyhlášce č. xxx/2006 Sb. 17.10.2005 Vzor protokolu pro průkaz energetické náročnosti budovy. 1. Identifikační údaje 1. Identifikační údaje Příloha č. 5 k vyhlášce č. xxx/2006 Sb. 17.10.2005 Vzor protokolu pro průkaz energetické náročnosti budovy Adresa budovy (místo, ulice, číslo, PSČ) Kód obce Kód katastrálního území

Více

Tepelnětechnický výpočet kondenzace vodní páry v konstrukci

Tepelnětechnický výpočet kondenzace vodní páry v konstrukci Zakázka číslo: 2015-1201-TT Tepelnětechnický výpočet kondenzace vodní páry v konstrukci Bytový dům Kozlovská 49, 51 750 02 Přerov Objednatel: Společenství vlastníků jednotek domu č.p. 2828 a 2829 v Přerově

Více

N_SFB. Stavebně fyzikální aspekty budov. Přednáška č. 7. Vysoká škola technická a ekonomická V Českých Budějovicích

N_SFB. Stavebně fyzikální aspekty budov. Přednáška č. 7. Vysoká škola technická a ekonomická V Českých Budějovicích Vysoká škola technická a ekonomická V Českých Budějovicích N_ Stavebně fyzikální aspekty budov Přednáška č. 7 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: prof. Ing. Ingrid

Více

Oblast podpory A Snižování energetické náročnosti stávajících rodinných domů. Oblast podpory C.2 Efektivní využití zdrojů energie, výměna zdrojů tepla

Oblast podpory A Snižování energetické náročnosti stávajících rodinných domů. Oblast podpory C.2 Efektivní využití zdrojů energie, výměna zdrojů tepla Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek pro podprogram Nová zelená úsporám - RODINNÉ DOMY v rámci 2. Výzvy k podávání žádostí Oblast podpory A Snižování energetické náročnosti

Více

P01 ZKRÁCENÝ DOKUMENT NÁRODNÍ KVALITY ADMD ZJEDNODUŠENÁ VERZE DNK PRO SOUTĚŢ DŘEVĚNÝ DŮM 2009

P01 ZKRÁCENÝ DOKUMENT NÁRODNÍ KVALITY ADMD ZJEDNODUŠENÁ VERZE DNK PRO SOUTĚŢ DŘEVĚNÝ DŮM 2009 P01 ZKRÁCENÝ DOKUMENT NÁRODNÍ KVALITY ADMD ZJEDNODUŠENÁ VERZE DNK PRO SOUTĚŢ DŘEVĚNÝ DŮM 2009 Asociace dodavatelů montovaných domů CENTRUM VZOROVÝCH DOMŮ EDEN 3000 BRNO - VÝSTAVIŠTĚ 603 00 BRNO 1 Výzkumný

Více

POSOUZENÍ KCÍ A OBJEKTU

POSOUZENÍ KCÍ A OBJEKTU PROTOKOL TEPELNĚ TECHNICKÉ POSOUZENÍ KCÍ A OBJEKTU dle ČSN 73 0540 Studentská cena ENVIROS Nízkoenergetická výstavba 2006 Kateřina BAŽANTOVÁ studentka 5.ročníku VUT Brno - fakulta stavební obor NAVRHOVÁNÍ

Více

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY Řadový RD - střední sekce Praha - Hostavice Celková podlahová plocha: 141,5 m 2 Hodnocení budovy stávající stav po realizaci doporučení A A B C D E F G Měrná vypočtená

Více

Určeno pro Navazující magisterský studijní program Stavební inženýrství, obor Pozemní stavby, zaměření Navrhování pozemních staveb

Určeno pro Navazující magisterský studijní program Stavební inženýrství, obor Pozemní stavby, zaměření Navrhování pozemních staveb Vzorový dokument pro zpracování základního posouzení objektu z hlediska stavební fyziky pro účely Diplomové práce ve formě projektové dokumentace stavby zpracovávané na Ústavu pozemního stavitelství, FAST,

Více

TZB Městské stavitelsví

TZB Městské stavitelsví Katedra prostředí staveb a TZB TZB Městské stavitelsví Zpracovala: Ing. Irena Svatošová, Ph.D. Nové výukové moduly vznikly za podpory projektu EU a státního rozpočtu ČR: Inovace a modernizace studijního

Více

Zateplené šikmé střechy - funkční vrstvy a výsledné vlastnos= jan.kurc@knaufinsula=on.com

Zateplené šikmé střechy - funkční vrstvy a výsledné vlastnos= jan.kurc@knaufinsula=on.com Zateplené šikmé střechy - funkční vrstvy a výsledné vlastnos= jan.kurc@knaufinsula=on.com Funkční vrstvy Nadpis druhé úrovně Ochrana před vnějšími vlivy Střešní kry=na Řádně odvodněná pojistná hydroizolace

Více

Lineární činitel prostupu tepla

Lineární činitel prostupu tepla Lineární činitel prostupu tepla Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2018 především s ohledem na změny v normách. Lineární činitel

Více

TEPELNĚ TECHNICKÉ POSOUZENÍ DETAILŮ OBLUKOVÝCH PŘEKLADŮ ATBET

TEPELNĚ TECHNICKÉ POSOUZENÍ DETAILŮ OBLUKOVÝCH PŘEKLADŮ ATBET STOPTERM spol. s r.o.,plamínkové 1564 / 5, Praha 4 tel. / fax : 241 400 533 TEPELNĚ TECHNICKÉ POSOUZENÍ DETAILŮ OBLUKOVÝCH PŘEKLADŮ ATBET Zadavatel : Roman Čejka Hrdlořezy 208 293 07 Zpracoval : Robert

Více

TECHNICKO EKONOMICKÁ STUDIE MOŽNOSTÍ SNÍŽENÍ ENERGTICKÉ NÁROČNOSTI OBJEKTU

TECHNICKO EKONOMICKÁ STUDIE MOŽNOSTÍ SNÍŽENÍ ENERGTICKÉ NÁROČNOSTI OBJEKTU energetické hodnocení budov TECHNICKO EKONOMICKÁ STUDIE MOŽNOSTÍ SNÍŽENÍ ENERGTICKÉ NÁROČNOSTI OBJEKTU Bukolská č.p. 772-774, Praha 8 - Bohnice červenec 2013 2 1. IDENTIFIKAČNÍ ÚDAJE Zadavatel studie Společenství

Více

SF2 Podklady pro cvičení

SF2 Podklady pro cvičení SF Podklady pro cvičení Úloha 7 D přenos tepla riziko růstu plísní a kondenzace na vnitřním povrchu konstrukce Ing. Kamil Staněk 11/010 kamil.stanek@fsv.cvut.cz 1 D přenos tepla 1.1 Úvodem Dosud jsme se

Více

Protokol k průkazu energetické náročnosti budovy

Protokol k průkazu energetické náročnosti budovy Protokol k průkazu energetické náročnosti budovy (1) Protokol a) identifikační údaje budovy Adresa budovy (místo, ulice, číslo, PSČ): Slivenec "Na Štěpánce" etapa II Lb 4 Účel budovy: bytový dům Kód obce:

Více

KOMPLEXNÍ POSOUZENÍ SKLADBY STAVEBNÍ KONSTRUKCE Z HLEDISKA ŠÍŘENÍ TEPLA A VODNÍ PÁRY

KOMPLEXNÍ POSOUZENÍ SKLADBY STAVEBNÍ KONSTRUKCE Z HLEDISKA ŠÍŘENÍ TEPLA A VODNÍ PÁRY KOMPLEXNÍ POSOUZENÍ SKLADBY STAVEBNÍ KONSTRUKCE Z HLEDISKA ŠÍŘENÍ TEPLA A VODNÍ PÁRY podle EN ISO 13788, EN ISO 6946, ČSN 730540 a STN 730540 Teplo 2015 obvodová stěna - Porotherm Název úlohy : Zpracovatel

Více

Výzkum a vývoj dřevostaveb na FAST VUT Brno

Výzkum a vývoj dřevostaveb na FAST VUT Brno Výzkum a vývoj dřevostaveb na FAST VUT Brno Autoři: J. Pospíšil, J. Král, R. Kučera 25. 5. 2018 Současné výzkumy Ing. Jaroslav Pospíšil (pospisil.j@fce.vutbr.cz) Experimentální ověření a simulace vzduchotěsnosti

Více

TECHNICKÁ PŘÍPRAVA FASÁD WWW.TPF.CZ TECHNICKÁ PŘÍPRAVA FASÁD KONZULTACEO U C PROJEKTY DOZORY POSUDKY VÝPOČTY NÁVRHY SOFTWARE. ing.

TECHNICKÁ PŘÍPRAVA FASÁD WWW.TPF.CZ TECHNICKÁ PŘÍPRAVA FASÁD KONZULTACEO U C PROJEKTY DOZORY POSUDKY VÝPOČTY NÁVRHY SOFTWARE. ing. TECHNICKÁ Odborná inženýrská, projekční a poradenská kancelář v oblasti oken/dveří, lehkých obvodových plášťů (LOP) a jiných fasádních konstrukcí. KONZULTACEO U C PROJEKTY DOZORY POSUDKY VÝPOČTY NÁVRHY

Více

Zateplené šikmé střechy Funkční vrstvy. jan.kurc@knaufinsula=on.com

Zateplené šikmé střechy Funkční vrstvy. jan.kurc@knaufinsula=on.com Zateplené šikmé střechy Funkční vrstvy jan.kurc@knaufinsula=on.com Funkční vrstvy Nadpis druhé úrovně Ochrana před vnějšími vlivy Střešní kry=na Pojistná hydroizolace + odvětrání střešního pláště Ochrana

Více

TECHNICKO EKONOMICKÁ STUDIE MOŽNOSTÍ SNÍŽENÍ ENERGTICKÉ NÁROČNOSTI OBJEKTU

TECHNICKO EKONOMICKÁ STUDIE MOŽNOSTÍ SNÍŽENÍ ENERGTICKÉ NÁROČNOSTI OBJEKTU energetické hodnocení budov Plamínkové 1564/5, Praha 4, tel. 241 400 533, www.stopterm.cz TECHNICKO EKONOMICKÁ STUDIE MOŽNOSTÍ SNÍŽENÍ ENERGTICKÉ NÁROČNOSTI OBJEKTU Na Pankráci 932,949,994,998 a 999, Praha

Více

Stavební Fyzika 2008/ představení produktů. Havlíčkův Brod

Stavební Fyzika 2008/ představení produktů. Havlíčkův Brod - představení produktů Havlíčkův Brod 29.04.2009 Pohled do Historie - ložnice pod širým nebem Pohled do Historie - chráníme se před počasím Pohled do Historie - mění se klima - stěhujeme se na sever Pohled

Více

BH059 Tepelná technika budov

BH059 Tepelná technika budov BH059 Tepelná technika budov Stavebně energetické vlastnosti budovy - Průměrný součinitel prostupu tepla Energetická náročnost budovy Prostup tepla obálkou budovy vyadřue základní vliv stavebního řešení

Více

Tepelně technické vlastnosti zdiva

Tepelně technické vlastnosti zdiva Obsah 1. Úvod 2 2. Tepelná ochrana budov 3-4 2.1 Závaznost požadavků 3 2.2 Budovy které musí splňovat normové požadavky 4 ČSN 73 0540-2(2007) 5 2.3 Ověřování požadavků 4 5 3. Vlastnosti použitých materiálů

Více

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY REKONSTRUKCE BYTOVÉHO DOMU

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY REKONSTRUKCE BYTOVÉHO DOMU Průkaz energetické náročnosti ENSIN energetická hodnocení, poradenství a projektová činnost Ing. Roman Brzoň, Ph.D. www.ensin.cz Ensin energetické hodnocení, poradenství a projektová činnost PRŮKAZ ENERGETICKÉ

Více

ENS. Nízkoenergetické a pasivní stavby. Cvičení č. 4. Vysoká škola technická a ekonomická V Českých Budějovicích

ENS. Nízkoenergetické a pasivní stavby. Cvičení č. 4. Vysoká škola technická a ekonomická V Českých Budějovicích Vysoká škola technická a ekonomická V Českých Budějovicích ENS Nízkoenergetické a pasivní stavby Cvičení č. 4 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: Ing. Michal Kraus,

Více

Detail nadpraží okna

Detail nadpraží okna Detail nadpraží okna Zpracovatel: Energy Consulting, o.s. Alešova 21, 370 01 České Budějovice 386 351 778; 777 196 154 roman@e-c.cz Autor: datum: leden 2007 Ing. Roman Šubrt a kolektiv Lineární činitelé

Více

SVISLÉ NOSNÉ KONSTRUKCE

SVISLÉ NOSNÉ KONSTRUKCE SVISLÉ NOSNÉ KONSTRUKCE FUNKCE A POŽADAVKY Konstrukční rozdělení stěny (tlak (tah), ohyb v xz, smyk) sloupy a pilíře (tlak (tah), ohyb) SVISLÉ KONSTRUKCE Technologické a materiálové rozdělení zděné konstrukce

Více