Darlingtonovo zapojení
|
|
- Lukáš Růžička
- před 8 lety
- Počet zobrazení:
Transkript
1 Tento dokument slouží pouze pro studijní účely studentům ČVUT FEL, zejména v předmětu X31ELO Dokument nemá konečnou podobu a může se časem upravovat a doplňovat Uživatel může dokument použít pouze pro svoje studijní potřeby Distribuce a převod do tištěné podoby je povolen pouze se svolením autora! c Jiří Hospodka Darlingtonovo zapojení Darlingtonovo zapojení je zapojení dvou bipolárních tranzistorů, uvedené na obrázku 1 Kolektor prvního tranzistoru (T 1 ) je možné buď spojit s kolektorem druhého tranzistoru, nebo lépe zapojit přímo na napájecí napětí (zapojení SC), čímž se u tohoto tranzistoru eliminuje Millerův efekt i B1 i C1 T 1 i B2 T 2 i C2 i E2 Obrázek 1: Darlingtonovo zapojení s tranzistory NPN Pokud budou tranzistory polarizovány do aktivního režimu, platí pro proudy jednotlivých elektrod následující relace i B1 (B F 1 +1)=α N2 i C1 = i E1 = i B2 = i C2 B F 2 (1) Pro celkový proudový zesilovací činitel lze tedy psát B F = i C i B = i C2 i B1 = B F 2 (B F 1 +1) = B F 2 B F 1, (2) z čehož vyplývá první výhodná vlastnost tohoto zapojení celkový proudový zesilovací činitel je přibližně B F -násobně větší, oproti jednomu klasickému tranzistoru Proto se toto zapojení využívá zejména tam, kde požadujeme velké proudové zesílení (koncové stupně), resp malý vstupní proud Jinými slovy tam, kde je třeba velký vstupní odpor při zachování velké strmosti g m (nelze použít tranzistory FET) V dalších úvahách budeme zjednodušeně považovat proudové zesilovací činitele B F obou tranzistorů za rovné, tj i činitele α N Stejný předpoklad provedeme i u jejich střídavých ekvivalentů β a α, B F 1 = B F 2 = B F, α N1 = α N2 = α N, β 1 = β 2 = β, α 1 = α 2 = α Pro stejnosměrné proudy v pracovním bodě potom platí I C1 = α N I E1 = α N I B2 = α N I C2 I C2 = (3) B F B F Použijme nyní Darlingtonovo zapojení v konstrukci jednoduchého zesilovačů Vyjdeme z jednostupňových zesilovačů v zapojení se společným emitorem (obrázek??) a kolektorem (obrázek??), kde však místo jednoho tranzistoru použijeme nyní Darlingtonovo zapojení tranzistorů dvou
2 Zapojení se společným emitorem Stejnosměrný bod je nastaven pomocí napěťového zdroje U 1 Toto nastavení je spíše ilustrativní a pracovní bod není nikterak stabilizován Pro praktické použití by tedy toto nastavení pracovního bodu bylo nevhodné (nepoužitelné) V našem případě se však budeme zabývat především vlastnostmi zapojení pro střídavé signály a pro tento účel je toto jednoduché nastavení naopak výhodné +U cc R c u 2 U 1 Obrázek 2: Zesilovač v zapojení SE s Darlingtonovým zapojením tranzistorů Pro poměr kolektorových proudů platí vztah 3 Budeme-li dále uvažovat rovnost hodnot B F β,platí,vzhledemk(??)a(??), ekvivalentní relace pro strmostmi obou tranzistorů Pro hodnoty prvků linearizovaného náhradního schématu pro malé změny obvodových veličin v okolí pracovního potom platí r e1 = r π1 = g m1 = αg m2 β = g m2 β, (4) β β 2 = = β, (5) g m1 g m2 α g m1 = β g m2 = = r π1 β +1 (6) Na následujícím obrázku 3 je náhradní linearzované schéma zapojení 2 pro střídavé veličiny, kde jsou tranzistory nahrazeny π-modely r π1 u be1 i b2 = i e1 = =(β 1 +1) g m1 u be1 R c u 2 g m2 Obrázek 3: Náhradní schéma zesilovače pro malé změny obvodových veličin Pro obvodové veličiny evidentně platí
3 ( ) = rπ1 +(β +1) = ib1 2r π1, (7) = (β +1) = r π1 +(β +1) 2, (8) u 2 = g m2 R c = g m2 R c 2 (9) Vtupní odpor a napěťové zesílení lze potom vyjádřit z (7) a (9) R vst = =2r π1 =2(β +1) (10) A u = g m2r c (11) 2 Oproti klasickému zapojení se společným emitorem s jedním tranzistorem je napěťové zesílení zesilovače s Darlingtonovým zapojením poloviční, při stejném nastavení pracovního bodu (I C = I C2 kolektorový proud tranzistoru T 2 je shodný s kolektorovým proudem tranzistoru jednostupňového zesilovače) Vstupní odpor je však 2β-násobný (r π1 =2βrπ2 )! Toto zapojení se proto používá zejména tam, kde je nutný vysoký vstupní odpor Pokusme se nyní zvýšit zesílení celkového zapojení, při zachování vysokého vstupního odporu Zapojme mezi emitory obou tranzistorů rezistor Tím zvýšíme kolektorový proud prvního tranzistoru, tj jeho strmost g m2 a zároveň snížíme jeho vsrupní odpor r π1, na kterém se nyní sníží úbytek napětí Tím se zvýší napětí, tj zesílení celého zapojení Dokažme nyní tuto úvahu pomocí analýzy tohoto zapojení Na následujícím obrázku jsou ilustrovány stejnosměrné poměry (proudy) v obvodu se zapojeným rezistorem Pracovní bod tranzistoru T 2 je nezměněn, změnilo se pouze nastavení tranzistoru T 1, proto jsou jeho proudy a následně další změněné parametry značeny odlišně čárkovaně I B1 I C1 I E1 I B2 I RE T 2 I C2 I E2 Obrázek 4: Darlingtonovo zapojení tranzistorů včetně emitorového odporu Předpokládejme, že U BE2 =07V Potom platí ( I C1 = α N I E1 = α IC2 N (I B2 + I RE )=α N + 07 ), (12) B F tj pro prvky linearizovaného obvodu tranzistoru T 1 platí g m1 r π1 = =40I C1 = α N β g m1 = β +1 ( gm2 β + 28 g m2 β + 28 ), (13) (14)
4 Náhradní linearizované schéma pro malé změny obvodových veličin celého zesilovače, včetně rezistoru, je pak uvedeno na následujícím obrázku r π1 u be1 g m1 u be1 R c u 2 i b2 i RE g m2 Obrázek 5: Linearizované zapojení zesilovače pro malé změny obvodových veličin Dosazením výrazu (14) do vztahů (7) a (8), resp (9), dostaneme pro vstupní odpor a zesílení nové vztahy R vst a A u, přičemž R vst = (β +1)β(2 g m2 +29β) ( g m2 +28β)( g m2 + β), (15) A u = g m2r c g m2 +28β 2 g m2 +29β (16) Pokud zavedeme proměnnou a = RE, lze tyto vztahy dále upravit tak, aby vyjadřovaly vztah mezi původními hodnotami R vst, A u a hodnotami novými R vst, A u R vst (β +1)β a(2a + 29) = g m2 (a + 28)(1 + a) = R vst a(2a + 29) () (17) 2 (a + 28)(1 + a) A u = g a +28 m2r c 2a +29 =2A a +28 u (??) (18) 2a +29 Na následujících grafech jsou pak vyneseny závislosti, vyjádřené vztahy (17) a (??) Na obrázku 6 je vynesena závislost R vst R vst na činiteli a = RE Naobrázku7je vynesena závislost = A u g m2r c = a+28 2a+29 opět na činiteli a, což je poměr zesílení A u ku zesílení klasického jednostupňového zesilovače s jedním tranzistorem v zapojení se společným emitorem, viz (??) Například pro =53rπ2 je vstupní odpor oproti zapojení bez rezistoru právě poloviční R vst = r π1 = R vst /2 a napěťové zesílení dosahuje 17 násobku zesílení bez zařazeného rezistoru,tj =084u1 Tato hodnota se již více blíží hodnotě klasického jednostupňového zesilovače v zapojení se společným emitorem (084 jeho násobku), přičemž je však hodnota vstupního odporu β násobně větší (r π1 = βrπ2 )! Pozn: Vyráběná dvojice ho má
5 R vst R vst = a Obrázek 6: Poměr vstupního odporu zesilovače se zařazeným rezistorem abez něho v závislosti na jeho velikosti, resp na poměru RE = a Obrázek 7: Poměr zesílení A u, zesilovače 2 se zařazeným rezistorem a zesílení klasického stupně SE s jedním tranzistorem v závislosti na poměru
6 Zapojení se společným kolektorem +U cc U 1 R z u 2 Obrázek 8: Zesilovač v zapojení SC s Darlingtonovým zapojením tranzistorů αi e1 r e1 u be1 αi e2 i e1 = i b2 r e2 i e2 R z u 2 Obrázek 9: Linearizované zapojení zesilovače pro malé změny obvodových veličin
7 αi e1 r e1 u be1 αi e2 i e1 = ix β +1 re2 i e2 = i x u x Obrázek 10: Linearizované náhradní zapojení zesilovače pro určení výstupního odporu i e1 β +1 αi e1 u R0 R 0 r e1 u be1 αi e2 i e1 = i x β +1 re2 i e2 = i x u x Obrázek 11: Upravené linearizované náhradní zapojení zesilovače pro určení výstupního odporu
Jednostupňové zesilovače
Kapitola 2 Jednostupňové zesilovače Tento dokument slouží POUZE pro studijní účely studentům ČVUT FEL. Uživatel (student) může dokument použít pouze pro svoje studijní potřeby. Distribuce a převod do tištěné
+ U CC R C R B I C U BC I B U CE U BE I E R E I B + R B1 U C I - I B I U RB2 R B2
Pro zadané hodnoty napájecího napětí, odporů a zesilovacího činitele β vypočtěte proudy,, a napětí,, (předpokládejte, že tranzistor je křemíkový a jeho pracovní bod je nastaven do aktivního normálního
1.1 Pokyny pro měření
Elektronické součástky - laboratorní cvičení 1 Bipolární tranzistor jako zesilovač Úkol: Proměřte amplitudové kmitočtové charakteristiky bipolárního tranzistoru 1. v zapojení se společným emitorem (SE)
Název: Tranzistorový zesilovač praktické zapojení, měření zesílení
Název: Tranzistorový zesilovač praktické zapojení, měření zesílení Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika Tematický celek:
PŘEDNÁŠKA 1 - OBSAH. Přednáška 1 - Obsah
PŘEDNÁŠKA 1 - OBSAH Přednáška 1 - Obsah i 1 Analogová integrovaná technika (AIT) 1 1.1 Základní tranzistorová rovnice... 1 1.1.1 Transkonduktance... 2 1.1.2 Výstupní dynamická impedance tranzistoru...
II. Nakreslete zapojení a popište funkci a význam součástí následujícího obvodu: Integrátor s OZ
Datum: 1 v jakém zapojení pracuje tranzistor proč jsou v obvodu a jak se projeví v jeho činnosti kondenzátory zakreslené v obrázku jakou hodnotu má odhadem parametr g m v uvedeném pracovním bodu jakou
1.3 Bipolární tranzistor
1.3 Bipolární tranzistor 1.3.1 Úkol: 1. Změřte vstupní charakteristiku bipolárního tranzistoru 2. Změřte převodovou charakteristiku bipolárního tranzistoru 3. Změřte výstupní charakteristiku bipolárního
ETC Embedded Technology Club 7. setkání
T mbedded Technology lub 7. setkání 31.1. 2017 Katedra telekomunikací, Katedra měření, ČVUT- FL, Praha doc. Ing. Jan Fischer, Sc. T club - 7, 31.1.2017, ČVUT- FL, Praha 1 Náplň Výklad: ipolární tranzistor
Studium tranzistorového zesilovače
Studium tranzistorového zesilovače Úkol : 1. Sestavte tranzistorový zesilovač. 2. Sestavte frekvenční amplitudovou charakteristiku. 3. Porovnejte naměřená zesílení s hodnotou vypočtenou. Pomůcky : - Generátor
ETC Embedded Technology Club setkání 6, 3B zahájení třetího ročníku
ETC Embedded Technology Club setkání 6, 3B 13.11. 2018 zahájení třetího ročníku Katedra měření, Katedra telekomunikací,, ČVUT- FEL, Praha doc. Ing. Jan Fischer, CSc. ETC club,6, 3B 13.11.2018, ČVUT- FEL,
Základy elektrotechniky
Základy elektrotechniky Přednáška Tranzistory 1 BIPOLÁRNÍ TRANZISTOR - třívrstvá struktura NPN se třemi vývody (elektrodami): e - emitor k - kolektor b - báze Struktura, náhradní schéma a schematická značka
Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor Ročník 2, 3 Obor Anotace CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Logické obvody sekvenční,
ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, Mělník Ing.František Moravec
ISŠT Mělník Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_C.3.08 Integrovaná střední škola technická Mělník,
Tranzistory. tranzistor z agnl. slova transistor, tj. transfer resisitor. Bipolární NPN PNP Unipolární (řízené polem) JFET MOS FET
Tranzistory tranzistor z agnl. slova transistor, tj. transfer resisitor Bipolární NPN PNP Unipolární (řízené polem) JFET MOS FET Shockey, Brattain a Bardeen 16.12. 1947 Shockey 1952 Bipolární tranzistor
Zesilovač. Elektronický obvod zvyšující hodnotu napětí nebo proudu při zachování tvaru jeho průběhu. Princip zesilovače. Realizace zesilovačů
Zesilovač Elektronický obvod zvyšující hodnotu napětí nebo proudu při zachování tvaru jeho průběhu Princip zesilovače Zesilovač je dvojbran který může současně zesilovat napětí i proud nebo pouze napětí
Návrh a analýza jednostupňového zesilovače
Návrh a analýza jednostupňového zesilovače Zadání: U CC = 35 V I C = 10 ma R Z = 2 kω U IG = 2 mv R IG = 220 Ω Tolerance u napětí a proudů, kromě Id je ± 1 % ze zadaných hodnot. Frekvence oscilátoru u
Zesilovače. Ing. M. Bešta
ZESILOVAČ Zesilovač je elektrický čtyřpól, na jehož vstupní svorky přivádíme signál, který chceme zesílit. Je to tedy elektronické zařízení, které zesiluje elektrický signál. Zesilovač mění amplitudu zesilovaného
SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU NÁVRH A ANALÝZA ELEKTRONICKÝCH OBVODŮ
Univerzita Pardubice FAKULTA ELEKTROTECHNIKY A INFORMATIKY SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU NÁVRH A ANALÝZA ELEKTRONICKÝCH OBVODŮ Vypracoval: Ondřej Karas Ročník:. Skupina: STŘEDA 8:00 Zadání: Dopočítejte
15. ZESILOVAČE V KOMUNIKAČNÍCH ZAŘÍZENÍCH
15. ZESILOVAČE V KOMUNIKAČNÍCH ZAŘÍZENÍCH Rozdělení zesilovačů podle velikosti rozkmitu vstupního napětí, podle způsobu zapojení tranzistoru do obvodu, podle způsobu vazby na následující stupeň a podle
ETC Embedded Technology Club setkání 5, 3B zahájení třetího ročníku
ETC Embedded Technology Club setkání 5, 3B 6.11. 2018 zahájení třetího ročníku Katedra měření, Katedra telekomunikací,, ČVUT- FEL, Praha doc. Ing. Jan Fischer, CSc. ETC club,5, 3B 30.10.2018, ČVUT- FEL,
Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora
Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny ředmět očník /y/..07/.5.00/34.0394 VY_3_NOVA_M_.9_měření statických parametrů zesilovače Střední odborná škola a Střední odborné učiliště,
ELEKTRONICKÉ SOUČÁSTKY
ELEKTRONICKÉ SOUČÁSTKY VZORY OTÁZEK A PŘÍKLADŮ K TUTORIÁLU 1 1. a) Co jsou polovodiče nevlastní. b) Proč je používáme. 2. Co jsou polovodiče vlastní. 3. a) Co jsou polovodiče nevlastní. b) Jakým způsobem
Kurs praktické elektroniky a kutění
Kurs praktické elektroniky a kutění Katedra měření, ČVUT FEL, Praha 12.9. 16.9.2016 19.9. 23.9.2016 Doc. Ing. Jan Holub, PhD. Vedoucí katedry měření Doc. Ing. Jan Fischer, CSc. prezentující Tento materiál
Punčochář, J.: OPERAČNÍ ZESILOVAČE V ANALOGOVÝCH SYSTÉMECH 1
Punčochář, J.: OPERAČNÍ ZESILOVAČE V ANALOGOVÝCH SYSTÉMECH 1 Heater Voltage 6.3-12 V Heater Current 300-150 ma Plate Voltage 250 V Plate Current 1.2 ma g m 1.6 ma/v m u 100 Plate Dissipation (max) 1.1
Operační zesilovač. Úloha A2: Úkoly: Nutné vstupní znalosti: Diagnostika a testování elektronických systémů
Diagnostika a testování elektronických systémů Úloha A2: 1 Operační zesilovač Jméno: Datum: Obsah úlohy: Diagnostika chyb v dvoustupňovém operačním zesilovači Úkoly: 1) Nalezněte poruchy v operačním zesilovači
Měření vlastností a základních parametrů elektronických prvků
Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ Z.1.07/1.5.00/34.0394 VY_32_NOVAE_EM_1.10_měření parametrů bipolárního tranzistoru Střední odborná škola a Střední
Základní elektronické prvky a jejich modely
Kapitola 1 Základní elektronické prvky a jejich modely Tento dokument slouží POUZE pro studijní účely studentům ČVUT FEL. Uživatel (student) může dokument použít pouze pro svoje studijní potřeby. Distribuce
ROZD LENÍ ZESILOVA Hlavní hledisko : Další hlediska : A) Podle kmito zesilovaných signál B) Podle rozsahu zpracovávaného kmito tového pásma
ROZDĚLENÍ ZESILOVAČŮ Hlavní hledisko : A) Zesilovače malého signálu B) Zesilovače velkého signálu Další hlediska : A) Podle kmitočtů zesilovaných signálů -nízkofrekvenční -vysokofrekvenční B) Podle rozsahu
Měření vlastností jednostupňových zesilovačů. Návod k přípravku pro laboratorní cvičení v předmětu EOS.
Měření vlastností jednostupňových zesilovačů Návod k přípravku pro laboratorní cvičení v předmětu EOS. Cílem měření je seznámit se s funkcí a základními vlastnostmi jednostupňových zesilovačů a to jak
TRANZISTORY TRANZISTORY. Bipolární tranzistory. Ing. M. Bešta
TRANZISTORY Tranzistor je aktivní, nelineární polovodičová součástka schopná zesilovat napětí, nebo proud. Tranzistor je asi nejdůležitější polovodičová součástka její schopnost zesilovat znamená, že malé
Určení čtyřpólových parametrů tranzistorů z charakteristik a ze změn napětí a proudů
Určení čtyřpólových parametrů tranzistorů z charakteristik a ze změn napětí a proudů Tranzistor je elektronická aktivní součástka se třemi elektrodami.podstatou jeho funkce je transformace odporu mezi
Interakce ve výuce základů elektrotechniky
Střední odborné učiliště, Domažlice, Prokopa Velikého 640, Místo poskytovaného vzdělávaní Stod, Plzeňská 245 CZ.1.07/1.5.00/34.0639 Interakce ve výuce základů elektrotechniky TRANZISTORY Číslo projektu
2. Pomocí Theveninova teorému zjednodušte zapojení na obrázku, vypočtěte hodnoty jeho prvků. U 1 =10 V, R 1 =1 kω, R 2 =2,2 kω.
A5M34ELE - testy 1. Vypočtěte velikost odporu rezistoru R 1 z obrázku. U 1 =15 V, U 2 =8 V, U 3 =10 V, R 2 =200Ω a R 3 =1kΩ. 2. Pomocí Theveninova teorému zjednodušte zapojení na obrázku, vypočtěte hodnoty
Klasifikace: bodů výborně bodů velmi dobře bodů dobře 0-49 bodů nevyhověl. Příklad testu je na následující straně.
Elektronika - pravidla Zkouška: Délka trvání testu: 12 minut Doporučené pomůcky: propisovací tužka, obyčejná tužka, čistý papír, guma, pravítko, kalkulačka se zanedbatelně malou pamětí Zakázané pomůcky:
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.3 Polovodiče a jejich využití Kapitola
Manuální, technická a elektrozručnost
Manuální, technická a elektrozručnost Realizace praktických úloh zaměřených na dovednosti v oblastech: Vybavení elektrolaboratoře Schématické značky, základy pájení Fyzikální principy činnosti základních
TRANZISTOROVÝ ZESILOVAČ
RANZISOROÝ ZESILOAČ 301-4R Hodnotu napájecího napětí určí vyučující ( CC 12). 1. Pro zadanou hodnotu I C 2 ma vypočtěte potřebnou hodnotu R C a zvolte nejbližší hodnotu rezistoru z řady. 2. Zvolte hodnotu
Měření vlastností stejnosměrných tranzistorových zesilovačů
ysoká škola báňská Technická universita Ostrava Fakulta elektrotechniky a informatiky Základy elektroniky ZEL Laboratorní úloha č. 6 Měření vlastností stejnosměrných tranzistorových zesilovačů Datum měření:
Elektronika pro informační technologie (IEL)
Elektronika pro informační technologie (IEL) Čtvrté laboratorní cvičení Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole Petr Veigend,iveigend@fit.vutbr.cz
[Otázky Autoelektrikář + Mechanik elektronických zařízení 1.část] Na rezistoru je napětí 25 V a teče jím proud 50 ma. Rezistor má hodnotu.
[Otázky Autoelektrikář + Mechanik elektronických zařízení 1.část] 04.01.01 Na rezistoru je napětí 5 V a teče jím proud 25 ma. Rezistor má hodnotu. A) 100 ohmů B) 150 ohmů C) 200 ohmů 04.01.02 Na rezistoru
I 3 =10mA (2) R 3. 5mA (0)
Kirchhoffovy zákony 1. V obvodu podle obrázku byly změřeny proudy 3 a. a. Vypočítejte proudy 1, 2 a 4, tekoucí rezistory, a. b. Zdroj napětí = 12 V, = 300 Ω, na rezistoru jsme naměřili napětí 4 = 3 V.
Stabilizátory napětí a proudu
Stabilizátory napětí a proudu Stabilizátory jsou obvody, které automaticky vyrovnávají napěťové nebo proudové změny na zátěži. Používají se tam, kde požadujeme minimální zvlnění nebo požadujeme-li konstantní
Spínače s tranzistory řízenými elektrickým polem. Používají součástky typu FET, IGBT resp. IGCT
Spínače s tranzistory řízenými elektrickým polem Používají součástky typu FET, IGBT resp. IGCT Základní vlastnosti spínačů s tranzistory FET, IGBT resp. IGCT plně řízený spínač nízkovýkonové řízení malý
Elektrotechnická zapojení
Elektrotechnická zapojení 1. Obvod s rezistory Na základě níže uvedeného obrázku vypočítejte proudy I1, I2, I3. R1 =4Ω, R2 =2Ω, R3 =6Ω, R4 =1Ω, R5 =5Ω, R6 =3Ω, U01 =48V 2. Obvod s tranzistorem počet bodů:
Elektronické obvody pro optoelektroniku a telekomunikační techniku pro integrovanou výuku VUT a VŠB-TU
VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA Fakulta elektrotechniky a informatiky Elektronické obvody pro optoelektroniku a telekomunikační techniku pro integrovanou výuku VUT a VŠB-TU Garant předmětu:
Základní druhy tranzistorů řízených elektrickým polem: Technologie výroby: A) 1. : A) 2. : B) 1. :
ZADÁNÍ: Změřte výstupní a převodní charakteristiky unipolárního tranzistoru KF 520. Z naměřených charakteristik určete v pracovním bodě strmost S, vnitřní odpor R i a zesilovací činitel µ. Určete katalogové
Měření vlastností lineárních stabilizátorů. Návod k přípravku pro laboratorní cvičení v předmětu EOS.
Měření vlastností lineárních stabilizátorů Návod k přípravku pro laboratorní cvičení v předmětu EOS. Cílem měření je seznámit se s funkcí a základními vlastnostmi jednoduchých lineárních stabilizátorů
Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1
Číslo Projektu Škola CZ.1.07/1.5.00/34.0394 Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Ing. Bc.Štěpán Pavelka Číslo VY_32_INOVACE_EL_2.17_zesilovače 8 Název Základní
ZÁKLADY POLOVODIČOVÉ TECHNIKY. Doc.Ing.Václav Vrána,CSc. 03/2008
ZÁKLADY POLOVODIČOVÉ TECHNIKY Doc.Ing.Václav Vrána,CSc. 3/28 Obsah 1. Úvod 2. Polovodičové prvky 2.1. Polovodičové diody 2.2. Tyristory 2.3. Triaky 2.4. Tranzistory 3. Polovodičové měniče 3.1. Usměrňovače
Bipolární tranzistory
Bipolární tranzistory h-parametry, základní zapojení, vysokofrekvenční vlastnosti, šumy, tranzistorový zesilovač, tranzistorový spínač Bipolární tranzistory (bipolar transistor) tranzistor trojpól, zapojení
ETC Embedded Technology Club setkání 4, 3B zahájení třetího ročníku
ETC Embedded Technology Club setkání 4, 3B 30.10. 2018 zahájení třetího ročníku Katedra měření, Katedra telekomunikací,, ČVUT- FEL, Praha doc. Ing. Jan Fischer, CSc. ETC club, 4, 3B 30.10.2018, ČVUT- FEL,
U01 = 30 V, U 02 = 15 V R 1 = R 4 = 5 Ω, R 2 = R 3 = 10 Ω
B 9:00 hod. Elektrotechnika a) Definujte stručně princip superpozice a uveďte, pro které obvody platí. b) Vypočítejte proudy větvemi uvedeného obvodu metodou superpozice. 0 = 30 V, 0 = 5 V R = R 4 = 5
ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec
ISŠT Mělník Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_C.3.05 Integrovaná střední škola technická Mělník, K učilišti 2566,
Ukázka práce na nepájivém poli pro 2. ročník SE. Práce č. 1 - Stabilizovaný zdroj ZD + tranzistor
Ukázka práce na nepájivém poli pro 2. ročník SE Práce č. 1 - Stabilizovaný zdroj ZD + tranzistor Seznam součástek: 4 ks diod 100 V/0,8A, tranzistor NPN BC 337, elektrolytický kondenzátor 0,47mF, 2ks elektrolytického
Dioda jako usměrňovač
Dioda A K K A Dioda je polovodičová součástka s jedním P-N přechodem. Její vývody se nazývají anoda a katoda. Je-li na anodě kladný pól napětí a na katodě záporný, dioda vede (propustný směr), obráceně
Elektronické praktikum EPR1
Elektronické praktikum EPR1 Úloha číslo 2 název Vlastnosti polovodičových prvků Vypracoval Pavel Pokorný PINF Datum měření 11. 11. 2008 vypracování protokolu 23. 11. 2008 Zadání 1. Seznamte se s funkcí
Proudové zrcadlo. Milan Horkel
roudové zrcadlo MLA roudové zrcadlo Milan Horkel Zdroje proudu jsou při konstrukci integrovaných obvodů asi stejně důležité, jako obyčejný rezistor pro běžné tranzistorové obvody. Zdroje proudu se často
Děliče napětí a zapojení tranzistoru
Středoškolská technika 010 Setkání a prezentace prací středoškolských studentů na ČVUT Děliče napětí a zapojení tranzistoru David Klobáska Vyšší odborná škola a Střední škola slaboproudé elektrotechniky
Přednáška 4 - Obsah. 1 Základní koncept přesného návrhu Koncept přesného operačního zesilovače... 1
PŘEDNÁŠKA 4 - OBSAH Přednáška 4 - Obsah i 1 Základní koncept přesného návrhu 1 1.1 Koncept přesného operačního zesilovače... 1 2 Přesný dvojstupňový OZ 2 2.1 Princip kmitočtového doubletu v charakteristice
Zpětnovazební stabilizátor napětí
SEMESTRÁLNÍ PRÁCE Z X31EOS Zpětnovazební stabilizátor napětí Daniel Tureček Po-11:00 1. Zadání Zapojení stabilizátoru je uvedeno na obrázku. Navrhněte velikosti všech rezistorů tak, aby výstupní napětí
Teoretický rozbor : Postup měření : a) Neinvertující zesilovač napětí (Noninverting Amplifier)
Teoretický rozbor : Postup měření : a) Neinvertující zesilovač napětí (Noninverting Amplifier) 1) Spojte napájecí modul (Power Connection) s děličem napětí (Input Voltage Unit) a neinvertujícím zesilovačem
teorie elektronických obvodů Jiří Petržela analýza obvodů metodou orientovaných grafů
Jiří Petržela analýza obvodů metodou orientovaných grafů podstata metod spočívá ve vjádření rovnic popisujících řešený obvod pomocí orientovaných grafů uzl grafu odpovídají závislým a nezávislým veličinám,
Zadání semestrálních prácí z předmětu Elektronické obvody. Jednodušší zadání
Zadání semestrálních prácí z předmětu Elektronické obvody Jiří Hospodka katedra Teorie obvodů, ČVUT FEL 26. května 2008 Jednodušší zadání Zadání 1: Jednostupňový sledovač napětí maximální počet bodů 10
VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl
Číslo projektu CZ.1.07/1.5.00/34.0581 Číslo materiálu VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická
1 U Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose v uvedeném grafu.
v v 1. V jakých jednotkách se vyjadřuje proud uveďte název a značku jednotky. 2. V jakých jednotkách se vyjadřuje indukčnost uveďte název a značku jednotky. 3. V jakých jednotkách se vyjadřuje kmitočet
PŘEDNÁŠKA 2 - OBSAH. Přednáška 2 - Obsah
PŘEDNÁŠKA 2 - OBSAH Přednáška 2 - Obsah i 1 Bipolární diferenciální stupeň 1 1.1 Dif. stupeň s nesymetrickým výstupem (R zátěž) napěťový zisk... 4 1.1.1 Parametr CMRR pro nesymetrický dif. stupeň (R zátěž)...
Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u
Fyzikální praktikum č.: 7 Datum: 7.4.2005 Vypracoval: Tomáš Henych Název: Operační zesilovač, jeho vlastnosti a využití Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící,
Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr
Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,
Kategorie M. Test. U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Sběrnice RS-485 se používá pro:
Krajské kolo soutěže dětí a mládeže v radioelektronice, Vyškov 2009 Test Kategorie M START. ČÍSLO BODŮ/OPRAVIL U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Sběrnice RS-485 se používá pro:
ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec
ISŠT Mělník Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_C.3.16 Integrovaná střední škola technická Mělník, K učilišti 2566,
4. NELINEÁRNÍ NESETRVAČNÉ OBVODY
4. NELINEÁRNÍ NESETRVAČNÉ OBVODY 4.1. Úvod V předchozích kapitolách jsme ukázali, že k řešení lineárních obvodů lze použít celé řady metod. Při správné aplikaci vedou všechny uvedené metody k jednoznačnému
než je cca 5 [cm] od obvodu LT1070, doporučuje se blokovat napětí U IN
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec
ISŠT Mělník Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_C.3.20 Integrovaná střední škola technická Mělník,
ELN 2. ANALOGOVÉ SPÍNAČE S TRANZISTORY 1/14 2. ANALOGOVÉ SPÍNAČE S TRANZISTORY
ELN 2. ANALOGOVÉ SPÍNAČE S TRANZISTORY 1/14 2. Analogové spínače s tranzistory 2.1 Spínací vlastnosti tranzistorů bipolárních a unipolárních 2.2 Příklady použití spínačů 2. ANALOGOVÉ SPÍNAČE S TRANZISTORY
2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě nízkofrekvenční nevýkonový tranzistor KC 639. Mezní hodnoty jsou uvedeny v tabulce:
RIEDL 3.EB 10 1/11 1.ZADÁNÍ a) Změřte statické hybridní charakteristiky tranzistoru KC 639 v zapojení se společným emitorem (při měření nesmí dojít k překročení mezních hodnot). 1) Výstupní charakteristiky
MĚŘENÍ Laboratorní cvičení z měření Měření parametrů tyristoru část 3-5-1 Teoretický rozbor
MĚŘENÍ Laboratorní cvičení z měření část 3-5-1 Teoretický rozbor Výukový materiál Číslo projektu: CZ.1.07/1.5.00/34.0093 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 1 Číslo materiálu:
Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora
Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ CZ.1.07/1.5.00/34.0394 VY_3_INOVACE_EM_.0_měření kmitočtové charakteristiky zesilovače Střední odborná škola a Střední
Bipolární tranzistory
Bipolární tranzistory Historie V prosinci 1947 výzkumní pracovníci z Bellových laboratořích v New Jersey zjistili, že polovodičová destička z germania se zlatými hroty zesiluje slabý signál. Vědci byli
ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ
Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: ME II-4.2.1. STAVBA JEDNODUCHÉHO ZESILOVAČE Obor: Mechanik - elekronik Ročník: 2. Zpracoval: Ing. Michal Gregárek Střední průmyslová škola Uherský Brod, 2010
ITO. Semestrální projekt. Fakulta Informačních Technologií
ITO Semestrální projekt Autor: Vojtěch Přikryl, xprikr28 Fakulta Informačních Technologií Vysoké Učení Technické v Brně Příklad 1 Stanovte napětí U R5 a proud I R5. Použijte metodu postupného zjednodušování
ETC Embedded Technology Club 10. setkání
ETC Embedded Technology Club 10. setkání 21.2. 2017 Katedra telekomunikací, Katedra měření, ČVUT- FEL, Praha doc. Ing. Jan Fischer, CSc. ETC club -10, 21.2.2017, ČVUT- FEL, Praha 1 Náplň Výklad: Fototranzistor,
MĚŘENÍ Laboratorní cvičení z měření Měření optoelektronického vazebního členu, část 3-11-1
MĚŘENÍ Laboratorní cvičení z měření Měření optoelektronického vazebního členu, část 3-11-1 Výukový materiál Číslo projektu: CZ.1.07/1.5.00/34.0093 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím
VÝVOJOVÁ DESKA PRO JEDNOČIPOVÝ MIKROPOČÍTAČ PIC 16F88 A. ZADÁNÍ FUNKCE A ELEKTRICKÉ PARAMETRY: vstupní napětí: U IN AC = 12 V (např.
VÝVOJOVÁ DESKA PRO JEDNOČIPOVÝ MIKROPOČÍTAČ PIC 16F88 A. ZADÁNÍ FUNKCE A ELEKTRICKÉ PARAMETRY: vstupní napětí: U IN AC = 12 V (např. z transformátoru TRHEI422-1X12) ovládání: TL1- reset, vývod MCLR TL2,
Elektronické praktikum EPR1
Elektronické praktikum EPR1 Úloha číslo 4 název Záporná zpětná vazba v zapojení s operačním zesilovačem MAA741 Vypracoval Pavel Pokorný PINF Datum měření 9. 12. 2008 vypracování protokolu 14. 12. 2008
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.4 Prvky elektronických obvodů Kapitola
Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony.
Nelineární obvody Dosud jsme se zabývali analýzou lineárních elektrických obvodů, pasivní lineární prvky měly zpravidla konstantní parametr, v těchto obvodech platil princip superpozice a pro analýzu harmonického
Měření na unipolárním tranzistoru
Měření na unipolárním tranzistoru Teoretický rozbor: Unipolární tranzistor je polovodičová součástka skládající se z polovodičů tpu N a P. Oproti bipolárnímu tranzistoru má jednu základní výhodu. Bipolární
- Stabilizátory se Zenerovou diodou - Integrované stabilizátory
1.2 Stabilizátory 1.2.1 Úkol: 1. Změřte VA charakteristiku Zenerovy diody 2. Změřte zatěžovací charakteristiku stabilizátoru se Zenerovou diodou 3. Změřte převodní charakteristiku stabilizátoru se Zenerovou
Studium klopných obvodů
Studium klopných obvodů Úkol : 1. Sestavte podle schématu 1 astabilní klopný obvod a ověřte jeho funkce.. Sestavte podle schématu monostabilní klopný obvod a buďte generátorem a sledujte výstupní napětí.
Učební osnova vyučovacího předmětu elektronika Volitelný vyučovací předmět. Pojetí vyučovacího předmětu. 23-41-M/01 Strojírenství
Učební osnova vyučovacího předmětu elektronika Volitelný vyučovací předmět Obor vzdělání: -1-M/01 Strojírenství Délka a forma studia: roky, denní studium Celkový počet týdenních vyuč. hodin: Platnost od:
Oscilátory. Návod k přípravku pro laboratorní cvičení v předmětu EO.
Oscilátory Návod k přípravku pro laboratorní cvičení v předmětu EO. Měření se skládá ze dvou základních úkolů: (a) měření vlastností oscilátoru 1 s Wienovým členem (můstkový oscilátor s operačním zesilovačem)
OPERA Č NÍ ZESILOVA Č E
OPERAČNÍ ZESILOVAČE OPERAČNÍ ZESILOVAČE Z NÁZVU SE DÁ USOUDIT, ŽE SE JEDNÁ O ZESILOVAČ POUŽÍVANÝ K NĚJAKÝM OPERACÍM. PŮVODNÍ URČENÍ SE TÝKALO ANALOGOVÝCH POČÍTAČŮ, KDE OPERAČNÍ ZESILOVAČ DOKÁZAL USKUTEČNIT
Typ UCE0 (V) IC (A) PCmax (W)
REDL 3.EB 11 1/13 1.ZADÁNÍ Změřte statické charakteristiky tranzistoru K605 v zapojení se společným emitorem a) Změřte výstupní charakteristiky naprázdno C =f( CE ) pro B =1, 2, 4, 6, 8, 10, 15mA do CE
Kapitola 9: Návrh vstupního zesilovače
Kapitola 9: Návrh vstupního zesilovače Vstupní zesilovač musí zpracovat celý dynamický rozsah mikrofonu s přijatelným zkreslením a nízkým ekvivalentním šumovým odporem. To s sebou nese určité specifické
Úloha 1: Zapojení integrovaného obvodu MA 7805 jako zdroje napětí a zdroje proudu
Úloha 1: Zapojení integrovaného obvodu MA 7805 jako zdroje napětí a zdroje proudu ELEKTRONICKÉ PRAKTIKUM FJFI ČVUT V PRAZE Číslo úlohy: 1 Autor: František Batysta Datum měření: 18. října 2011 Ročník a
ELEKTRONICKÉ SOUČÁSTKY
TEMATICKÉ OKRUHY ELEKTRONICKÉ SOUČÁSTKY 1. Základní pojmy fyziky polovodičů. Pásová struktura její souvislost s elektronovým obalem atomu, vliv na elektrickou vodivost materiálů. Polovodiče vlastní a nevlastní.
2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je operační zesilovač. Pro měření byla použita souprava s operačním zesilovačem, kde napájení bylo 5V
IEDL 4.EB 8 1/8 1.ZADÁNÍ a) Změřte napěťovou nesymetrii operačního zesilovače pro různé hodnoty zpětné vazby (1kΩ, 10kΩ, 100kΩ) b) Změřte a graficky znázorněte přenosovou charakteristiku invertujícího
Měření vlastností střídavého zesilovače
Vysoká škola báňská Technická universita Ostrava Fakulta elektrotechniky a informatiky Základy elektroniky ZEL Laboratorní úloha č. Měření vlastností střídavého zesilovače Datum měření: 1. 11. 011 Datum
Přednáška 3 - Obsah. 2 Parazitní body effect u NMOS tranzistoru (CMOS proces) 2
PŘEDNÁŠKA 3 - OBSAH Přednáška 3 - Obsah i 1 Parazitní substrátový PNP tranzistor (PSPNP) 1 1.1 U NPN tranzistoru... 1 1.2 U laterálního PNP tranzistoru... 1 1.3 Příklad: proudové zrcadlo... 2 2 Parazitní