Energetika Osnova předmětu 1) Úvod

Rozměr: px
Začít zobrazení ze stránky:

Download "Energetika Osnova předmětu 1) Úvod"

Transkript

1 Osnova předmětu 1) Úvod 2) Energetika 3) Technologie přeměny 4) Tepelná elektrárna a její hlavní výrobní zařízení 5) Jaderná elektrárna 6) Ostatní tepelné elektrárny 7) Kombinovaná výroba elektřiny a tepla 8) Energie větru 9) Energie vody 10) Energie světla 11) Další zdroje elektrické a tepelné energie OZE 1 -doc. Ing. J. Šípal, PhD 1

2 Osnova přednášky 1) Rozsah působnosti energetiky 2) Základní energetické pojmy 3) Provozní stavy zařízení 4) Čas uvedení do provozu a dosažení jmenovitého výkonu 5) Diagram zatížení 6) Doba trvání maxima 7) Pásma zatížení 8) Doba využívání maxima, zatěžovatel 9) Stavová rovnice 10) Stavové změny plynů 11) Rankinův oběh 12) Braytonův oběh OZE 1 -doc. Ing. J. Šípal, PhD 2

3 Rozsah působnosti energetiky OZE 1 -doc. Ing. J. Šípal, PhD 3

4 Rozsah působnosti energetiky OZE 1 -doc. Ing. J. Šípal, PhD 4

5 Oblasti energetiky: Energetika Rozsah působnosti energetiky získání energie přeměna energie na použitelnou formu - zdroj transport energie doprava energie na jiné místo. spotřeba energie přeměna energie na použitelnou formu - spotřebič OZE 1 - doc. Ing. J. Šípal, PhD 5

6 Rozsah působnosti energetiky Postav OZE 1 - doc. Ing. J. Šípal, PhD 6

7 Osnova přednášky 1) Rozsah působnosti energetiky 2) Základní energetické pojmy 3) Provozní stavy zařízení 4) Čas uvedení do provozu a dosažení jmenovitého výkonu 5) Diagram zatížení 6) Doba trvání maxima 7) Pásma zatížení 8) Doba využívání maxima, zatěžovatel 9) Stavová rovnice 10) Stavové změny plynů 11) Rankinův oběh 12) Braytonův oběh OZE 1 -doc. Ing. J. Šípal, PhD 7

8 Základní energetické pojmy Příkon, výkon, ztráta, účinnost P= W t W 1 =W 2 +W Z η= W 2 W 1 = W 2 t 1 W 1 t 1= P 2 P 1 <1 OZE 1 -doc. Ing. J. Šípal, PhD 8

9 Časová souslednost Energetika Základní energetické pojmy Příkon, výkon, ztráta, účinnost η= P 2 P 1 η= W 2 W 1 P 1 t OZE 1 - doc. Ing. J. Šípal, PhD 9

10 Základní energetické pojmy Příkon, výkon, ztráta, účinnost OZE 1 - doc. Ing. J. Šípal, PhD 10

11 Základní energetické pojmy Příkon, výkon, ztráta, účinnost η 1 = W 1,2 W 1,1 η 2 = W 2,2 W 2,1 η= W 2,2 W 1,1 = W 2,2 W 2,1 W 1,1 W 2,1 =η 2 η 1 OZE 1 -doc. Ing. J. Šípal, PhD 11

12 Základní energetické pojmy Měrná spotřeba energie m= W 1 měrná jednotka výrobku OZE 1 -doc. Ing. J. Šípal, PhD 12

13 Základní energetické pojmy Jmenovitý výkon zařízení Výkon, který je uveden na štítku zařízení. Tento výkon, při dodržení jmenovitých parametrů (např. elektrického napětí), musí zařízení být schopno trvale dodávat. Jedná se o projektovaný parametr zařízení. Často je také nazýván projektovaný výkon. Instalovaný výkon V případě, že se jedná o jedno zařízení, je instalovaný výkon roven jmenovitému výkonu. V případě energetické výrobny, potom je instalovaný výkon roven součtu jmenovitých výkonů jednotlivých zařízení. OZE 1 -doc. Ing. J. Šípal, PhD 13

14 Základní energetické pojmy Minimální příkon - výkon Minimální příkon - výkon je takové množství dodávané energie za jednotku času danému zařízení, kdy je ještě možné toto zařízení provozovat bezpečně a bezporuchově. Maximální výkon Maximální výkon je větší než jmenovitý výkon, jedná se o krátkodobé přetížení, kdy je ještě možné toto zařízení provozovat bezpečně a bezporuchově. Regulační rozsah Regulační rozsah je pásmo mezi minimálním a jmenovitým výkonem. V tomto pásmu je možné provádět regulaci dodávaného výkonu. OZE 1 -doc. Ing. J. Šípal, PhD 14

15 Základní energetické pojmy Ekonomický výkon Jedná se o výkon, při kterém jsou nejmenší ztráty a je nejvyšší účinnost provozovaného zařízení. Tento výkon se nemusí rovnat jmenovitému výkonu. Výkon na svorkách generátoru Jedná se o zvláštní označení výkonu na výstupu elektrického generátoru. Na rozdíl od jmenovitého výkonu se velikost tohoto výkonu může měnit s časem. Vlastní spotřeba Elektrárna jako každé jiné zařízení potřebuje pro svůj provoz energii. Tento spotřebovávaný výkon se nazývá vlastní spotřeba výrobny. OZE 1 -doc. Ing. J. Šípal, PhD 15

16 Základní energetické pojmy Výkon na prahu výrobny Výkon na prahu výrobny je součet okamžitých výkonů jednotlivých výrobních zařízení po odečtení vlastní spotřeby. Spalné teplo Spalné teplo je takové množství tepla, které se uvolní dokonalým spálením jednotkového množství paliva. Předpokládá se, že voda, uvolněná spalováním, zkondenzuje a energii chemické reakce není třeba redukovat o její skupenské teplo. Výhřevnost Výhřevnost, která je rovněž označována H, je vlastnost paliva, která udává, kolik energie se uvolní úplným spálením jedné jednotky (obvykle 1 kg). OZE 1 -doc. Ing. J. Šípal, PhD 16

17 Osnova přednášky 1) Rozsah působnosti energetiky 2) Základní energetické pojmy 3) Provozní stavy zařízení 4) Čas uvedení do provozu a dosažení jmenovitého výkonu 5) Diagram zatížení 6) Doba trvání maxima 7) Pásma zatížení 8) Doba využívání maxima, zatěžovatel 9) Stavová rovnice 10) Stavové změny plynů 11) Rankinův oběh 12) Braytonův oběh OZE 1 -doc. Ing. J. Šípal, PhD 17

18 Provozní stavy zařízení Vypnuto Oprava Studená záloha Zapnuto Naprázdno teplá záloha Zatížení OZE 1 -doc. Ing. J. Šípal, PhD 18

19 Časy Čas uvedení do provozu Při uvádění energetických zařízení, zejména těch výkonných, je nutné dodržovat časový harmonogram najíždění zařízení do provozu, který vychází z především tepelného a tlakového vyrovnávání parametrů. Čas uvedení do provozu je časový interval mezi spuštěním ze studené nebo teplé zálohy a zahájením dodávky výkonu. Čas dosažení jmenovitého výkonu Po uvedení zaøízení do provozu je nutné zvyšovat jeho výkon plynule, rovněž podle předepsaného harmonogramu. Čas dosažení jmenovitého výkonu, který je potřeba k dosažení jmenovitého výkonu po spuštění. Tento časový interval je větší než èas uvedení do provozu. OZE 1 -doc. Ing. J. Šípal, PhD 19

20 Osnova přednášky 1) Rozsah působnosti energetiky 2) Základní energetické pojmy 3) Provozní stavy zařízení 4) Čas uvedení do provozu a dosažení jmenovitého výkonu 5) Diagram zatížení 6) Doba trvání maxima 7) Pásma zatížení 8) Doba využívání maxima, zatěžovatel 9) Stavová rovnice 10) Stavové změny plynů 11) Rankinův oběh 12) Braytonův oběh OZE 1 -doc. Ing. J. Šípal, PhD 20

21 0 až 1 hod 16,6 MW 1 až 2 hod 16 MW 2 až 3 hod 16 MW 3 až 4 hod 16,2 MW 4 až 5 hod 16,5 MW 5 až 6 hod 17 MW 6 až 7 hod 18,5 MW 7 až 8 hod 21 MW 8 až 9 hod 23 MW 9 až 10 hod 22,2 MW 10 až 11 hod 23,5 MW 11 až 12 hod 21 MW Energetika Diagram zatížení Naměřený průběh zatížení: 12 až 13 hod 21,5 MW 13 až 14 hod 24,5 MW 14 až 15 hod 23 MW 15 až 16 hod 25 MW 16 až 17 hod 26 MW 17 až 18 hod 28 MW 18 až 19 hod 29 MW 19 až 20 hod 30 MW 20 až 21 hod 27 MW 21 až 22 hod 24,5 MW 22 až 23 hod 18 MW 23 až 24 hod 16 MW OZE 1 -doc. Ing. J. Šípal, PhD 21

22 Diagram zatížení OZE 1 -doc. Ing. J. Šípal, PhD 22

23 Diagram zatížení OZE 1 -doc. Ing. J. Šípal, PhD 23

24 Diagram zatížení OZE 1 -doc. Ing. J. Šípal, PhD 24

25 Osnova přednášky 1) Rozsah působnosti energetiky 2) Základní energetické pojmy 3) Provozní stavy zařízení 4) Čas uvedení do provozu a dosažení jmenovitého výkonu 5) Diagram zatížení 6) Doba trvání maxima 7) Pásma zatížení 8) Doba využívání maxima, zatěžovatel 9) Stavová rovnice 10) Stavové změny plynů 11) Rankinův oběh 12) Braytonův oběh OZE 1 -doc. Ing. J. Šípal, PhD 25

26 Diagram zatížení OZE 1 -doc. Ing. J. Šípal, PhD 26

27 Diagram zatížení OZE 1 -doc. Ing. J. Šípal, PhD 27

28 Osnova přednášky 1) Rozsah působnosti energetiky 2) Základní energetické pojmy 3) Provozní stavy zařízení 4) Čas uvedení do provozu a dosažení jmenovitého výkonu 5) Diagram zatížení 6) Doba trvání maxima 7) Pásma zatížení 8) Doba využívání maxima, zatěžovatel 9) Stavová rovnice 10) Stavové změny plynů 11) Rankinův oběh 12) Braytonův oběh OZE 1 -doc. Ing. J. Šípal, PhD 28

29 Stavová rovnice Stavovou rovnicí se v termodynamice označuje rovnice, která určuje vztah mezi jednotlivými stavovými veličinami charakterizujícími daný termodynamický systém. Stavová rovnice tedy popisuje makroskopický stav dané látky za určitých fyzikálních podmínek. Stavová rovnice ideálního plynu vyjadřuje vzájemnou závislost stavových veličin při termodynamických dějích v ideálním plynu. p V =n R T p V T =konst. OZE 1 -doc. Ing. J. Šípal, PhD 29

30 Stavové změny plynů Izotermická změna p V =konst. OZE 1 -doc. Ing. J. Šípal, PhD 30

31 Stavové změny plynů Izochorická změna p T =konst. OZE 1 -doc. Ing. J. Šípal, PhD 31

32 Stavové změny plynů Izobarická měna V T =konst. OZE 1 -doc. Ing. J. Šípal, PhD 32

33 Stavové změny plynů Adiabatická změna p V κ =konst. OZE 1 -doc. Ing. J. Šípal, PhD 33

34 Osnova přednášky 1) Rozsah působnosti energetiky 2) Základní energetické pojmy 3) Provozní stavy zařízení 4) Čas uvedení do provozu a dosažení jmenovitého výkonu 5) Diagram zatížení 6) Doba trvání maxima 7) Pásma zatížení 8) Doba využívání maxima, zatěžovatel 9) Stavová rovnice 10) Stavové změny plynů 11) Rankinův oběh 12) Braytonův oběh OZE 1 -doc. Ing. J. Šípal, PhD 34

35 Rankinův oběh OZE 1 -doc. Ing. J. Šípal, PhD 35

36 Rankinův oběh OZE 1 -doc. Ing. J. Šípal, PhD 36

37 Rankinův oběh OZE 1 -doc. Ing. J. Šípal, PhD 37

38 Rankinův oběh OZE 1 -doc. Ing. J. Šípal, PhD 38

39 Braytonův oběh OZE 1 -doc. Ing. J. Šípal, PhD 39

40 Opakovací otázky 1) Vysvětlete: příkon, výkon, ztráta, účinnost, měrná spotřeba energie, jmenovitý výkon zařízení, minimální výkon, maximální výkon a regulační rozsah, ekonomický výkon, výkon na svorkách generátoru, vlastní spotřeba, výkon na prahu výrobny, spalné teplo a výhřevnost paliva. 2) Popište diagram zatížení. 3) Rozdělení diagramu zatížení a popište jednotlivá pásma. 4) Vysvětlete pojem doba trvání maxima, zatěžovatel. 5) Jaké znáte stavové změny? 6) Nakreslete a vysvětlete schéma kondenzační elektrárny bez přihřívání páry a k němu příslušný T-s diagram. 7) Nakreslete a vysvětlete schéma kondenzační elektrárny s přihříváním páry a k němu příslušný T-s diagram. 8) Nakreslete schéma a vysvětlete Braytonův cyklus. OZE 1 -doc. Ing. J. Šípal, PhD 40

Technologie přeměny Osnova předmětu 1) Úvod 2) Energetika

Technologie přeměny Osnova předmětu 1) Úvod 2) Energetika Osnova předmětu 1) Úvod 2) Energetika 3) Technologie přeměny 4) Tepelná elektrárna a její hlavní výrobní zařízení 5) Jaderná elektrárna 6) Ostatní tepelné elektrárny 7) Kombinovaná výroba elektřiny a tepla

Více

Výroba elektrické energie (BVEE)

Výroba elektrické energie (BVEE) Přednášející: doc. Ing. Petr Mastný, Ph.D. mastny@feec.vutbr.cz Základní pojmy z výroby elektrické energie Výroba elektrické energie (BVEE) e-power - Inovace výuky elektroenergetiky a silnoproudé elektrotechniky

Více

Elektroenergetika 1. Termodynamika a termodynamické oběhy

Elektroenergetika 1. Termodynamika a termodynamické oběhy Termodynamika a termodynamické oběhy Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický

Více

EKODESIGN ROSTOUCÍ POŽADAVKY NA ÚČINNOST ZDROJŮ TEPLA

EKODESIGN ROSTOUCÍ POŽADAVKY NA ÚČINNOST ZDROJŮ TEPLA EKODESIGN ROSTOUCÍ POŽADAVKY NA ÚČINNOST ZDROJŮ TEPLA OBSAH Přehled legislativy Nařízení o ekodesignu č. 813/2013 Předmět nařízení Požadavky na účinnost Stanovení sezonní účinnosti ƞ s SPER pro palivová

Více

Elektroenergetika 1. Termodynamika

Elektroenergetika 1. Termodynamika Elektroenergetika 1 Termodynamika Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický

Více

Energie větru. Osnova předmětu

Energie větru. Osnova předmětu Osnova předmětu 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) Úvod Energetika Technologie přeměny Tepelná elektrárna a její hlavní výrobní zařízení Jaderná elektrárna Ostatní tepelné elektrárny Kombinovaná výroba

Více

Termodynamika pro +EE1 a PEE

Termodynamika pro +EE1 a PEE ermodynamika ro +EE a PEE Literatura: htt://home.zcu.cz/~nohac/vyuka.htm#ee [0] Zakladni omocny text rednasek Doc. Schejbala [] Pomocne texty ke cviceni [] Prednaska cislo 7 - Zaklady termodynamiky [3]

Více

VYHLÁŠKA ze dne 5. prosince 2012 o stanovení minimální účinnosti užití energie při výrobě elektřiny a tepelné energie

VYHLÁŠKA ze dne 5. prosince 2012 o stanovení minimální účinnosti užití energie při výrobě elektřiny a tepelné energie Strana 5677 441 VYHLÁŠKA ze dne 5. prosince 2012 o stanovení minimální účinnosti užití energie při výrobě elektřiny a tepelné energie Ministerstvo průmyslu a obchodu stanoví podle 14 odst. 4 zákona č.

Více

Parní turbíny Rovnotlaký stupe

Parní turbíny Rovnotlaký stupe Parní turbíny Dominanci parních turbín v energetickém průmyslu vyvolaly provozní a ekonomické výhody,zejména: Menší investiční náklady, hmotnost a obestavěný prostor, vztažený na jednotku výkonu. Možnost

Více

Zpracování teorie 2010/11 2011/12

Zpracování teorie 2010/11 2011/12 Zpracování teorie 2010/11 2011/12 Cykly Děje Proudění (turbíny) počet v: roce 2010/11 a roce 2011/12 Chladící zařízení (nakreslete cyklus a nakreslete schéma)... zde 13 + 2 (15) Izochorický děj páry (nakreslit

Více

Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku.

Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku. Příklad 1: Přihřívání páry Teoretický parní oběh s přihříváním páry pracuje s následujícími parametry: Admisní tlak páry p a = 10 MPa a teplota t a = 530 C. Tlak páry po expanzi ve vysokotlaké části turbíny

Více

Molekulová fyzika a termika. Přehled základních pojmů

Molekulová fyzika a termika. Přehled základních pojmů Molekulová fyzika a termika Přehled základních pojmů Kinetická teorie látek Vychází ze tří experimentálně ověřených poznatků: 1) Látky se skládají z částic - molekul, atomů nebo iontů, mezi nimiž jsou

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

Moderní kotelní zařízení

Moderní kotelní zařízení Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní Katedra energetiky Moderní kotelní zařízení Text byl vypracován s podporou projektu CZ.1.07/1.1.00/08.0010 Inovace odborného vzdělávání

Více

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Více

přednáška č. 6 Elektrárny B1M15ENY Tepelné oběhy: Stavové změny Typy oběhů Možnosti zvýšení účinnosti Ing. Jan Špetlík, Ph.D.

přednáška č. 6 Elektrárny B1M15ENY Tepelné oběhy: Stavové změny Typy oběhů Možnosti zvýšení účinnosti Ing. Jan Špetlík, Ph.D. Elektrárny B1M15ENY přednáška č. 6 Tepelné oběhy: Stavové změny Typy oběhů Možnosti zvýšení účinnosti Ing. Jan Špetlík, Ph.D. ČVUT FEL Katedra elektroenergetiky E-mail: spetlij@fel.cvut.cz Termodynamika:

Více

Parní turbíny Rovnotlaký stupeň

Parní turbíny Rovnotlaký stupeň Parní turbíny Dominanci parních turbín v energetickém průmyslu vyvolaly provozní a ekonomické výhody,zejména: Menší investiční náklady, hmotnost a obestavěný prostor, vztažený na jednotku výkonu. Možnost

Více

Elektroenergetika 1. Základní pojmy a definice

Elektroenergetika 1. Základní pojmy a definice Základní pojmy a definice Elektroenergetika vědní disciplína, jejímž předmětem zkoumání je zabezpečení elektrické energie pro lidstvo Výroba elektrické energie Přenos a distribuce elektrické energie Spotřeba

Více

Jednotlivým bodům (n,2,a,e,k) z blokového schématu odpovídají body na T-s a h-s diagramu:

Jednotlivým bodům (n,2,a,e,k) z blokového schématu odpovídají body na T-s a h-s diagramu: Elektroenergetika 1 (A1B15EN1) 3. cvičení Příklad 1: Rankin-Clausiův cyklus Vypočtěte tepelnou účinnost teoretického Clausius-Rankinova parního oběhu, jsou-li admisní parametry páry tlak p a = 80.10 5

Více

Univerzální středotlaké parní kotle KU

Univerzální středotlaké parní kotle KU Univerzální středotlaké parní kotle Popis Kotle jsou plamencožárotrubné, velkoprostorové kotle s přirozenou cirkulací kotelní vody, pro spalování kapalných a plynných paliv. Rozměry spalovací komory jsou

Více

8. Chemické reakce Energetika - Termochemie

8. Chemické reakce Energetika - Termochemie - Termochemie TERMOCHEMIE oddíl termodynamiky Tepelné zabarvení chemických reakcí Samovolnost chemických reakcí Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti - Termochemie TERMOCHEMIE

Více

i) parní stroj s rekuperací tepla, j) organický Rankinův cyklus, nebo k) kombinace technologií a zařízení uvedených v písmenech

i) parní stroj s rekuperací tepla, j) organický Rankinův cyklus, nebo k) kombinace technologií a zařízení uvedených v písmenech Strana 4814 Sbírka zákonů č. 344 / 2009 344 VYHLÁŠKA ze dne 30. září 2009 o podrobnostech způsobu určení elektřiny z vysokoúčinné kombinované výroby elektřiny a tepla založené na poptávce po užitečném

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Elektroenergetika 1. Elektrické části elektrárenských bloků

Elektroenergetika 1. Elektrické části elektrárenských bloků Elektrické části elektrárenských bloků Elektrická část elektrárny Hlavním úkolem elektrické části elektráren je: Vyvedení výkonu z elektrárny - zprostředkování spojení alternátoru s elektrizační soustavou

Více

VYHLÁŠKA ze dne 21. ledna 2016 o elektřině z vysokoúčinné kombinované výroby elektřiny a tepla a elektřině z druhotných zdrojů

VYHLÁŠKA ze dne 21. ledna 2016 o elektřině z vysokoúčinné kombinované výroby elektřiny a tepla a elektřině z druhotných zdrojů Strana 394 Sbírka zákonů č. 37 / 2016 37 VYHLÁŠKA ze dne 21. ledna 2016 o elektřině z vysokoúčinné kombinované výroby elektřiny a tepla a elektřině z druhotných zdrojů Ministerstvo průmyslu a obchodu stanoví

Více

12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par

12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par 1/18 12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par Příklad: 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 12.10, 12.11, 12.12,

Více

1 Předmět úpravy Tato vyhláška upravuje v návaznosti na přímo použitelný předpis Evropské unie 1 ) a) způsob určení množství elektřiny z vysokoúčinné

1 Předmět úpravy Tato vyhláška upravuje v návaznosti na přímo použitelný předpis Evropské unie 1 ) a) způsob určení množství elektřiny z vysokoúčinné 453 VYHLÁŠKA ze dne 13. prosince 2012 o elektřině z vysokoúčinné kombinované výroby elektřiny a tepla a elektřině z druhotných zdrojů Ministerstvo průmyslu a obchodu stanoví podle 53 odst. 1 písm. g) a

Více

DÁLKOVÉ VYTÁPĚNÍ =DISTRICT HEATING, = SZT SYSTÉM ZÁSOBOVÁNÍ TEPLEM = CZT CENTRALIZOVANÉ ZÁSOBOVÁNÍ TEPLEM

DÁLKOVÉ VYTÁPĚNÍ =DISTRICT HEATING, = SZT SYSTÉM ZÁSOBOVÁNÍ TEPLEM = CZT CENTRALIZOVANÉ ZÁSOBOVÁNÍ TEPLEM DÁLKOVÉ VYTÁPĚNÍ =DISTRICT HEATING, = SZT SYSTÉM ZÁSOBOVÁNÍ TEPLEM = CZT CENTRALIZOVANÉ ZÁSOBOVÁNÍ TEPLEM 184 Zdroj tepla Distribuční soustava Předávací stanice Otopná soustava Dálkové vytápění Zdroj tepla

Více

Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku.

Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku. Elektroenergetika 1 (A1B15EN1) 4. cvičení Příklad 1: Přihřívání páry Teoretický parní oběh s přihříváním páry pracuje s následujícími parametry: Admisní tlak páry p a = 10 MPa a teplota t a = 530 C. Tlak

Více

Tep e e p l e né n é str st o r j o e e z po p h o l h ed e u d u zákl zá ad a n d í n h í o h o kur ku su r su fyzi f ky 3. 3 Poznámky k přednášce

Tep e e p l e né n é str st o r j o e e z po p h o l h ed e u d u zákl zá ad a n d í n h í o h o kur ku su r su fyzi f ky 3. 3 Poznámky k přednášce Tepelné stroje z pohledu základního kursu fyziky. Poznámky k přednášce osnova. Idealizované tepelné cykly strojů s vnitřním spalováním, Ottův cyklus, Dieselův cyklus, Atkinsonův cyklus,. Způsob výměny

Více

Mol. fyz. a termodynamika

Mol. fyz. a termodynamika Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli

Více

IDEÁLNÍ PLYN. Stavová rovnice

IDEÁLNÍ PLYN. Stavová rovnice IDEÁLNÍ PLYN Stavová rovnice Ideální plyn ) rozměry molekul jsou zanedbatelné vzhledem k jejich vzdálenostem 2) molekuly plynu na sebe působí jen při vzájemných srážkách 3) všechny srážky jsou dokonale

Více

Částka 128. VYHLÁŠKA ze dne 16. listopadu 2010 o stanovení minimální účinnosti užití energie při výrobě elektřiny a tepelné energie

Částka 128. VYHLÁŠKA ze dne 16. listopadu 2010 o stanovení minimální účinnosti užití energie při výrobě elektřiny a tepelné energie Strana 4772 Sbírka zákonů č.349 / 2010 349 VYHLÁŠKA ze dne 16. listopadu 2010 o stanovení minimální účinnosti užití energie při výrobě elektřiny a tepelné energie Ministerstvo průmyslu a obchodu (dále

Více

Termodynamika 2. UJOP Hostivař 2014

Termodynamika 2. UJOP Hostivař 2014 Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně

Více

Elektroenergetika 1. Elektrické části elektrárenských bloků

Elektroenergetika 1. Elektrické části elektrárenských bloků Elektroenergetika 1 Elektrické části elektrárenských bloků Elektrická část elektrárny Hlavním úkolem elektrické části elektráren je: Vyvedení výkonu z elektrárny zprostředkování spojení alternátoru s elektrizační

Více

Kontrolní otázky k 1. přednášce z TM

Kontrolní otázky k 1. přednášce z TM Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele

Více

Vyhláška Ministerstva průmyslu a obchodu o postupu v případě hrozícího nebo stávajícího stavu nouze v elektroenergetice

Vyhláška Ministerstva průmyslu a obchodu o postupu v případě hrozícího nebo stávajícího stavu nouze v elektroenergetice SBÍRKA PŘEDPISŮ ČESKÉ REPUBLIKY Vyhláška Ministerstva průmyslu a obchodu o postupu v případě hrozícího nebo stávajícího stavu nouze v elektroenergetice Citace: 219/2001 Sb. Částka: 84/2001 Sb. Na straně

Více

Pravidla při práci s elektřinou Jaderné elektrárny Větrné elektrárny Sluneční elektrárny Vodní elektrárny Tepelné elektrárny Otázky z prezentace

Pravidla při práci s elektřinou Jaderné elektrárny Větrné elektrárny Sluneční elektrárny Vodní elektrárny Tepelné elektrárny Otázky z prezentace Pravidla při práci s elektřinou Jaderné elektrárny Větrné elektrárny Sluneční elektrárny Vodní elektrárny Tepelné elektrárny Otázky z prezentace Nedotýkej se přetržených drátů elektrického vedení, mohou

Více

Teplárenské cykly ZVYŠOVÁNÍ ÚČINNOSTI. Pavel Žitek

Teplárenské cykly ZVYŠOVÁNÍ ÚČINNOSTI. Pavel Žitek Teplárenské cykly ZVYŠOVÁNÍ ÚČINNOSTI 1 Zvyšování účinnosti R-C cyklu ZÁKLADNÍ POJMY Tepelná účinnost udává, jaké množství vloženého tepla se podaří přeměnit na užitečnou práci či elektrický výkon; vypovídá

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

Poznámky k cvičením z termomechaniky Cvičení 3.

Poznámky k cvičením z termomechaniky Cvičení 3. Vnitřní energie U Vnitřní energie U je stavová veličina U = U (p, V, T), ale závisí pouze na teplotě (experiment Gay-Lussac / Joule) U = f(t) Pro měrnou vnitřní energii (tedy pro vnitřní energii jednoho

Více

Jak to bude s plynovými spotřebiči?

Jak to bude s plynovými spotřebiči? Jak to bude s plynovými spotřebiči? V poslední době se na nás začali obracet projektanti, montéři, revizní technici a další profese s dotazy, jak to bude s plynovými spotřebiči podle evropských předpisů.

Více

TERMOMECHANIKA 1. Základní pojmy

TERMOMECHANIKA 1. Základní pojmy 1 FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 1. Základní pojmy OSNOVA 1. KAPITOLY Termodynamická soustava Energie, teplo,

Více

Algebra blokových schémat Osnova kurzu

Algebra blokových schémat Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů Automatizace - Ing. J. Šípal, PhD 1 Osnova

Více

NA FOSILNÍ PALIVA: pevná, plynná, kapalná NA FYTOMASU: dřevo, rostliny, brikety, peletky. SPALOVÁNÍ: chemická reakce k získání tepla

NA FOSILNÍ PALIVA: pevná, plynná, kapalná NA FYTOMASU: dřevo, rostliny, brikety, peletky. SPALOVÁNÍ: chemická reakce k získání tepla ZDROJE TEPLA - KOTELNY PŘEDNÁŠKA Č. 8 SLOŽENÍ PALIV 1 NA FOSILNÍ PALIVA: pevná, plynná, kapalná NA FYTOMASU: dřevo, rostliny, brikety, peletky SPALOVÁNÍ: chemická reakce k získání tepla SPALNÉ SLOŽKY PALIV:

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Termodynamika reálných plynů část 2 Hana Charvátová, Dagmar Janáčová Zlín 203 Tento studijní

Více

I. Všeobecné podmínky

I. Všeobecné podmínky Cenové rozhodnutí ERÚ č. 27/2003 ze dne 26. listopadu 2003, kterým se stanovují maximální ceny elektřiny a podmínky pro dodávku elektřiny chráněným zákazníkům ze sítí vysokého napětí - kategorie B Energetický

Více

I. Všeobecné podmínky

I. Všeobecné podmínky Cenové rozhodnutí ERÚ č. 2/2004 ze dne 23. dubna 2004, kterým se stanovují maximální ceny elektřiny a podmínky pro dodávku elektřiny chráněným zákazníkům ze sítí vysokého napětí - kategorie B Energetický

Více

Cenové rozhodnutí Energetického regulačního úřadu č. 8/2006 ze dne 21. listopadu 2006,

Cenové rozhodnutí Energetického regulačního úřadu č. 8/2006 ze dne 21. listopadu 2006, Cenové rozhodnutí Energetického regulačního úřadu č. 8/2006 ze dne 21. listopadu 2006, kterým se stanovuje podpora pro výrobu elektřiny z obnovitelných zdrojů energie, kombinované výroby elektřiny a tepla

Více

1/62 Zdroje tepla pro CZT

1/62 Zdroje tepla pro CZT 1/62 Zdroje tepla pro CZT kombinovaná výroba elektřiny a tepla výtopny, elektrárny a teplárny teplárenské ukazatele úspory energie teplárenským provozem Zdroje tepla 2/62 výtopna pouze produkce tepla kotle

Více

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Pavel Gebauer Státní energetická inspekce. Energetická efektivita v ČR

Pavel Gebauer Státní energetická inspekce. Energetická efektivita v ČR Energetická efektivita v ČR Základní rizika energetické bezpečnosti technická politická ekonomická: globální rizika: měnící se struktura mezinárodní ekonomiky, cena energie a její volatilita na energetických

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

Zapojení špičkových kotlů. Obecné doporučení 27.10.2015. Typy turbín pro parní teplárny. Schémata tepláren s protitlakými turbínami

Zapojení špičkových kotlů. Obecné doporučení 27.10.2015. Typy turbín pro parní teplárny. Schémata tepláren s protitlakými turbínami Výtopny výtopny jsou zdroje pouze pro vytápění a TUV teplo dodávají v páře nebo horké vodě základním technologickým zařízením jsou kotle s příslušenstvím (dle druhu paliva) výkonově výtopny leží mezi domovními

Více

Kombinovaná výroba elektřiny a tepla v roce 2008

Kombinovaná výroba elektřiny a tepla v roce 2008 Energetická statistika Kombinovaná výroba a tepla v roce 2008 Výsledky statistického zjišťování duben 2010 Oddělení surovinové a energetické statistiky Impressum oddělení surovinové a energetické statistiky

Více

Termomechanika 4. přednáška

Termomechanika 4. přednáška ermomechanika 4. přednáška Miroslav Holeček Upozornění: ato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím citovaných zdrojů

Více

znění pozdějších předpisů. 3 ) Vyhláška č. 475/2005 Sb., kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů, ve

znění pozdějších předpisů. 3 ) Vyhláška č. 475/2005 Sb., kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů, ve Cenové rozhodnutí Energetického regulačního úřadu č. 8/2008 ze dne 18. listopadu 2008, kterým se stanovuje podpora pro výrobu elektřiny z obnovitelných zdrojů energie, kombinované výroby elektřiny a tepla

Více

9. Struktura a vlastnosti plynů

9. Struktura a vlastnosti plynů 9. Struktura a vlastnosti plynů Osnova: 1. Základní pojmy 2. Střední kvadratická rychlost 3. Střední kinetická energie molekuly plynu 4. Stavová rovnice ideálního plynu 5. Jednoduché děje v plynech a)

Více

Přehled produktů a cen

Přehled produktů a cen E.ON Energie, a.s. F.A. Gerstnera 2151/6 370 49 České Budějovice www.eon.cz Přehled produktů a cen elektřiny společnosti E.ON Energie, a.s. pro zákazníky kategorie D Domácnosti Produktová řada Elektřina

Více

Vlastnosti členů regulačních obvodů Osnova kurzu

Vlastnosti členů regulačních obvodů Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Statické vlastnosti členů regulačních obvodů 6) Dynamické vlastnosti členů

Více

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie PŘEDMĚT: FYZIKA ROČNÍK: SEXTA VÝSTUP UČIVO MEZIPŘEDM. VZTAHY, PRŮŘEZOVÁ TÉMATA, PROJEKTY, KURZY POZNÁMKY Zná 3 základní poznatky kinetické teorie látek a vysvětlí jejich praktický význam Vysvětlí pojmy

Více

Čl. 1 Úvod. Čl. 2 Postup výpočtu. E = E e + E t + E CH4

Čl. 1 Úvod. Čl. 2 Postup výpočtu. E = E e + E t + E CH4 METODICKÝ POKYN odboru změny klimatu Ministerstva životního prostředí pro výpočet referenční úrovně emisí skleníkových plynů (Baseline) pro projekty energetického využití skládkového plynu Čl. 1 Úvod Ministerstvo

Více

Zákon č. 406/2000 Sb., o hospodaření energií ve znění pozdějších předpisů. Zákon č. 180/2005 Sb., o podpoře využívání obnovitelných zdrojů

Zákon č. 406/2000 Sb., o hospodaření energií ve znění pozdějších předpisů. Zákon č. 180/2005 Sb., o podpoře využívání obnovitelných zdrojů Přehled nejdůležitějších předpisů, podle nichž SEI jedná a rozhoduje, které stanovují právo žádat informace a povinnost poskytovat informace a které upravují další práva občanů ve vztahu k SEI. Zákon č.

Více

THERM 14 KD.A, KDZ.A, KDZ5.A

THERM 14 KD.A, KDZ.A, KDZ5.A TŘÍDA NOx THERM KD.A, KDZ.A, KDZ.A THERM KD.A, KDZ.A, KDZ.A sešit Výkonový rozsah kotlů THERM KD.A, KDZ.A a KDZ.A je uzpůsoben pro využití v objektech s malou tepelnou ztrátou, např. nízkoenergetických

Více

Osnova kurzu. Výroba elektrické energie. Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 3

Osnova kurzu. Výroba elektrické energie. Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 3 Osnova kurzu 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 1 Základy teorie elektrických obvodů 2 Základy teorie elektrických

Více

Přehled produktů a cen

Přehled produktů a cen E.ON Energie, a.s. F.A. Gerstnera 2151/6 370 49 České Budějovice www.eon.cz Přehled produktů a cen elektřiny společnosti E.ON Energie, a.s. pro zákazníky kategorie C Podnikatelé Produktová řada StandardPower

Více

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ Výhody: medium (vzduch) se nachází všude kolem nás možnost využití centrální výroby stlačeného vzduchu v závodě kompresor nemusí pracovat nepřetržitě (stlačený

Více

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013 Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno

Více

Technická směrnice č kterou se stanovují požadavky a environmentální kritéria pro propůjčení ekoznačky

Technická směrnice č kterou se stanovují požadavky a environmentální kritéria pro propůjčení ekoznačky Ministerstvo životního prostředí Technická směrnice č. 65-2011 kterou se stanovují požadavky a environmentální kritéria pro propůjčení ekoznačky Kotle na plynná paliva pro ústřední vytápění Cílem stanovení

Více

Termodynamické zákony

Termodynamické zákony Termodynamické zákony Makroskopická práce termodynamické soustavy Již jsme uvedli, že změna vnitřní energie soustavy je obecně vyvolána dvěma ději: tepelnou výměnou mezi soustavou a okolím a konáním práce

Více

Malé zdroje elektrické energie Úvod, Energie, Transformace energie

Malé zdroje elektrické energie Úvod, Energie, Transformace energie 1 Úvod Očekávané vyčerpání ropy a zemního plynu již v průběhu 21. století, růst světové populace i nároků jednotlivců na celém světě na energii, prohlubující se závislost soudobé civilizace na spolehlivé

Více

- kondenzační kotel pro vytápění a přípravu teplé vody v externím zásobníku, provedení turbo

- kondenzační kotel pro vytápění a přípravu teplé vody v externím zásobníku, provedení turbo Třída NOx 5 THERM 4 KD.A, KDZ.A, KDZ.A 5 THERM 4 KD.A, KDZ.A, KDZ.A 5 NOVINKA Upozornění: Veškeré uvedené informace k těmto kotlům jsou zatím pouze informativní. Případné změny budou upřesněny na www.thermona.cz.

Více

Metodický postup pro určení úspor primární energie

Metodický postup pro určení úspor primární energie Metodický postup pro určení úspor primární energie eplárna s plynovou turbínou ORGRZ, a.s., DIIZ PLNÉ CHNIKY A CHMI HUDCOA 76, 657 97 BRNO, POŠ. PŘIHR. 197, BRNO 2 z.č. 1 eplárna s plynovou turbínou Obsah

Více

Spolek pro kombinovanou výrobu elektřiny a tepla člen COGEN Europe. Firemní profil

Spolek pro kombinovanou výrobu elektřiny a tepla člen COGEN Europe. Firemní profil Spolek pro kombinovanou výrobu elektřiny a tepla člen COGEN Europe Firemní profil Obsah prezentace Potenciál a možnosti využití Vybrané technologie Základní principy a vlastnosti Hlavní oblasti využití

Více

Katalog typových návrhů úsporných opatření v energetickém auditu

Katalog typových návrhů úsporných opatření v energetickém auditu Katalog typových návrhů úsporných opatření v energetickém auditu Tebodin Czech Republic, s.r.o. Autor: Ing. Miroslav Mareš Publikace je určena pro poradenskou činnost a je zpracována v rámci Státního programu

Více

znění pozdějších předpisů. 3 ) Vyhláška č. 475/2005 Sb., kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů, ve

znění pozdějších předpisů. 3 ) Vyhláška č. 475/2005 Sb., kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů, ve Cenové rozhodnutí Energetického regulačního úřadu č. 4/2009 ze dne 3. listopadu 2009, kterým se stanovuje podpora pro výrobu elektřiny z obnovitelných zdrojů energie, kombinované výroby elektřiny a tepla

Více

DNY TEPLÁRENSTVÍ A ENERGETIKY

DNY TEPLÁRENSTVÍ A ENERGETIKY Hradec Králové 2015 DNY TEPLÁRENSTVÍ A ENERGETIKY Centrální zásobování teplem a spalovny komunálních odpadů doc. Ing. Zdeněk Skála, CSc Ing. Jiří Moskalík, Ph.D. Obsah Vznik a členění produkovaných odpadů

Více

znění pozdějších předpisů. 3 ) Vyhláška č. 475/2005 Sb., kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů, ve

znění pozdějších předpisů. 3 ) Vyhláška č. 475/2005 Sb., kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů, ve Cenové rozhodnutí Energetického regulačního úřadu č. 4/2009 ze dne 3. listopadu 2009, kterým se stanovuje podpora pro výrobu elektřiny z obnovitelných zdrojů energie, kombinované výroby elektřiny a tepla

Více

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013 Učební osnova předmětu Fyzikální chemie Studijní obor: Aplikovaná chemie Zaměření: Forma vzdělávání: Celkový počet vyučovacích hodin za studium: Analytická chemie Chemická technologie Ochrana životního

Více

Obsah. KVET _Mikrokogenerace. Technologie pro KVET. Vývoj pro zlepšení parametrů KVET. Využití KVET _ Mikrokogenerace

Obsah. KVET _Mikrokogenerace. Technologie pro KVET. Vývoj pro zlepšení parametrů KVET. Využití KVET _ Mikrokogenerace Upozornění: Tato prezentace slouží výhradně pro účely firmy TEDOM. Byla sestavena autorem s využitím citovaných zdrojů a veřejně dostupných internetových zdrojů. Využití této prezentace nebo jejich částí

Více

Cvičení z termomechaniky Cvičení 7.

Cvičení z termomechaniky Cvičení 7. Příklad 1 Vypočítejte účinnost a výkon Humpreyoho spalovacího cyklu bez regenerace, když látkou porovnávacího oběhu je vzduch. Cyklus nakreslete v p-v a T-s diagramu. Dáno: T 1 = 300 [K]; τ = T 1 = 4;

Více

SBÍRKA PŘEDPISŮ ČESKÉ REPUBLIKY PROFIL PŘEDPISU:

SBÍRKA PŘEDPISŮ ČESKÉ REPUBLIKY PROFIL PŘEDPISU: SBÍRKA PŘEDPISŮ ČESKÉ REPUBLIKY PROFIL PŘEDPISU: Titul předpisu: Vyhláška o rozsahu, náležitostech a termínech vyúčtování dodávek elektřiny, plynu nebo tepelné energie a souvisejících služeb Citace: 210/2011

Více

ZÁKLADNÍ POJMY V OBLASTI ZÁSOBOVÁNÍ TEPLEM

ZÁKLADNÍ POJMY V OBLASTI ZÁSOBOVÁNÍ TEPLEM ZÁKLADNÍ POJMY V OBLASTI ZÁSOBOVÁNÍ TEPLEM ZÁKLADNÍ POJMY Zásobování teplem energetické odvětví, jehož účelem je výroba, dodávka a rozvod tepla. Centralizované zásobování teplem (CZT) výroba, rozvod a

Více

č. 475/2005 Sb. VYHLÁŠKA kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů Ve znění: Předpis č.

č. 475/2005 Sb. VYHLÁŠKA kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů Ve znění: Předpis č. č. 475/2005 Sb. VYHLÁŠKA ze dne 30. listopadu 2005, kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů Ve znění: Předpis č. K datu Poznámka 364/2007 Sb. (k 1.1.2008)

Více

210/2011 Sb. VYHLÁŠKA ČÁST PRVNÍ OBECNÁ ČÁST

210/2011 Sb. VYHLÁŠKA ČÁST PRVNÍ OBECNÁ ČÁST 210/2011 Sb. VYHLÁŠKA ze dne 1. července 2011 o rozsahu, náležitostech a termínech vyúčtování dodávek elektřiny, plynu nebo tepelné energie a souvisejících služeb Energetický regulační úřad stanoví podle

Více

ENERGETICKÉ ZDROJE A SYSTÉMY PRO BUDOVY

ENERGETICKÉ ZDROJE A SYSTÉMY PRO BUDOVY ENERGETICKÉ ZDROJE A SYSTÉMY PRO BUDOVY František HRDLIČKA Czech Technical University in Prague, Czech Republic Faculty of Mechanical Engineering Směrnice EU důležité pro koncepci zdrojů pro budovy 2010/31/EU

Více

T0 Teplo a jeho měření

T0 Teplo a jeho měření Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná

Více

Meziroční porovnání jednotkových cen silové elektřiny pro podnikatele ČEZ Prodej, s.r.o. Ceny jsou uvedeny bez DPH a daně z elektřiny

Meziroční porovnání jednotkových cen silové elektřiny pro podnikatele ČEZ Prodej, s.r.o. Ceny jsou uvedeny bez DPH a daně z elektřiny Meziroční porovnání jednotkových cen silové elektřiny pro podnikatele ČEZ Prodej, s.r.o. Ceny jsou uvedeny bez DPH a daně z elektřiny Produktová řada Comfort 2015 2014 rozdíl Standard 55,00 1 464,00-55,00

Více

Meziroční porovnání jednotkových cen silové elektřiny pro podnikatele ČEZ Prodej, s.r.o. Ceny jsou uvedeny bez DPH a daně z elektřiny

Meziroční porovnání jednotkových cen silové elektřiny pro podnikatele ČEZ Prodej, s.r.o. Ceny jsou uvedeny bez DPH a daně z elektřiny Meziroční porovnání jednotkových cen silové elektřiny pro podnikatele ČEZ Prodej, s.r.o. Ceny jsou uvedeny bez DPH a daně z elektřiny Produktová řada Comfort 2014 2013 rozdíl Standard 55,00 1 464,00-45,00

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

znění pozdějších předpisů. Výkupní ceny elektřiny dodané do sítě v Kč/MWh Zelené bonusy v Kč/MWh Datum uvedení do provozu

znění pozdějších předpisů. Výkupní ceny elektřiny dodané do sítě v Kč/MWh Zelené bonusy v Kč/MWh Datum uvedení do provozu Návrh cenového rozhodnutí Energetického regulačního úřadu ke dni 26. října 2010, kterým se stanovuje podpora pro výrobu elektřiny z obnovitelných zdrojů energie, kombinované výroby elektřiny a tepla a

Více

Začíná směrem k odběrateli odbočením od zařízení pro veřejný rozvod. Odbočení od vzdušného vedení končí hlavní domovní

Začíná směrem k odběrateli odbočením od zařízení pro veřejný rozvod. Odbočení od vzdušného vedení končí hlavní domovní Elektrická přípojka nn Ing. Tomáš Mlčák, Ph.D. Fakulta elektrotechniky a informatiky VŠB TUO Katedra elektrotechniky http://fei1.vsb.cz/kat420 Technická zařízení budov III Fakulta stavební Elektrická přípojka

Více

ČÁST PRVNÍ Obecná část

ČÁST PRVNÍ Obecná část 210/2011 Sb. VYHLÁŠKA Energetického regulačního úřadu ze dne 1. července 2011 o rozsahu, náležitostech a termínech vyúčtování dodávek elektřiny, plynu nebo tepelné energie a souvisejících služeb Energetický

Více

475/2005 Sb. VYHLÁŠKA ze dne 30. listopadu 2005, kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů

475/2005 Sb. VYHLÁŠKA ze dne 30. listopadu 2005, kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů 475/2005 Sb. VYHLÁŠKA ze dne 30. listopadu 2005, kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů Změna: 364/2007 Sb. Změna: 409/2009 Sb. Změna: 300/2010 Sb. Změna:

Více

Parní teplárna s odběrovou turbínou

Parní teplárna s odběrovou turbínou Parní teplárna s odběrovou turbínou Naměřené hodnoty E sv = 587 892 MWh p vt = 3.6 MPa p nt = p vt t k2 = 32 o C Q už = 455 142 GJ t vt = 340 o C t nt = 545 o C p ad = 15 MPa t k1 = 90 o C Q ir = 15 GJ/t

Více

TRH S ELEKTŘINOU 2008 3.12.2008

TRH S ELEKTŘINOU 2008 3.12.2008 TRH S ELEKTŘINOU 2008 3.12.2008 Západomoravská energetická s.r.o Západomoravská distribuční a.s. Ing. Pavel Hobl ČR JE POSLEDNÍ ZEMÍ V REGIONU S DOSUD EXISTUJÍCÍM PŘEBYTKEM VÝROBY politické rozhodnutí

Více

Termodynamika 1. UJOP Hostivař 2014

Termodynamika 1. UJOP Hostivař 2014 Termodynamika 1 UJOP Hostivař 2014 Termodynamika Zabývá se tepelnými ději obecně. Existují 3 termodynamické zákony: 1. Celkové množství energie (všech druhů) izolované soustavy zůstává zachováno. 2. Teplo

Více

V Y H L Á Š KA. Předmět úpravy

V Y H L Á Š KA. Předmět úpravy V Y H L Á Š KA č. I Energetického regulačního úřadu ze dne, kterou se stanoví podrobnosti o vykazování množství elektřiny při společném spalování biomasy a neobnovitelného zdroje a o. 1 Předmět úpravy

Více