Termomechanika 4. přednáška

Rozměr: px
Začít zobrazení ze stránky:

Download "Termomechanika 4. přednáška"

Transkript

1 ermomechanika 4. přednáška Miroslav Holeček Upozornění: ato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím citovaných zdrojů a veřejně dostupných internetových zdrojů. Využití této prezentace nebo jejich částí pro jiné účely, stejně jako její veřejné šíření je nepřípustné.

2 epelné stroje ermická účinnost libovolného (!) vratného tepelného stroje VR A Q1 Q2 1 Q Q 1 1 l h Protože je vždy teplota chladiče (např. okolí) větší než absolutní nula, l > 0, musí být pro libovolný tepelný stroj s účinností VR l 1 1 h 2

3 epelné stroje Koeficient výkonu u vratného tepelného čerpadla U tepelného čerpadla (chladničky, klimatizace) je chladnému médiu odebírána tepelná energie Q 2 a konáním práce A je teplo Q 1 odevzdáno do horkého média. opný faktor: Chladící faktor: K K VR heat VR cool Q1 A Q A Q1 Q Q 1 Q 2 h h l 2 2 l t Q1 Q2 h l t 1 h (horké médium) Q 1 SROJ A Q 2 l (chladné médium) 3

4 Entropie Popis z hlediska pracovní látky tepelného stroje Pracovní látce je během cyklu přivedeno teplo Q 1, tj. na jeden kilogram látky je absorbováno teplo: Q1 q p m Během cyklu je pracovní látce odvedeno teplo Q 2, tj. na jeden kilogram látky je absorbováno (záporné!) teplo: Q2 q o m Pro termickou účinnost platí: A Q1 Q2 1 Q Q 1 1 q q o p 4

5 Entropie U vratného stroje: h q p h q o l VR redukované teplo: q q o 1 1 p q l h q q p VR.SROJ q o l q p h q o l 0 5

6 Vratný oběh Úvaha o fiktivním Carnotově oběhu uvnitř libovolného vratného oběhu p dq dq dq 0 dq adiabaty izotermy V 6

7 Vratný oběh Úvaha o fiktivním Carnotově oběhu uvnitř libovolného vratného oběhu p dq dq dq 0 dq dq adiabaty dq dq dq izotermy dq dq 0 0 7

8 Entropie Z f ( X, Y) Y X 8

9 Entropie Přiřazení entropie jednotlivým stavům systému p a S dq S S0 S0 a b dq S 0 b V 9

10 Entropie Přiřazení entropie jednotlivým stavům systému p S 0 a b S 0 dq a a dq dq b dq b dq V 10

11 Entropie ds = dq ds = dq Změna entropie ideálního plynu při změně stavu a) ds = dq = c v d + p dv p v = r p = r v = c v d + p dv ds = c v d + r dv v s 2 s 1 = c v ln r ln v 2 v 1 11

12 Entropie b) ds = dq = c p d v dp = c p d v dp v = r p ds = c p d r dp p s 2 s 1 = c p ln 2 1 r ln p 2 p 1 12

13 Entropie c) p v = r p dv + v dp = r d d = 1 r p dv + v dp ds = dq = c p d v dp = = c p = c p 1 r p dv + v dp v dp = 1 r p dv + v dp v dp = = c p p r dv + v dp c p r 1 13

14 Entropie c p r 1 = c p r r = c v r p r = 1 v ; v = r p ds = c p dv v dv + r p dp c v r s 2 s 1 = c p ln v 2 v 1 + c v ln p 2 p 1 14

15 Entropie 15

16 Entropie Znázornění vratných změn id. plynu v diagramu -s Pro dq = ds s = konst ds = 0 16

17 Entropie Znázornění vratných změn id. plynu v diagramu -s p = konst ds = c p d v dp = c p d s = c p ln + s 0 s 1 = c p ln 1 + s 0 s s 1 = c p ln 1 s s 1 c = 1 e p dq = dh v dp q 12 = h 2 h 1 =0 17

18 Entropie Znázornění vratných změn id. plynu v diagramu -s v = konst ds = c v d + p dv = c v d s = c v ln + s 0 s 1 = c v ln 1 + s 0 s s 1 = c v ln 1 s s 1 = 1 e c v c v < c p dq = du + p dv =0 q 12 = u 2 u 1 18

19 Entropie Znázornění práce absolutní a tech. v diagramu -s dq = du + da q 12 = u 2 u 1 + a 12 Vnitřní energie závisí pouze na teplotě d c v du dq = dh + da t q 12 = h 2 h 1 + a t12 d c p dh Entalpie závisí pouze na teplotě 19

20 Entropie epelný oběh v -s diagramu 20

21 Entropie Carnotův oběh 21

22 Entropie Obrácený C. oběh a = q p q 0 < 0 ε = q p a = p s 0 p s = p 0 p ε t = q 0 a = q p + a a = q 0 a = q p a + 1 ε t = ε + 1 ε t = 0 s 0 p s = 0 0 p > 1 22

23 Popis v - s souřadnicích Změna stavových proměnných adiabaty s = konst (dq=0 ds=0) p p,v (p,v) s(p,v) izotermy = konst v 23

24 Popis v - s souřadnicích Změna stavových proměnných adiabaty s = konst (dq=0 ds=0),s p(,s) v(,s) izotermy = konst s 24

25 Polytropická vratná změna id. p. Základní vratné změny stavu ideálního plynu 1. p = konst 2. v = konst 3. = konst 4. Q = 0 5. p v n = konst Aby děj byl vratný, musí být kvazistatický (sled stavů nekonečně blízkých rovnovážnému stavu). Ideální plyn: p v = r c p = konst; c v = konst 25

26 Polytropická vratná změna id. p. Základní vratné změny stavu ideálního plynu 1. p = konst 2. v = konst 3. = konst 4. Q = 0 5. p v n = konst Aby děj byl vratný, musí být kvazistatický (sled stavů nekonečně blízkých rovnovážnému stavu). Ideální plyn: p v = r c p = konst; c v = konst 26

27 Polytropická vratná změna id. p. 1. n = 0 p v 0 = konst p = konst izobarická změna 2. n = 1 p v = konst = konst izotermická změna 3. n = κ p v κ = konst Q = 0 adiabatická změna 4. n = p v n = konst p 1 n v = konst v = konst izochorická změna 27

28 n = Polytropická vratná změna id. p. p n = 0 n = 1 n = κ v 28

29 Polytropická vratná změna id. p. p p v n = konst p 1 v 1 = r 1 p 2 v 2 = r 2 1 p 1 p 2 v 1 v 2 = 1 2 ; v 2 v 1 p 1 p 2 p 1 p 2 = n v1 v 2 = n n 1 = 1 2 v n 2 v 1 v n 1 2 v 1 p 1 p 2 n 1 n = 1 2 = v 29

30 Polytropická vratná změna id. p. Práce absolutní: 2 2 n dv a 12 = pdv = p 1 v v n = p v = r = 1 n 1 p n 1 1v 1 v 1 v 1 n 1 v 1 n 2 = = r 1 n 1 1 v 1 v 2 n 1 = r 1 n = r 1 n 1 1 p 2 p 1 n 1 n Práce technická: p v n = konst v n dp + pnv n 1 dv = 0 a t12 = n a 12 30

31 Polytropická vratná změna id. p. Přivedené teplo: p v = r dq = du + da = c v d + pdv pdv + vdp = rd pdv npdv = rd pdv = rd 1 n c v = dq = c v n κ n 1 d Ideální plyn r κ 1 c n = c v n κ n 1 q 12 = c n

32 Polytropická vratná změna id. p. c n = c v n κ n 1, q 12 = c n n = 0 izobarická změna 2. n = 1 izotermická změna c n = κc v = c p q 12 = c p 2 1 c n q 12 = 0 q 12 = a n = κ adiabatická změna c n = 0 q 12 = 0 4. n = izochorická změna c n = c v q 12 = c v < n < κ c n < 0 nemá fyzikální význam 32

33 Polytropická vratná změna id. p. 33

34 Polytropická vratná změna id. p. Polytropická změna stavu p v n = konst dq = c n d ds = c v d + p dv = c d n n κ c n = c v (= konst) n 1 ds = dq = c d n s = c n ln + s 0 s 1 = c n ln 1 + s 0 s s 1 = c n ln 1 s s 1 = 1 e c n 34

35 Polytropická vratná změna id. p. Směrnice polytropy: ds = c n d d ds = c n = c v n 1 n κ p = konst; n = 0 d ds = 1 c v κ = c p = konst; n = 1 q = konst; n = κ v = konst; n d ds = 0 c v 1 κ = 0 d ds ± d ds = c v 35

36 Polytropická vratná změna id. p. Polytropy se stejným pol. exp. n (stejné hodnoty c n ) s X = s A + c n ln 1 s Y = s B + c n ln 1 s Y s X = s B s A 36

37 Polytropická vratná změna id. p. Izobarický děj (n = 0) p v = r p = konst v 2 v 1 = 2 1 p p V 1 V 2 Práce absolutní: a 12 = 1 2 Práce technická: p dv a t12 = Přivedené teplo: 2 = p dv 1 2 v dp 1 = p v 2 v 1 = r 2 1 = 0 p = konst dp = 0 q 12 = c p

38 Polytropická vratná změna id. p. Izochorický děj (n = ) p v = r v = konst p 2 = 2 p 1 1 Práce absolutní: 2 a 12 = p dv = 0 1 Práce technická: a t12 = 1 2 v dp Přivedené teplo: = v p 2 p 1 = v p 1 p 2 = r 1 2 q 12 = c v 2 1 V p 1 1 V p

39 Polytropická vratná změna id. p. Izotermická změna (n = 1) p v = r = konst p 1 v 1 = p 2 v 2 p 1 V 1 p 2 V 2 Práce absolutní: a 12 = 1 2 p dv Práce technická: Přivedené teplo: = p 1 v dv v = p 1 v 1 ln v 2 v 1 = r ln v 2 v 1 = r ln p 1 p 2 a t12 = a 12 dq = c v d + da = 0 + da q 12 = a 12 = a t12 39

40 Polytropická vratná změna id. p. Adiabatická změna (n = κ) Práce absolutní: p 1 p 2 a 12 = r 1 κ dq 0 V 1, 1 V 2, 2 Práce technická: a t12 = κ a 12 Přivedené teplo: q 12 = 0 40

41 Konec Děkuji za pozornost

Termomechanika 3. přednáška Doc. Dr. RNDr. Miroslav HOLEČEK

Termomechanika 3. přednáška Doc. Dr. RNDr. Miroslav HOLEČEK ermomechanika 3. přednáška Doc. Dr. RNDr. Miroslav HOLEČEK Upozornění: ato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Termomechanika 5. přednáška

Termomechanika 5. přednáška Termomechanika 5. přednáška Miroslav Holeček, Jan Vychytil Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autory s využitím

Více

Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Elektroenergetika 1. Termodynamika

Elektroenergetika 1. Termodynamika Elektroenergetika 1 Termodynamika Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický

Více

Elektroenergetika 1. Termodynamika a termodynamické oběhy

Elektroenergetika 1. Termodynamika a termodynamické oběhy Termodynamika a termodynamické oběhy Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický

Více

Poznámky k cvičením z termomechaniky Cvičení 3.

Poznámky k cvičením z termomechaniky Cvičení 3. Vnitřní energie U Vnitřní energie U je stavová veličina U = U (p, V, T), ale závisí pouze na teplotě (experiment Gay-Lussac / Joule) U = f(t) Pro měrnou vnitřní energii (tedy pro vnitřní energii jednoho

Více

Termomechanika 5. přednáška Michal Hoznedl

Termomechanika 5. přednáška Michal Hoznedl Termomechanika 5. přednáška Michal Hoznedl Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autory s využitím citovaných zdrojů

Více

Kontrolní otázky k 1. přednášce z TM

Kontrolní otázky k 1. přednášce z TM Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele

Více

Poznámky k cvičením z termomechaniky Cvičení 4. Postulát, že nedochází k výměně tepla má dopad na první větu termodynamickou

Poznámky k cvičením z termomechaniky Cvičení 4. Postulát, že nedochází k výměně tepla má dopad na první větu termodynamickou Adiabatická změna: Při adiabatickém ději nedochází k výměně tepla s okolím, tedy platí: dq = 0; dq = 0 () Postulát, že nedochází k výměně tepla má dopad na první větu termodynamickou Pro její první tvar:

Více

FYZIKÁLNÍ CHEMIE chemická termodynamika

FYZIKÁLNÍ CHEMIE chemická termodynamika FYZIKÁLNÍ CHEMIE chemická termodynamika ermodynamika jako vědní disciplína Základní zákony termodynamiky Práce, teplo a energie Vnitřní energie a entalpie Chemická termodynamika Definice termodynamiky

Více

Teplota a její měření

Teplota a její měření Teplota a její měření Teplota a její měření Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_03_01 Teplota, Celsiova a Kelvinova teplotní stupnice, převodní vztahy, příklady. Tepelná výměna, měrná

Více

Cvičení z termomechaniky Cvičení 7.

Cvičení z termomechaniky Cvičení 7. Příklad 1 Vypočítejte účinnost a výkon Humpreyoho spalovacího cyklu bez regenerace, když látkou porovnávacího oběhu je vzduch. Cyklus nakreslete v p-v a T-s diagramu. Dáno: T 1 = 300 [K]; τ = T 1 = 4;

Více

Termodynamika a živé systémy. Helena Uhrová

Termodynamika a živé systémy. Helena Uhrová Termodynamika a živé systémy Helena Uhrová Základní pojmy termodynamiky soustava izolovaná otevřená okolí vlastnosti soustavy znaky popisující soustavu stav rovnováhy tok m či E =0 funkce stavu - soubor

Více

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Termodynamika reálných plynů část 2 Hana Charvátová, Dagmar Janáčová Zlín 203 Tento studijní

Více

Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn

Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10

Více

Zpracování teorie 2010/11 2011/12

Zpracování teorie 2010/11 2011/12 Zpracování teorie 2010/11 2011/12 Cykly Děje Proudění (turbíny) počet v: roce 2010/11 a roce 2011/12 Chladící zařízení (nakreslete cyklus a nakreslete schéma)... zde 13 + 2 (15) Izochorický děj páry (nakreslit

Více

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6. OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické

Více

Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W =

Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W = Termochemie { práce Práce: W = s F nebo W = Objemová práce (p vn = vnìj¹í tlak): W = V2 V 1 p vn dv s2 Vratný dìj: p = p vn (ze stavové rovnice) W = V2 V 1 p dv s 1 F ds s.1 Diferenciální tvar: dw = pdv

Více

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013 Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno

Více

Jméno: _ podpis: ročník: č. studenta. Otázky typu A (0.25 bodů za otázku, správně je pouze jedna odpověď)

Jméno: _ podpis: ročník: č. studenta. Otázky typu A (0.25 bodů za otázku, správně je pouze jedna odpověď) Jméno: _ podpis: ročník: č. studenta Otázky typu A (0.25 bodů za otázku, správně je pouze jedna odpověď) 1. JEDNOTKA PASCAL JE DEFINOVÁNÁ JAKO a. N.m.s b. kg.m-1.s-2 c. kg.m-2 d. kg.m.s 2. KALORIMETRICKÁ

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

Termomechanika. Doc. Dr. RNDr. Miroslav HOLEČEK

Termomechanika. Doc. Dr. RNDr. Miroslav HOLEČEK ermomechanika. přednáška Doc. Dr. RNDr. Miroslav HOLEČEK Upozornění: ato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím citovaných

Více

Magnetokalorický jev MCE

Magnetokalorický jev MCE Magnetokalorický jev a jeho aplikační potenciál P. Svoboda Katedra fyziky kondenzovaných látek Magnetokalorický jev MCE MCE: znám déle než 120 let renesance zájmu během posledních 35 let PROČ? Připomínka

Více

IDEÁLNÍ PLYN. Stavová rovnice

IDEÁLNÍ PLYN. Stavová rovnice IDEÁLNÍ PLYN Stavová rovnice Ideální plyn ) rozměry molekul jsou zanedbatelné vzhledem k jejich vzdálenostem 2) molekuly plynu na sebe působí jen při vzájemných srážkách 3) všechny srážky jsou dokonale

Více

přednáška č. 6 Elektrárny B1M15ENY Tepelné oběhy: Stavové změny Typy oběhů Možnosti zvýšení účinnosti Ing. Jan Špetlík, Ph.D.

přednáška č. 6 Elektrárny B1M15ENY Tepelné oběhy: Stavové změny Typy oběhů Možnosti zvýšení účinnosti Ing. Jan Špetlík, Ph.D. Elektrárny B1M15ENY přednáška č. 6 Tepelné oběhy: Stavové změny Typy oběhů Možnosti zvýšení účinnosti Ing. Jan Špetlík, Ph.D. ČVUT FEL Katedra elektroenergetiky E-mail: spetlij@fel.cvut.cz Termodynamika:

Více

Otázky Termomechanika (2014)

Otázky Termomechanika (2014) Otázky Termomechanika (2014) 1. Základní pojmy a veličiny termomechaniky a. Makroskopický a mikroskopický popis systému, makroskopické veličiny b. Tlak: definice makroskopická a mikroskopické objasnění

Více

Termodynamika par. Rovnovážný diagram látky 1 pevná fáze, 2 kapalná fáze, 3 plynná fáze

Termodynamika par. Rovnovážný diagram látky 1 pevná fáze, 2 kapalná fáze, 3 plynná fáze ermodynamika par Fázové změny látky: Přivádíme-li pevné fázi látky teplo, dochází při jisté teplotě a tlaku ke změně pevné fáze na fázi kapalnou (tání) Jestliže spojíme body tání při různých tlacích, získáme

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

FYZIKÁLNÍ CHEMIE I: 2. ČÁST

FYZIKÁLNÍ CHEMIE I: 2. ČÁST Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta FYZIKÁLNÍ CHEMIE I: 2. ČÁST KCH/P401 Ivo Nezbeda Ústí nad Labem 2013 1 Obor: Klíčová slova: Anotace: Toxikologie a analýza škodlivin, Chemie

Více

Termodynamika pro +EE1 a PEE

Termodynamika pro +EE1 a PEE ermodynamika ro +EE a PEE Literatura: htt://home.zcu.cz/~nohac/vyuka.htm#ee [0] Zakladni omocny text rednasek Doc. Schejbala [] Pomocne texty ke cviceni [] Prednaska cislo 7 - Zaklady termodynamiky [3]

Více

Termodynamické zákony

Termodynamické zákony ermoynamické zákony. termoynamický zákon (zákon zachování energie) (W je práce vykonaná na systém) teplo Q oané systému plus vynaložená práce W zvyšují vnitřní energii systému U (W je práce vykonaná systémem)

Více

TEPLO A TEPELNÉ STROJE

TEPLO A TEPELNÉ STROJE TEPLO A TEPELNÉ STROJE STROJE A ZAŘÍZENÍ ČÁSTI A MECHANISMY STROJŮ ENERGIE,, PRÁCE A TEPLO Energie - z řeckého energia: aktivita, činnost. Ve strojírenské praxi se projevuje jako dominantní energie mechanická.

Více

Mol. fyz. a termodynamika

Mol. fyz. a termodynamika Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter.

CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter. CHEMICKÁ ENERGETIKA Energetickou stránkou soustav a změnami v těchto soustavách se zabývá fyzikální disciplína termodynamika. Z široké oblasti obecné termodynamiky se chemická termodynamika zajímá o chemické

Více

12. Termomechanika par, Clausius-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par

12. Termomechanika par, Clausius-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par 1/2 1. Určovací veličiny pracovní látky 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 3. Směsi plynů, měrné tepelné kapacity plynů 4. První termodynamický zákon 5. Základní vratné

Více

Domácí práce č.1. Jak dlouho vydrží palivo motocyklu Jawa 50 Pionýr, pojme-li jeho nádrž 3,5 litru paliva o hustote 750kg m 3 a

Domácí práce č.1. Jak dlouho vydrží palivo motocyklu Jawa 50 Pionýr, pojme-li jeho nádrž 3,5 litru paliva o hustote 750kg m 3 a Domácí práce č.1 Jak dlouho vydrží palivo motocyklu Jawa 50 Pionýr, pojme-li jeho nádrž 3,5 litru paliva o hustote 750kg m 3 a motor beží pri 5000ot min 1 s výkonem 1.5kW. Motor má vrtání 38 mm a zdvih

Více

Poznámky k semináři z termomechaniky Grafy vody a vodní páry

Poznámky k semináři z termomechaniky Grafy vody a vodní páry Příklad 1 Sytá pára o tlaku 1 [MPa] expanduje izotermicky na tlak 0,1 [MPa]. Znázorněte v diagramech vody a vodní páry. Jelikož se jedná o izotermický děj, je výhodné použít diagram T-s. Dále máme v zadání,

Více

Cvičení z termomechaniky Cvičení 6.

Cvičení z termomechaniky Cvičení 6. Příklad 1: Pacovní látkou v poovnávacím smíšeném oběhu spalovacího motou je vzduch o hmotnosti 1 [kg]. Počáteční tlak je 0,981.10 5 [Pa] při teplotě 30 [ C]. Kompesní pomě je 7, stupeň zvýšení tlaku 2

Více

2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi

2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi 1. ZÁKLADNÍ POJMY 1.1 Systém a okolí 1.2 Vlastnosti systému 1.3 Vybrané základní veličiny 1.3.1 Množství 1.3.2 Délka 1.3.2 Délka 1.4 Vybrané odvozené veličiny 1.4.1 Objem 1.4.2 Hustota 1.4.3 Tlak 1.4.4

Více

VZOROVÝ ZKOUŠKOVÝ TEST z fyzikální chemie( 1

VZOROVÝ ZKOUŠKOVÝ TEST z fyzikální chemie(  1 VZOROVÝ ZKOUŠKOVÝ TEST z fyzikální chemie(www.vscht.cz/fch/zktesty/) 1 Zkouškový test z FCH I, 10. srpna 2015 Vyplňuje student: Příjmení a jméno: Kroužek: Upozornění: U úloh označených ikonou uveďte výpočet

Více

LOGO. Struktura a vlastnosti plynů Ideální plyn

LOGO. Struktura a vlastnosti plynů Ideální plyn Struktura a vlastnosti plynů Ideální plyn Ideální plyn Protože popsat chování plynů je nad naše možnosti, zavádíme zjednodušený model tzv. ideálního plynu, který má tyto vlastnosti: Částice ideálního plynu

Více

ANALÝZA TRANSKRITICKÉHO CHLADÍCÍHO OBĚHU S OXIDEM UHLIČITÝM SVOČ FST 2009

ANALÝZA TRANSKRITICKÉHO CHLADÍCÍHO OBĚHU S OXIDEM UHLIČITÝM SVOČ FST 2009 ANALÝZA TRANSKRITICKÉHO CHLADÍCÍHO OBĚHU S OXIDEM UHLIČITÝM SVOČ FST 2009 Jan Fuks, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT Moderní chladicí systémy musí splňovat

Více

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ Výhody: medium (vzduch) se nachází všude kolem nás možnost využití centrální výroby stlačeného vzduchu v závodě kompresor nemusí pracovat nepřetržitě (stlačený

Více

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj 3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj a) tepelný děj přechod plynu ze stavu 1 do stavu tepelnou výměnou nebo konáním práce dále uvaž., že hmotnost plynu m = konst. a navíc

Více

=, V = T * konst. =, p = T * konst. Termodynamika ideálních plynů

=, V = T * konst. =, p = T * konst. Termodynamika ideálních plynů Termodynamika ideálních plynů 1. Definice uzavřené termodynamické soustav : Hmotnost procházející kontrolní plochou je nulová 2. Definice otevřené termodynamické soustav: Hmotnost procházející kontrolní

Více

1/1 PŘEHLED TEORIE A VÝPOČTOVÝCH VZTAHŮ. Základní stavové veličiny látky. Vztahy mezi stavovými veličinami ideálních plynů

1/1 PŘEHLED TEORIE A VÝPOČTOVÝCH VZTAHŮ. Základní stavové veličiny látky. Vztahy mezi stavovými veličinami ideálních plynů 1/1 PŘEHLED TEORIE A VÝPOČTOVÝCH VZTAHŮ Základní stavové veličiny látky Vztahy mezi stavovými veličinami ideálních plynů Stavová rovnice ideálního plynu f(p, v, T)=0 Měrné tepelné kapacity, c = f (p,t)

Více

Termodynamické zákony

Termodynamické zákony Termodynamické zákony Makroskopická práce termodynamické soustavy Již jsme uvedli, že změna vnitřní energie soustavy je obecně vyvolána dvěma ději: tepelnou výměnou mezi soustavou a okolím a konáním práce

Více

Termodynamika ideálního plynu

Termodynamika ideálního plynu Přednáška 5 Termodynamika ideálního lynu 5.1 Základní vztahy ro ideální lyn 5.1.1 nitřní energie ideálního lynu Alikujme nyní oznatky získané v ředchozím textu na nejjednodužší termodynamickou soustavu

Více

Poznámky k cvičením z termomechaniky Cvičení 10.

Poznámky k cvičením z termomechaniky Cvičení 10. Příklad 1 Topné těleso o objemu 0,5 [m 3 ], naplněné sytou párou o tlaku 0,15 [MPa], bylo odstaveno. Po nějaké době vychladlo na teplotu 30 C. Určete množství uvolněného tepla a konečný stav páry v tělese.

Více

Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Termomechanika 12. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 12. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 2. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D09_Z_OPAK_T_Plyny_T Člověk a příroda Fyzika Struktura a vlastnosti plynů Opakování

Více

IDEÁLNÍ PLYN 14. TEPELNÉ STROJE, PRVNÍ A DRUHÝ TERMODYNAMICKÝ ZÁKON

IDEÁLNÍ PLYN 14. TEPELNÉ STROJE, PRVNÍ A DRUHÝ TERMODYNAMICKÝ ZÁKON IDEÁLNÍ PLYN 14. TEPELNÉ STROJE, PRVNÍ A DRUHÝ TERMODYNAMICKÝ ZÁKON Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. TEPELNÝ STROJ Tepelný stroj je stroj, který pracuje na základě prvního termodynamického

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon

Více

dq = 0 T dq ds = definice entropie T Entropie Při pohledu na Clausiův integrál pro vratné cykly :

dq = 0 T dq ds = definice entropie T Entropie Při pohledu na Clausiův integrál pro vratné cykly : Entropie Při pohledu na Clausiův integrál pro vratné cykly : si dříve či později jistě uvědomíme, že nulová hodnota integrálu nějaké veličiny při kruhovém termodynamickém procesu je základním znakem toho,

Více

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Více

Nultá věta termodynamická

Nultá věta termodynamická TERMODYNAMIKA Nultá věta termodynamická 2 Práce 3 Práce - příklady 4 1. věta termodynamická 5 Entalpie 6 Tepelné kapacity 7 Vnitřní energie a entalpie ideálního plynu 8 Výpočet tepla a práce 9 Adiabatický

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko

Více

Popis fyzikálního chování látek

Popis fyzikálního chování látek Popis fyzikálního chování látek pro vysvětlení noha fyzikálních jevů již nevystačíe s pouhý echanický popise Terodynaika oblast fyziky, která kroě echaniky zkouá vlastnosti akroskopických systéů, zejéna

Více

Cvičení z termodynamiky a statistické fyziky

Cvičení z termodynamiky a statistické fyziky Cvičení termodynamiky a statistické fyiky 1Nechť F(x, y=xe y Spočtěte F/ x, F/, 2 F/ x 2, 2 F/ x, 2 F/ x, 2 F/ x 2 2 Bud dω = A(x, ydx+b(x, ydy libovolná diferenciální forma(pfaffián Ukažte, ževpřípadě,žedωjeúplnýdiferenciál(existujefunkce

Více

Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter.

CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter. CHEMICKÁ ENERGETIKA Energetickou stránkou soustav a změnami v těchto soustavách se zabývá fyzikální disciplína termodynamika. Z široké oblasti obecné termodynamiky se chemická termodynamika zajímá o chemické

Více

Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti

Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti Tepelná vodivost teplo přenesené za čas dt: T 1 > T z T 1 S tepelný tok střední volná dráha T součinitel tepelné vodivosti střední rychlost Tepelná vodivost součinitel tepelné vodivosti při T = 300 K součinitel

Více

Energetika Osnova předmětu 1) Úvod

Energetika Osnova předmětu 1) Úvod Osnova předmětu 1) Úvod 2) Energetika 3) Technologie přeměny 4) Tepelná elektrárna a její hlavní výrobní zařízení 5) Jaderná elektrárna 6) Ostatní tepelné elektrárny 7) Kombinovaná výroba elektřiny a tepla

Více

Termodynamika. Děj, který není kvazistatický, se nazývá nestatický.

Termodynamika. Děj, který není kvazistatický, se nazývá nestatický. Termodynamika Zabývá se ději, při nichž se mění tepelná energie v jiné druhy energie (zejména mechanické). Studuje vlastnosti látek bez přihlédnutí k jejich mikrostruktuře. Je vystavěna na axiomech (0.,

Více

Termodynamika 1. UJOP Hostivař 2014

Termodynamika 1. UJOP Hostivař 2014 Termodynamika 1 UJOP Hostivař 2014 Termodynamika Zabývá se tepelnými ději obecně. Existují 3 termodynamické zákony: 1. Celkové množství energie (všech druhů) izolované soustavy zůstává zachováno. 2. Teplo

Více

Termodynamika ideálních plynů

Termodynamika ideálních plynů Za správnost neručím, cokoli s jinou než černou barvou je asi špatně Informace jsou primárně z přednášek Termodynamika ideálních plynů 1. Definice uzavřené termodynamické soustavy - neprochází přes ni

Více

Joulův-Thomsonův jev. p 1 V 1 V 2. p 2 < p 1 V 2 > V 1. volná adiabatická expanze nevratný proces (vzroste entropie)

Joulův-Thomsonův jev. p 1 V 1 V 2. p 2 < p 1 V 2 > V 1. volná adiabatická expanze nevratný proces (vzroste entropie) Joulův-homsonův jev volná aiabatická expanze nevratný proces (vzroste entropie) ieální plyn: teplota t se nezmění ě a bue platit: p p p reálný plyn: teplota se změní (buď vzroste nebo klesne) p p < p >

Více

Molekulová fyzika a termika. Přehled základních pojmů

Molekulová fyzika a termika. Přehled základních pojmů Molekulová fyzika a termika Přehled základních pojmů Kinetická teorie látek Vychází ze tří experimentálně ověřených poznatků: 1) Látky se skládají z částic - molekul, atomů nebo iontů, mezi nimiž jsou

Více

Kapitoly z fyzikální chemie KFC/KFCH. II. Termodynamika

Kapitoly z fyzikální chemie KFC/KFCH. II. Termodynamika Kapitoly z fyzikální chemie KFC/KFCH II. Termodynamika Karel Berka Univerzita Palackého v Olomouci Katedra Fyzikální chemie karel.berka@upol.cz Termodynamika therme - teplo a dunamis - síla popis jak systémy

Více

Cvičení z termomechaniky Cvičení 3.

Cvičení z termomechaniky Cvičení 3. Příklad 1 1kg plynu při izobarickém ohřevu o 710 [ C] z teploty 40[ C] vykonal práci 184,5 [kj.kg -1 ]. Vypočítejte molovou hmotnost plynu, množství přivedeného tepla a změnu vnitřní energie ΔT = 710 [K]

Více

Příklady k zápočtu molekulová fyzika a termodynamika

Příklady k zápočtu molekulová fyzika a termodynamika Příklady k zápočtu molekulová fyzika a termodynamika 1. Do vody o teplotě t 1 70 C a hmotnosti m 1 1 kg vhodíme kostku ledu o teplotě t 2 10 C a hmotnosti m 2 2 kg. Do soustavy vzápětí přilijeme další

Více

ů é Č ů Ú Řď ů ů ý ý ý ů ů ý ň ď Ť Ť Ť é é ý ů ý É ň é ů ý é ý ů ů ý ý ů ů é ů ý ý ý é é Ť ý é ý ď ý é ý Ó Ů ý Ů Ů Ů ú ů ďů é ý ý é ď ý ý ý ů ů é ů ů é ů é ý é Ů é é é ý Ť ů Ť é é é é ů é ý ý é Ť é é Ú

Více

9. Struktura a vlastnosti plynů

9. Struktura a vlastnosti plynů 9. Struktura a vlastnosti plynů Osnova: 1. Základní pojmy 2. Střední kvadratická rychlost 3. Střední kinetická energie molekuly plynu 4. Stavová rovnice ideálního plynu 5. Jednoduché děje v plynech a)

Více

Bibliografická citace práce:

Bibliografická citace práce: Bibliografická citace práce: ZATLOUKAL, O. Termodynamický cyklus. Bakalářská práce. Brno: Ústav elektroenergetiky FEKT VUT v Brně, 2009, 48 stran. Prohlašuji, že jsem svou bakalářskou práci vypracoval

Více

Cvičení z NOFY / Termodynamika. 1 Cvičení Totální diferenciál. 1.1 Totální diferenciál Teplota a tlak pro ideální plyn

Cvičení z NOFY / Termodynamika. 1 Cvičení Totální diferenciál. 1.1 Totální diferenciál Teplota a tlak pro ideální plyn Cvičení z NOFY031 2009/2010 1 Termodynamika 1 Cvičení 1.10.2008 Totální diferenciál 1.1 Totální diferenciál 1. Jsou zadány dva výrazy: df 1 (x, y) = 6xy 3 dx + 9x 2 y 2 dy, df 2 (x, y) = 6xy 2 dx + 9x

Více

část 6, díl 5, kapitola 1, str. 1 prosinec 2002

část 6, díl 5, kapitola 1, str. 1 prosinec 2002 S R O J N IC K Á P Ř ÍR U Č K A část 6, díl 5, kapitola 1, str 1 6/51 E M P IR IC K É Z Á K O N Y Předmětem zájmu termodynamiky jsou především děje probíhající v látkách ve skupenství plynném a děje související

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno JAMES WATT 19.1.1736-19.8.1819 Termodynamika principy, které vládnou přírodě Obsah přednášky Vysvětlení základních

Více

4 Term ika. D ůsledky zavedení tep lo ty a tep la Stavová r o v n i c e Stavová rovnice termická a kalorická

4 Term ika. D ůsledky zavedení tep lo ty a tep la Stavová r o v n i c e Stavová rovnice termická a kalorická Obsah Předm luva И 1 Výchozí představy term odynam iky 13 1.1 Předmět zkoumání termodynamiky... 13 1.1.1 Celkový r á m e c... 13 1.1.2 Teplo, teplota, e n tr o p ie... 14 1.1.3 Vymezení term o d y n am

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

PROCESY V TECHNICE BUDOV 9

PROCESY V TECHNICE BUDOV 9 UNIVERZIA OMÁŠE BAI VE ZLÍNĚ FAKULA APLIKOVANÉ INFORMAIKY PROCESY V ECHNICE BUDOV 9 ermodynamika reálných plynů (2. část) Dagmar Janáčová, Hana Charvátová Zlín 2013 ento studijní materiál vznikl za finanční

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství Energetický ústav

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství Energetický ústav VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství Energetický ústav Ing. Jiří Škorpík PŘÍSPĚVEK K NÁVRHU STIRLINGOVA MOTORU A CONTRIBUTION TO DESIGN OF THE STIRLING ENGINE Zkracená verze Ph.D.

Více

Termodynamické potenciály

Termodynamické potenciály Kapitola 1 Termodynamické potenciály 11 Vnitřní energie a U-formulace Fyzikání význam vnitřní energie: v průběhu adiabatického děje je vykonaná práce rovna úbytku vnitřní energie Platí pro vratné i pro

Více

Teplo, práce a 1. věta termodynamiky

Teplo, práce a 1. věta termodynamiky eplo, práce a. věta termodynamiky eplo ( tepelná energie) Nyní již víme, že látka (plyn) s vyšší teplotou obsahuje částice (molekuly), které se pohybují s vyššími rychlostmi a můžeme posoudit, co se stane

Více

Do známky zkoušky rovnocenným podílem započítávají získané body ze zápočtového testu.

Do známky zkoušky rovnocenným podílem započítávají získané body ze zápočtového testu. Podmínky pro získání zápočtu a zkoušky z předmětu Chemicko-inženýrská termodynamika pro zpracování ropy Zápočet je udělen, pokud student splní zápočtový test alespoň na 50 %. Zápočtový test obsahuje 3

Více

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie PŘEDMĚT: FYZIKA ROČNÍK: SEXTA VÝSTUP UČIVO MEZIPŘEDM. VZTAHY, PRŮŘEZOVÁ TÉMATA, PROJEKTY, KURZY POZNÁMKY Zná 3 základní poznatky kinetické teorie látek a vysvětlí jejich praktický význam Vysvětlí pojmy

Více

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/ Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma : Diferenciální a integrální

Více

Klasická termodynamika (aneb pøehled FCH I)

Klasická termodynamika (aneb pøehled FCH I) Klasická termodynamika (aneb pøehled FCH I) 1/16 0. zákon 1. zákon id. plyn: pv = nrt pv κ = konst (id., ad.) id. plyn: U = U(T) }{{} Carnotùv cyklus dq T = 0 2. zákon rg, K,... lim S = 0 T 0 S, ds = dq

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

soustava - část prostoru s látkovou náplní oddělená od okolí skutečnými nebo myšlenými stěnami okolí prostor vně uvažované soustavy

soustava - část prostoru s látkovou náplní oddělená od okolí skutečnými nebo myšlenými stěnami okolí prostor vně uvažované soustavy Soustava soustava - část prostoru s látkovou náplní oddělená od okolí skutečnými nebo myšlenými stěnami okolí prostor vně uvažované soustavy Okolí Hraniční plocha Soustava Soustava Rozdělení podle vztahu

Více

Jednotlivým bodům (n,2,a,e,k) z blokového schématu odpovídají body na T-s a h-s diagramu:

Jednotlivým bodům (n,2,a,e,k) z blokového schématu odpovídají body na T-s a h-s diagramu: Elektroenergetika 1 (A1B15EN1) 3. cvičení Příklad 1: Rankin-Clausiův cyklus Vypočtěte tepelnou účinnost teoretického Clausius-Rankinova parního oběhu, jsou-li admisní parametry páry tlak p a = 80.10 5

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

6. Stavy hmoty - Plyny

6. Stavy hmoty - Plyny skupenství plynné plyn x pára (pod kritickou teplotou) stavové chování Ideální plyn Reálné plyny Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti skupenství plynné reálný plyn ve stavu

Více

Cvičení z termomechaniky Cvičení 7 Seminář z termomechaniky

Cvičení z termomechaniky Cvičení 7 Seminář z termomechaniky Příklad 1 Plynová turbína pracuje dle Ericsson-Braytonova oběhu. Kompresor nasává 0,05 [kg.s- 1 ] vzduchu (individuální plynová konstanta 287,04 [J.kg -1 K -1 ]; Poissonova konstanta 1,4 o tlaku 0,12 [MPa]

Více

IDEÁLNÍ OBĚHY SPALOVACÍCH MOTORŮ IDEAL CYCLES OF INTERNAL COMBUSTION ENGINES

IDEÁLNÍ OBĚHY SPALOVACÍCH MOTORŮ IDEAL CYCLES OF INTERNAL COMBUSTION ENGINES YSOKÉ UČENÍ ECNICKÉ BRNĚ BRNO UNIERSIY OF ECNOLOGY FAKULA SROJNÍO INŽENÝRSÍ ENERGEICKÝ ÚSA FACULY OF MECANICAL ENGINEERING ENERGY INSIUE IDEÁLNÍ OBĚY SPALOACÍC MOORŮ IDEAL CYCLES OF INERNAL COMBUSION ENGINES

Více