Řešení: Ano. Řešení: Ne.

Rozměr: px
Začít zobrazení ze stránky:

Download "Řešení: Ano. Řešení: Ne."

Transkript

1 1 ÚLOHY Z PREDIKÁTOVÉ LOGIKY Instance, varianty. UF.1.1. Substituovatelnost. 1. Buď ϕ formule ( z)(x=z)&y < x a dále x, y, z různé proměnné, F unární funkční symbol, c konstantní symbol. Uveďte, zda je term t substituovatelný do ϕ za proměnnou v v následujících případech: a) tje F(z), vje x. Řešení:Ne. b) tje F(z), vje y. Řešení:Ano. c) tje F(x), vje x. Řešení:Ano. d) tje F(c), vje y. Řešení:Ano. 2. Buď ϕ formule ( x)(( z)(z < x&y= z) z x) a dále x, y, z různé proměnné, G binární funkční symbol, c konstantní symbol. Uveďte, zda je term t substituovatelný do ϕ za proměnnou v v následujících případech: a) tje G(c, x), vje y Řešení:Ne. b) tje G(c, y), vje y Řešení:Ano. c) tje G(c, c), vje z Řešení:Ano. d) tje G(z, x), vje z Řešení:Ne. UF.1.2. Instance. Varianty. 1.Nechť ynenívolnáve ϕajesubstituovatelnáza xdo ϕ, ϕ je ϕ(x/y).zjistěte, zda ϕ (y/x)je ϕ.zdůvodněteodpověď. Řešení:Obapředpokladydohromadyzaručují,ževolnývýskyt yve ϕ je právětam,kdejevolnývýskyt xvϕ.tedy xjesubstituovatelnéza ydo ϕ atakérovnostobouuvažovanýchformulíplatí. 2. Buďte x, y, z, u různé proměnné, Q kvantifikátor. Odpovězte a zdůvodněte, zda v následujících případech platí: ψjevarianta ϕ. a) ϕje(qx)(x < y ( z)(z= y& z x)) ψje(qz)(z < y ( z)(z= y& z z)) Řešení:Ne. znenísubstituovatelnéza xdo x < y ( z)(z= y& z x). b) ϕje(qx)(x < y ( z)(z= y& z x)) ψje(qy)(y < y ( z)(z= y& z y)) Řešení:Ne. yjevolnáve ϕ. c) ϕje(qx)(x < y ( z)(z= y& z x)) ψje(qu)(u < y ( z)(z= y& z u)) Řešení:Ano. unenívolnáve ϕajesubstituovatelnáza xdo x < y ( z)(z= y& z x). 3. Buď P unární predikátový symbol, ϕ formule( y)(y= x)&p(x), ϕ formule( y)(y= y)&p(y). a) Je( x)ϕ varianta( x)ϕ? Řešení: Ne. b) Je xsubstituovatelnédo ϕ za y? Řešení: Ano. c) Je ϕrovno ϕ (y/x)? Řešení:Ne. ϕ (y/x)je( y)(y= y)&p(x). d) Je ϕ ϕ (y/x)? Řešení:Ano.Je ( y)(y= x) ( y)(y= y),protožeoběformule zekvivalencejsoudokazatelné.odtud ( y)(y= x)&p(x) ( y)(y= y)&p(x).

2 2 Pojem modelu a splňování. Axiomatizovatelnost. UF.1.3. Platnost formule v modelu. 1.Buď ϕformule P(x) ( x)p(x),kde P jeunárnírelačnísymbol.vprávě kterýchstrukturách A, P A neplatí ϕani ϕ? Řešení:Právěkdyž P A A. 2.Buď ϕformule x=c,kde cjekonstantnísymbol.vprávěkterýchstrukturách A, c A neplatí ϕani ϕ? Řešení:Právěkdyž A 2. 3.Buď ϕformule P(x) ( x)r(x),kde P, Rjsourůznéunárnípredikátové symboly.vprávěkterýchstrukturách A= A, P A, R A neplatí ϕani ϕ? Řešení:Právěkdyž P A A R A. Zřejmě totiž: A = ϕ P A ar A A, A = ϕ P A Anebo R A = A. UF.1.4. Korektnost substituce. Buď ϕformule( y)(x y)srůznýmiproměnnými x, y.buď ϕ výsledek nekorektnísubstituce ydo ϕzavolnývýskyt x.buď Astruktura.Uvažujmetvrzení: Prokaždé e:var Aje A = ϕ [e] A = ϕ[e(x/y[e])]. a)uveďte,zda( )platípro A= N,+,kde+jesčítánípřirozenýchčísel. Řešení: Ne. b)uveďte,zda( )platípro A= {0}, R,kde R={ 0,0 }. Řešení: Ano. c)právěprokterémodely A= A (teoriečistérovnosti)platí( )? Řešení: Právě pro A s A jednoprvkovým. UF.1.5. Axiomatizovatelnost. 1.BuďK={ A ;velikost Ajesudánebonekonečná}třídamodelůjazyka L čisté rovnosti. Zjistěte, zda je K axiomatizovatelná, případně najděte její axiomatiku. Řešení: T= { existujeprávě2k+1prvků ; k N}axiomatizujeK. 2.Nechť T jeteorievjazyce Lsrovnostítaková,že T mámodelakaždýjejí modeljenekonečný.buď0 < n N.Najděte L-teorii T tak,abym (T )=M (T) a T mělanějakékonečnémodely,atovšechny: a) právě n-prvkové, b) právě n-prvkové nebo 2n-prvkové. Řešení:Buď T = {ϕ ψ; ϕ T }svhodným ψ. 3.Buď0<n N.Najděteteorii T vnějakémjazycesrovností,kterámá nekonečné modely, nemá spočetný model, má konečné modely, všechny kardinality nejvýše n. Řešení:Buď L= c i ; i R skonstantnímisymboly c i a T 0 buď L-teorie {c i c j ; i, j R, i j};hledaná Tje L-teorie {ϕ existujenejvýše nprvků ; ϕ T 0 }. ( ) 4.Buď L= U srovností,přičemž Ujeunárnírelačnísymbol,0 < n Na K={ A, U A ; U A jenekonečnánebonejvýše n-prvková} je třída L-struktur. Zjistěte, zda je K axiomatizovatelná, případně najděte její axiomatiku. Řešení:Nechť T0 jeteorie L-teorie {( x 0,..., x m 1 )( i<j<m x i x j & i<m U(x i));0 < m N}. Pro L-strukturu Aplatí: A = T 0 U A ω.buď χsentence existuje nejvýše nprvků xsu(x).pak T= {ϕ χ; ϕ T 0 },axiomatizujek.

3 3 Izomorfní spektra. UF.1.6. Izomorfní spektra v jazyce U, c. Buď L= U, c,kde Ujeunárnírelačníackonstantnísymbol. 1. Popište izomorfní spektrum L-teorie T = {U(c)}. Řešení:I(κ, T)= Cn κ.modely κ, U, c, κ, U, c teorie T jsou izomorfní,právěkdyž U, κ U = U, κ U,přičemž U 1. Všechrůznýchdvojic U, κ U s U 1, U κjeprávě Cn κ. Pro κ < ωjetotiž Cn κ =κ.pro κ ωjebuď U jakékolikardinality < κ,nebo U =κapakmůžebýt κ U jakékolikardinality κ; takovýchmožnostíje Cn κ + Cn κ = Cn κ. 2. Popište izomorfní spektrum L-teorie T = {(!x)u(x)}. Řešení:I(κ, T)=1pro κ=1a2pro κ >1. UF.1.7. Izomorfní spektrum jazyka spočetně konstant. Buď L= c i i<ω,kde c i jsoukonstantnísymboly. 1.Pro L-strukturu Adefinujemeekvivalenci E A na ω: i E A j c A i = c A j. Buďte A, B dvě L-struktury téže velikosti. a) Platí: A = B E A = E B a A {c A i ; i < ω} = B {cb i ; i < ω}. (1) Speciálně je nejvýše kontinuum neizomorfních L-struktur dané kardinality. b) Jsou-li A, B konečné nebo nespočetné, platí: A = B E A = E B. (2) c)najdětespočetné A, B,prokteré(2)neplatí. 2.Pro κ 2jeI(κ, L)=2 ω. Návod: Užijte toho, že na ω je kontinuum různých ekvivalencí s λ třídami, když2 λ ω. Řešení:Buď Eekvivalencena ω, λ(e)počettříd E.Pro κ λ(e)definujme L-strukturu κ E = κ, c E i i<ωtak,abyplatilo: c E i = c E j i E j. Pak: Jsou-li E, E ekvivalencena ωtak κ E = κ E E= E. Tedy: jelikož je na ω kontinuum různých ekvivalencí s λ třídami, jakmile 2 λ ω, existuje alespoň kontinuum neizomorfních L-struktur kardinality κ( 2)adle(1)jichnenívíce. UF.1.8. TeorieDiLOdiskrétníholineárníhouspořádánímáprokaždé κ ωprávě2 κ neizomorfních modelů kardinality κ. Návod:Užijtetoho,žeprokaždé κ ωjeprávě2 κ neizomorfníchlineárních uspořádání s univerzem kardinality κ. Řešení:Proostrélineárníuspořádání A= A, < A buď A(Z)= A Z, < Le lexikografickéuspořádání.jediskrétníakardinalitymax( A, ω). Nechť B= B, < B jelineárníuspořádání.pakplatí A(Z) = B(Z) A = B.Buďtotiž hisomorfizmus A(Z)aB(Z);definujme H: A Btakto: H(a)=b a existuje j a Zsh( a,0 )= b a, j a. Paktojejasnězobrazenína Ba a < A a h( a,0 ) < B(Z) h( a,0 )amezi h( a,0 ), h( a,0 )je nekonečně prvků b a < B b a H(a) < B H(b). Jelikožna κ ωje2 κ neizomorfníchlineárníchuspořádání A,máme2 κ neizomorfníchlineárníchuspořádání A(Z)na κ Z,tedy2 κ neizomorfních diskrétních lineárních uspořádání, majících každé velikost univerza κ.

4 4 Základy dedukce. UF.1.9. Syntaktický důkaz bezespornosti teorie rovnosti v L. Nechť T je teorie rovnosti v L, tj. L-teorie s rovností bez mimologických axiomů. Buď dnovýkonstantnísymbol.pro L-formuli ϕbuď ϕ formule,kterásezískázϕ odstraněním všech kvantifikací a nahrazením každého termu konstantním symbolem d.pak ϕ jevýroknadprvovýroky d=d, R(d,..., d),kde RjerelačnísymbolzL. a)je-li ϕlogickýaxiomneboaxiomrovnosti,kroměaxiomu x=x,je ϕ tautologie. Řešení: Pro logický axiom ϕ, který není axiomem rovnosti, to je jasné. Axiomyrovnosti ϕkromě x=xpřejdouna ϕ tvaru d=d d=d (R(d,..., d) R(d,..., d)) nebo d=d d=d d=d apakovšem v(ϕ )=1. b) T ϕ v(ϕ )=1,jakmile vjeohodnoceníuvedenýchprvovýrokůtakové, žeplatí v(d=d)=1.speciálněje Tbezesporná. Návod: Užijte indukci na teorémech T. Řešení:Indukcínateorémech T.Proaxiom ϕtoplatí,neboť(x=x) je d=d.buď v(d=d)=1.nechťpro ψ, ψ ϕtoplatí.pak1= v((ψ ϕ) )=v(ψ ϕ )av(ψ )=1,tedy v(ϕ )=1.Platí-litopro ϕ,tak v((( x)ϕ) )=v(ϕ )=1. UF Dokazatelné, vyvratitelné, nezávislé a bezesporné formule. 1. Buďte P, R různé unární predikátové symboly. Zdůvodněte, zda formule ϕ je dokazatelná, vyvratitelná či nezávislá v logice, kde ϕ je a) P(x) b) P(x) R(x) c)( x, y)(p(x) (R(x) P(x))) d)( x)p(x) Řešení:a)Nezávislá. 1, = ϕ, 1,1 = ϕ.b)nezávislá. 2,,2 = ϕ, 2,2, = ϕ.c)dokazatelná,neboť P(x) (R(x) P(x))jetautologie.d)Nezávislá. 1, = ϕ, 1,1 = ϕ. 2. Najděte nějaké nezávislé sentence teorie čisté rovnosti, teorie lineárního uspořádání, teorie grup, teorie těles. 3. Nechť T ( x)ϕ(x). Co lze říci o dokazatelnosti, vyvratitelnosti, nezávislosti, konzistenci ϕ, ϕ vzhledem k T? UF Vlastnosti kvantifikátorů. 1. ( x)(ϕ ψ) ((Qx)ϕ (Qx)ψ),kde Qznačíkvantifikátor. Návod: Užijte větu o konstantách. Řešení: Buďte T logické axiomy v jazyce rozšířeném o nové konstantní symboly c i ; ϕ(x, x 1 /c 1, ) resp. ψ(x, x 1 /c 1, ) označme ϕ (x) resp. ψ (x)(konstantysubstituujemezavšechnyvolnéproměnné,kromě x). Pak T,( x)(ϕ ψ ) ϕ ψ,dlepravidladistribucekvantifikátoru i T,( x)(ϕ ψ ) (Qx)ϕ (Qx)ψ azbytekdávětaodedukcia konstantách. 2. a) ( x)ϕ ( x)ϕ. Řešení:Je ( x)ϕ ϕ, ϕ(x) ( x)ϕ;odtudpomocípravidlatranzitivity implikace plyne dokazované. b) ϕ ( x)ϕ ( x)ϕ ( x)ϕ ( x) ϕ ( x)ϕ. Řešení:Prváekvivalence.Implikace : ϕ ( x)ϕ ( x)(ϕ ( x)ϕ) ( x)ϕ ( x)ϕ. Implikace : ( x)ϕ ( x)ϕ ( x)(ϕ ( x)ϕ) ϕ ( x)ϕ.užitímdemorganovýchvztahůplyne druhá ekvivalence.

5 5 3. a) ( x)( x)ϕ ( x)ϕ. Řešení: i) ( x)( x)ϕ ( x)ϕ dává axiom substituce. ii) ( x)ϕ ( x)( x)ϕ plyne z ( x)ϕ ( x)ϕ pravidlem -zavedení. Z i), ii) plyne ihned dokazované. b) ( x)( x)ϕ ( x)ϕ. Řešení: i)( x)( x)ϕ ( x)ϕ dává pravidlo -zavedení. ii)( x)ϕ ( x)( x)ϕplynezplatnéhovztahu ψ ( x)ψ.zi),ii) plyne ihned dokazované. UF Vytýkání kvantifikátorů- protipříklady. 1. ( x)(ϕ ψ) (ϕ ( x)ψ). a P A R A A.Pak A =( x)(p(x) R(x)), A =(P(x) ( x)r(x))[a]. Tedy A =( x)(p(x) R(x)) (P(x) ( x)r(x)). 2. (ϕ ( x)ψ) ( x)(ϕ ψ). a A P A, P A R A.Pak A =(P(x) ( x)r(x))[a], A =( x)(p(x) R(x)). Tedy A =(P(x) ( x)r(x)) ( x)(p(x) R(x)). 3. ( x)(ϕ ψ) (ϕ ( x)ψ). a P A A, R A =.Pak A =( x)(p(x) R(x)) (protožeexistuje b A P A ), A =(P(x) ( x)r(x))[a] (protožeje a P A ). Tedy A =( x)(p(x) R(x)) (P(x) ( x)r(x)).

Výroková a predikátová logika - IX

Výroková a predikátová logika - IX Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2013/2014 1 / 15 Korektnost a úplnost Důsledky Vlastnosti teorií

Více

Výroková a predikátová logika - XI

Výroková a predikátová logika - XI Výroková a predikátová logika - XI Petr Gregor KTIML MFF UK ZS 2014/2015 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XI ZS 2014/2015 1 / 21 Další dokazovací systémy PL Hilbertovský kalkul

Více

Výroková a predikátová logika - IX

Výroková a predikátová logika - IX Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2015/2016 1 / 16 Tablo metoda v PL Důsledky úplnosti Vlastnosti

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 18 Příklad Necht L je jazyk obsahující

Více

Výroková a predikátová logika - VI

Výroková a predikátová logika - VI Výroková a predikátová logika - VI Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VI ZS 2017/2018 1 / 24 Predikátová logika Úvod Predikátová logika Zabývá

Více

Výroková a predikátová logika - X

Výroková a predikátová logika - X Výroková a predikátová logika - X Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - X ZS 2018/2019 1 / 16 Rozšiřování teorií Extenze o definice Rozšiřování

Více

Cvičení ke kursu Klasická logika II

Cvičení ke kursu Klasická logika II Cvičení ke kursu Klasická logika II (12. května 2017) 1. Nechť P a Q jsou unární a R binární predikát. Dokažte, že následující formule jsou logicky platné, ale obrátíme-li (vnější) implikaci, ve všech

Více

Predik atov a logika - pˇredn aˇska () Predik atov a logika - pˇredn aˇska / 16

Predik atov a logika - pˇredn aˇska () Predik atov a logika - pˇredn aˇska / 16 Predikátová logika - přednáška 3 6. 1. 2015 () Predikátová logika - přednáška 3 6. 1. 2015 1 / 16 Věta (o dedukci) Bud L jazyk, T teorie pro L, ϕ L-sentence a ψ L-formule. Pak Věta (o kompaktnosti) T ϕ

Více

Výroková a predikátová logika - VII

Výroková a predikátová logika - VII Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2013/2014 1 / 21 Sémantika PL Teorie Vlastnosti teorií Teorie

Více

ŘEŠENÉ ZÁPOČTOVÉ TESTY Z VÝROKOVÉ A PREDIKÁTOVÉ LOGIKY

ŘEŠENÉ ZÁPOČTOVÉ TESTY Z VÝROKOVÉ A PREDIKÁTOVÉ LOGIKY Poznámka: Tento materiál je souborem řešených zápočtových testů ze zimního semestru 2012/2013 k přednášce Výroková a predikátová logika na MFF UK v Praze. Nejedná se o oficiální materiál k přednášce, nebyl

Více

Výroková a predikátová logika - XII

Výroková a predikátová logika - XII Výroková a predikátová logika - XII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XII ZS 2018/2019 1 / 15 Rezoluční metoda v PL Rezoluční důkaz Obecné

Více

Výroková a predikátová logika - VIII

Výroková a predikátová logika - VIII Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2016/2017 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2016/2017 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule

Více

Predikátová logika. Teoretická informatika Tomáš Foltýnek

Predikátová logika. Teoretická informatika Tomáš Foltýnek Predikátová logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz strana 2 Opakování z minulé přednášky Z čeho se skládá jazyk výrokové logiky? Jaká jsou schémata pro axiomy VL? Formulujte

Více

Výroková a predikátová logika - VIII

Výroková a predikátová logika - VIII Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2017/2018 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule

Více

Výroková a predikátová logika - XIII

Výroková a predikátová logika - XIII Výroková a predikátová logika - XIII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XIII ZS 2013/2014 1 / 13 Úvod Algoritmická (ne)rozhodnutelnost Které

Více

Výroková a predikátová logika - VII

Výroková a predikátová logika - VII Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2018/2019 1 / 15 Platnost (pravdivost) Platnost ve struktuře

Více

Predikátová logika. Z minula: 1. jazyk logiky 1. řádu. 2. term a formule. 3. interpretace jazyka (relační struktura) 4. Tarského definice pravdy

Predikátová logika. Z minula: 1. jazyk logiky 1. řádu. 2. term a formule. 3. interpretace jazyka (relační struktura) 4. Tarského definice pravdy 1 Predikátová logika Z minula: 1. jazyk logiky 1. řádu 2. term a formule 3. interpretace jazyka (relační struktura) 4. Tarského definice pravdy 5. vázané a volné výskyty proměnných ve formuli 6. otevřené

Více

Výroková a predikátová logika Výpisky z cvičení Martina Piláta

Výroková a predikátová logika Výpisky z cvičení Martina Piláta Výroková a predikátová logika Výpisky z cvičení Martina Piláta Jan Štětina 1. prosince 2009 Cviˇcení 29.9.2009 Pojem: Sekvence je konečná posloupnost, značíme ji predikátem seq(x). lh(x) je délka sekvence

Více

Výroková a predikátová logika - IX

Výroková a predikátová logika - IX Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2018/2019 1 / 13 Dokončené tablo Chceme, aby dokončená bezesporná

Více

Výroková a predikátová logika - XII

Výroková a predikátová logika - XII Výroková a predikátová logika - XII Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XII ZS 2015/2016 1 / 15 Algebraické teorie Základní algebraické teorie

Více

Cvičení ke kursu Logika II, část III

Cvičení ke kursu Logika II, část III Cvičení ke kursu Logika II, část III (30. listopadu 2008) Osnova přednášky přednáška je určena studentům, kteří absolvovali úvodní kursy logiky a teorie rekurzívních funkcí. Předpokládané znalosti: syntax

Více

Výroková a predikátová logika - IV

Výroková a predikátová logika - IV Výroková a predikátová logika - IV Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IV ZS 2018/2019 1 / 17 Tablo metoda Tablo Tablo - příklady F (((p q)

Více

1 Predikátová logika. 1.1 Syntax. jaký mohou mít formule význam (sémantiku). 1. Logických symbolů: 2. Speciálních (mimologických) symbolů:

1 Predikátová logika. 1.1 Syntax. jaký mohou mít formule význam (sémantiku). 1. Logických symbolů: 2. Speciálních (mimologických) symbolů: 1 Predikátová logika 1.1 Syntax Podobně jako ve výrokové logice začneme nejprve se syntaxí predikátové logiky, která nám říká, co jsou správně utvořené formule predikátové logiky. V další části tohoto

Více

Základy matematické logiky

Základy matematické logiky OBSAH 1 Základy matematické logiky Obsah 1 Úvod 2 1.1 Předmět matematiky.......................... 2 1.2 Nástin historie.............................. 2 1.3 Axiomatická výstavba matematických teorií.............

Více

Systém přirozené dedukce výrokové logiky

Systém přirozené dedukce výrokové logiky Systém přirozené dedukce výrokové logiky Korektnost, úplnost a bezespornost Šárka Vavrečková Ústav informatiky, FPF SU Opava Poslední aktualizace: 6. října 2008 Věta o korektnosti Věta (O korektnosti Systému

Více

platné nejsou Sokrates je smrtelný. (r) 1/??

platné nejsou Sokrates je smrtelný. (r) 1/?? Predikátová logika plně přejímá výsledky výrokové logiky zabývá se navíc strukturou jednotlivých jednoduchých výroků na základě této analýzy lze odvodit platnost některých výroků, které ve výrokové logice

Více

Výroková a predikátová logika - XIV

Výroková a predikátová logika - XIV Výroková a predikátová logika - XIV Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XIV ZS 2018/2019 1 / 20 Nerozhodnutelnost Úvod Rekurzivní a rekurzivně

Více

Výroková a predikátová logika - III

Výroková a predikátová logika - III Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/2018 1 / 16 2-SAT 2-SAT Výrok je v k-cnf, je-li v CNF a

Více

Hilbertovský axiomatický systém

Hilbertovský axiomatický systém Hilbertovský axiomatický systém Predikátová logika H 1 Šárka Vavrečková Ústav informatiky, FPF SU Opava Poslední aktualizace: 24. října 2008 Specifikace H 1 Jazyk L H1 přejímáme jazyk predikátové logiky

Více

Základy logiky a teorie množin

Základy logiky a teorie množin 1 2 Proč studovat matematickou logiku a teorii množin Základy logiky a teorie množin objasnění vztahu jazyka a významu (syntaxe a sémantiky) precizace klíčových matematických pojmů: axiom, teorie, důkaz,

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.    horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 20 Predikátová logika Motivace Výroková

Více

Základy logiky a teorie množin

Základy logiky a teorie množin 1 Základy logiky a teorie množin Petr Pajas pajas@matfyz.cz URL (slajdy): http://pajas.matfyz.cz/vyuka 2 Proč studovat matematickou logiku a teorii množin objasnění vztahu jazyka a významu (syntaxe a sémantiky)

Více

2.2 Sémantika predikátové logiky

2.2 Sémantika predikátové logiky 14 [101105-1155] 2.2 Sémantika predikátové logiky Nyní se budeme zabývat sémantikou formulí, tj. jejich významem a pravdivostí. 2.2.1 Interpretace jazyka predikátové logiky. Interpretace predikátové logiky

Více

Výroková a predikátová logika - X

Výroková a predikátová logika - X Výroková a predikátová logika - X Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - X ZS 2015/2016 1 / 22 Herbrandova věta Úvod Redukce nesplnitelnosti na

Více

Cvičení Aktivita 1. část 2. část 3. část Ústní Celkem Známka

Cvičení Aktivita 1. část 2. část 3. část Ústní Celkem Známka Celkové hodnocení BI-MLO (nevyplňujte!) Semestr Zkouška Cvičení Aktivita 1. část 2. část 3. část Ústní Celkem Známka BI-MLO Písemná zkouška 9. února 2016 Matematická logika FIT ČVUT v Praze Varianta B

Více

Klasická predikátová logika

Klasická predikátová logika Klasická predikátová logika Matematická logika, LS 2012/13, závěrečná přednáška Libor Běhounek www.cs.cas.cz/behounek/teaching/malog12 PřF OU, 6. 5. 2013 Symboly klasické predikátové logiky Poznámky Motivace

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce

Více

Výroková a predikátová logika - III

Výroková a predikátová logika - III Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2014/2015 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2014/2015 1 / 21 Výroková logika Horn-SAT Horn-SAT Jednotková

Více

Logika Libor Barto. Výroková logika

Logika Libor Barto. Výroková logika Logika Libor Barto Výroková logika Definice.(Jazyk výrokové logiky) Ve výrokové logice používáme tyto symboly: (1) Výrokové proměnné: velká písmena, případně opatřená indexy. (2) Výrokovéspojky:,,&,,,....

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2013/2014 1 / 20 Základní syntax Jazyk Výroková logika je logikou

Více

MATEMATICKÁ LOGIKA. Petr Hájek a Vítězslav Švejdar. Praha, listopad (povrchní typografická revize v červnu 99)

MATEMATICKÁ LOGIKA. Petr Hájek a Vítězslav Švejdar. Praha, listopad (povrchní typografická revize v červnu 99) MATEMATICKÁ LOGIKA Předběžný studijní text Petr Hájek a Vítězslav Švejdar Praha, listopad 1994 (povrchní typografická revize v červnu 99) 2 OBSAH Obsah Úvod 3 1 Výroková a predikátová logika 5 1.1 Formule

Více

Matematická logika. Miroslav Kolařík

Matematická logika. Miroslav Kolařík Matematická logika přednáška pátá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika

Více

1 Výroková logika 1. 2 Predikátová logika 3. 3 Důkazy matematických vět 4. 4 Doporučená literatura 7

1 Výroková logika 1. 2 Predikátová logika 3. 3 Důkazy matematických vět 4. 4 Doporučená literatura 7 1 Výroková logika 1 Výroková logika 1 2 Predikátová logika 3 3 Důkazy matematických vět 4 4 Doporučená literatura 7 Definice 1.1 Výrokem rozumíme každé sdělení, o kterém má smysl uvažovat, zda je, či není

Více

Matematická logika. Miroslav Kolařík

Matematická logika. Miroslav Kolařík Matematická logika přednáška šestá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika

Více

1 Pravdivost formulí v interpretaci a daném ohodnocení

1 Pravdivost formulí v interpretaci a daném ohodnocení 1 Pravdivost formulí v interpretaci a daném ohodnocení Než uvedeme konkrétní příklady, zopakujme si definici interpretace, ohodnocení a pravdivosti. Necht L je nějaký jazyk. Interpretaci U, jazyka L tvoří

Více

Úvod do predikátové logiky. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 1

Úvod do predikátové logiky. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 1 Úvod do predikátové logiky (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/28.0216 2013 1 / 1 Relace Neuspořádaná vs. uspořádaná dvojice {m, n} je neuspořádaná dvojice. m, n je uspořádaná dvojice. (FLÚ AV ČR) Logika:

Více

Predikátová logika. prvního řádu

Predikátová logika. prvního řádu Predikátová logika prvního řádu 2 Predikát Predikát je n-ární relace - vyjadřuje vlastnosti objektů a vztahy mezi objekty - z jednoduchého výroku vznikne vypuštěním alespoň jednoho jména objektu (individua)

Více

Úlohy - predikátová logika (přepis)

Úlohy - predikátová logika (přepis) Úlohy - predikátová logika (přepis) Martin Všetička 7. ledna 2009, 17:12 Zásadní informace pro následné čtení příkladů Tvrzení: Pravidlo tautologie (PTT) Pravidlo o rozboru případů (PR) Pravidlo konjunkce

Více

Úvod do teoretické informatiky(2017/2018) cvičení 6 1

Úvod do teoretické informatiky(2017/2018) cvičení 6 1 Úvod do teoretické informatiky(2017/2018) cvičení 6 1 Cvičení 6 Příklad 1: Pro každou z následujících sekvencí symbolů rozhodněte, zda se jedná o a) term, b) formuli predikátové logiky(používejte běžné

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou

Více

Materiály ke kurzu MA007

Materiály ke kurzu MA007 Výroková Matematická Materiály ke kurzu MA007 Poslední modifikace: říjen 2016 http://www.fi.muni.cz/usr/kucera/teaching.html 2. věta o říjen 2016 1/159 Logika. Výroková 2. věta o Bůh Lidské uvažování Logika

Více

Převyprávění Gödelova důkazu nutné existence Boha

Převyprávění Gödelova důkazu nutné existence Boha Převyprávění Gödelova důkazu nutné existence Boha Technické podrobnosti Důkaz: Konečná posloupnost výrokůkorektně utvořených formulí nějakého logického kalkulu), z nichž každý jelogickým) axiomem, postulátemteorie),

Více

ZÁKLADY LOGIKY A METODOLOGIE

ZÁKLADY LOGIKY A METODOLOGIE ZÁKLADY LOGIKY A METODOLOGIE Metodický list č. 1 Téma: Předmět logiky a metodologie, základy logiky a formalizace. Toto téma lze rozdělit do tří základních tématických oblastí: 1) Předmět logiky a metodologie

Více

Logika. 6. Axiomatický systém výrokové logiky

Logika. 6. Axiomatický systém výrokové logiky Logika 6. Axiomatický systém výrokové logiky RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216,

Více

Logika. Materiály ke kurzu MA007. Poslední modifikace: prosinec zkoumá způsob vyvozování. Lidské uvažování

Logika. Materiály ke kurzu MA007. Poslední modifikace: prosinec zkoumá způsob vyvozování. Lidské uvažování Výroková úplnosti Materiály ke kurzu MA007 Poslední modifikace: prosinec 2018 http://www.fi.muni.cz/usr/kucera/teaching.html 2. věta o dokazování prosinec 2018 1/171 Logika. Výroková úplnosti 2. věta o

Více

Predikátová(a výroková) logika

Predikátová(a výroková) logika Predikátová(a výroková) logika slidy k přednášce Logika a teorie množin(nump016, NMUE023) ZS 2012/13 Petr Glivický petrglivicky@gmail.com Katedra teoretické informatiky a matematické logiky Univerzita

Více

Doporučené příklady k Teorii množin, LS 2018/2019

Doporučené příklady k Teorii množin, LS 2018/2019 Doporučené příklady k Teorii množin, LS 2018/2019 1. přednáška, 21. 2. 2019 1. Napište množina x je prázdná (přesněji množina x nemá žádné prvky ) formulí základního jazyka teorie množin. 2. Dokažte ((x

Více

Logika a logické programování

Logika a logické programování Logika a logické programování témata ke zkoušce Poslední aktualizace: 16. prosince 2009 Zkouška je písemná, skládá se obvykle ze sedmi otázek (může být více nebo méně, podle náročnosti otázek), z toho

Více

teorie logických spojek chápaných jako pravdivostní funkce

teorie logických spojek chápaných jako pravdivostní funkce Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových

Více

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

10. Techniky formální verifikace a validace

10. Techniky formální verifikace a validace Fakulta informačních technologií MI-NFA, zimní semestr 2011/2012 Jan Schmidt EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI 10. Techniky formální verifikace a validace 1 Simulace není

Více

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy Formální systémy (výrokové) logiky postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy cíl: získat formální teorii jako souhrn dokazatelných

Více

Petr Glivický. slidy k přednášce Logika a teorie množin ZS 2016/17. Ke stažení na

Petr Glivický. slidy k přednášce Logika a teorie množin ZS 2016/17. Ke stažení na slidy k přednášce Logika a teorie množin ZS 2016/17 petrglivicky@gmail.com Ke stažení na www.glivicky.cz Doporučená literatura Elektronická: tyto slidy a další materiály k přednášce dostupné na mém webu

Více

IA008 Computational logic Version: 6. května Formule je v konjunktivní normální formě (CNF), pokud má tvar α 1... α n,

IA008 Computational logic Version: 6. května Formule je v konjunktivní normální formě (CNF), pokud má tvar α 1... α n, 1 Převody do normálních forem Příklad 1.1: Vyjádřete následující formule v DNF pomocí pravdivostní tabulky a pomocí převodu logických spojek. a) (A B) C b) (A B) C c) (A B) (C D) Formule je v disjunktivní

Více

Logika, Gödel, neúplnost

Logika, Gödel, neúplnost Logika, Gödel, neúplnost Vítězslav Švejdar Karlova Univerzita v Praze, http://www.cuni.cz/~svejdar/ Český klub skeptiků, 23. únor 2018 Vítězslav Švejdar, FF UK Praha Logika, Gödel, neúplnost 1/13 Obsah

Více

Výroková a predikátová logika - V

Výroková a predikátová logika - V Výroková a predikátová logika - V Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - V ZS 2015/2016 1 / 21 Dokazovací systémy VL Hilbertovský kalkul Hilbertovský

Více

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu.

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu. 6 Kapitola 2 Příklady z predikátové logiky 2.1 Formule predikátové logiky 2.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolu uvedených

Více

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α 1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny

Více

Rovnost lze vyjádřit jako predikát, např. můžeme zvolit, že P(x, y) reprezentujetvrzení xjerovnoy.

Rovnost lze vyjádřit jako predikát, např. můžeme zvolit, že P(x, y) reprezentujetvrzení xjerovnoy. Rovnost Jedním z nejdůležitějších druhů relací je rovnost(identita). Prvkyxayjsousirovny,cožzapisujeme x =y, jestližesejednáojedenatentýžprvek. Rovnost lze vyjádřit jako predikát, např. můžeme zvolit,

Více

Predikátová logika dokončení

Predikátová logika dokončení Predikátová logika dokončení Jiří Velebil: X01DML 1. října 2010: Predikátová logika dokončení 1/18 Syntaktická analýza Jako ve výrokové logice (syntaktické stromy). Každý list úspěšného stromu je obsazen

Více

Základy logiky a teorie množin

Základy logiky a teorie množin Pracovní text k přednášce Logika a teorie množin (I/2007) 1 1 Struktura přednášky Matematická logika 2 Výroková logika Základy logiky a teorie množin Petr Pajas pajas@matfyz.cz Predikátová logika 1. řádu

Více

6. Logika a logické systémy. Základy logiky. Lucie Koloušková, Václav Matoušek / KIV. Umělá inteligence a rozpoznávání, LS

6. Logika a logické systémy. Základy logiky. Lucie Koloušková, Václav Matoušek / KIV. Umělá inteligence a rozpoznávání, LS Základy logiky Umělá inteligence a rozpoznávání, LS 2012 6-1 Logika je naukou, která se zabývá studiem lidského uvažování. Mezi základní úlohy logiky patří nalézání metod správného usuzování, tedy postupů,

Více

Predikátová logika [Predicate logic]

Predikátová logika [Predicate logic] Predikátová logika [Predicate logic] Přesněji predikátová logika prvého řádu. Formalizuje výroky o vlastnostech předmětů (entit) a vztazích mezi předměty, které patří do dané předmětné oblasti univerza.

Více

Úvod do výrokové a predikátové logiky

Úvod do výrokové a predikátové logiky Úvod do výrokové a predikátové logiky Eva Ondráčková Na této přednášce se seznámíte se základy výrokové a predikátové logiky. Zjistíte, že podstatou logiky není vyplňování pravdivostních tabulek ani negování

Více

Další (neklasické) logiky. Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20

Další (neklasické) logiky. Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20 Predikátová logika Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20 Jazyk predikátové logiky Má dvě sorty: 1 Termy: to jsou objekty, o jejichž vlastnostech chceme hovořit. Mohou být proměnné. 2 Formule:

Více

4.2 Syntaxe predikátové logiky

4.2 Syntaxe predikátové logiky 36 [070507-1501 ] 4.2 Syntaxe predikátové logiky V tomto oddíle zavedeme syntaxi predikátové logiky, tj. uvedeme pravidla, podle nichž se tvoří syntakticky správné formule predikátové logiky. Význam a

Více

Cvičení ke kursu Vyčíslitelnost

Cvičení ke kursu Vyčíslitelnost Cvičení ke kursu Vyčíslitelnost (23. prosince 2017) 1. Odvoďte funkci [x, y, z] x y z ze základních funkcí pomocí operace. 2. Dokažte, že relace nesoudělnosti je 0. Dokažte, že grafy funkcí Mod a Div jsou

Více

Výroková logika. Teoretická informatika Tomáš Foltýnek

Výroková logika. Teoretická informatika Tomáš Foltýnek Výroková logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Co je to formalismus a co je jeho cílem? Formulujte Russelův paradox

Více

Základy logiky Logika a logické systémy. Umělá inteligence a rozpoznávání, LS

Základy logiky Logika a logické systémy. Umělá inteligence a rozpoznávání, LS Základy logiky 22. 4. 2015 Umělá inteligence a rozpoznávání, LS 2015 6-1 Logika je naukou, která se zabývá studiem lidského uvažování. Mezi základní úlohy logiky patří nalézání metod správného usuzování,

Více

Logické programy Deklarativní interpretace

Logické programy Deklarativní interpretace Logické programy Deklarativní interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 7 1 Algebry. (Interpretace termů) Algebra J pro jazyk termů L obsahuje Neprázdnou

Více

Materiály ke kurzu MA007

Materiály ke kurzu MA007 Výroková Matematická Materiály ke kurzu MA007 Poslední modifikace: 29. září 2009 http://www.fi.muni.cz/usr/kucera/teaching.html 2. věta o 29. září 2009 1/147 Logika. Výroková 2. věta o Bůh Lidské uvažování

Více

Obsah Předmluva Rekapitulace základních pojmů logiky a výrokové logiky Uvedení do predikátové logiky...17

Obsah Předmluva Rekapitulace základních pojmů logiky a výrokové logiky Uvedení do predikátové logiky...17 Obsah Předmluva...3 0. Rekapitulace základních pojmů logiky a výrokové logiky...11 0.1 Logika jako věda o vyplývání... 11 1. Uvedení do predikátové logiky...17 1.1 Základní terminologie... 17 1.2 Základní

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška pátá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní

Více

Rezoluční kalkulus pro logiku prvního řádu

Rezoluční kalkulus pro logiku prvního řádu AD4M33AU Automatické uvažování Rezoluční kalkulus pro logiku prvního řádu Petr Pudlák Logika prvního řádu (Někdy nepřesně nazývaná predikátová logika.) Výhody Vyšší vyjadřovací schopnost jazyka, V podstatě

Více

Výroková logika dokazatelnost

Výroková logika dokazatelnost Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových

Více

2.5 Rezoluční metoda v predikátové logice

2.5 Rezoluční metoda v predikátové logice 2.5. Rezoluční metoda v predikátové logice [101104-1520] 19 2.5 Rezoluční metoda v predikátové logice Rezoluční metoda v predikátové logice je obdobná stejnojmenné metodě ve výrokové logice. Ovšem vzhledem

Více

LOGIKA A TEORIE MNOŽIN

LOGIKA A TEORIE MNOŽIN Poznámka: Tento text vzniká jako materiál k přednášce Logika a teorie množin na MFFUKvPraze.Jelikožjdeotextvefázivzniku,obsahujejistěřadunedostatků, které budou průběžně odstraňovány, stejně jako se text

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 11 METODY VERIFIKACE SYSTÉMŮ NA ČIPU Hana Kubátov vá doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta 1 informačních

Více

Úvod do logiky (VL): 13. Axiomatické systémy VL a pojem důkazu

Úvod do logiky (VL): 13. Axiomatické systémy VL a pojem důkazu Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 13. Axiomatické systémy VL a pojem důkazu

Více

Matematická logika. Miroslav Kolařík

Matematická logika. Miroslav Kolařík Matematická logika přednáška třetí Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika

Více

Sémantika predikátové logiky

Sémantika predikátové logiky Sémantika predikátové logiky pro analýzu sémantiky potřebujeme nejprve specifikaci jazyka (doména, konstanty, funkční a predikátové symboly) příklad: formální jazyk s jediným binárním predikátovým symbolem

Více

verze 29/9/09 textu o logice, aritmetice a M. Bizzarrimu.

verze 29/9/09 textu o logice, aritmetice a M. Bizzarrimu. 1 verze 29/9/09 Toto je prozatím definitivní verze provizorního textu o logice, aritmetice a množinách. věnováno Laskavým čtenářům a čtenářkám, kteří navštěvovali tyto přednášky. poděkování Za upozornění

Více

Okruh č.3: Sémantický výklad predikátové logiky

Okruh č.3: Sémantický výklad predikátové logiky Okruh č.3: Sémantický výklad predikátové logiky Predikátová logika 1.řádu formalizuje úsudky o vlastnostech předmětů a vztazích mezi předměty pevně dané předmětné oblasti (univerza). Nebudeme se zabývat

Více

Úvod k přednášce Pokročilá matematická logika.

Úvod k přednášce Pokročilá matematická logika. 1 Úvod k přednášce Pokročilá matematická logika. I Matematická logika se zabývá všeobecnou problematiku platnosti tvrzení tak, že koncipuje logiky specifikací bazální syntaxe a sémantiky, formuluje fundamentální

Více

Skolemizace. x(x + f(x) = 0). Interpretace f unární funkce, která pro daný

Skolemizace. x(x + f(x) = 0). Interpretace f unární funkce, která pro daný Skolemizace převod formulí na formule bez existenčních kvantifikátorů v jazyce, který je rozšířen o tzv. Skolemovy funkce; zachovává splnitelnost idea převodu: formuli x 1... x n yp (x 1,..., x n, y) transformujeme

Více

Predikátová logika: Axiomatizace, sémantické stromy, identita. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13

Predikátová logika: Axiomatizace, sémantické stromy, identita. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13 Predikátová logika: Axiomatizace, sémantické stromy, identita (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/28.0216 2013 1 / 13 Axiomatizace predikátové logiky Axiomatizace predikátové logiky Definice Hilbertovský

Více

Výroková a predikátová logika - I

Výroková a predikátová logika - I Výroková a predikátová logika - I Petr Gregor KTIML MFF UK ZS 2019/2020 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - I ZS 2019/2020 1 / 19 K čemu je logika? Pro matematiky: matematika o matematice.

Více

Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce

Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Marie Duží marie.duzi@vsb.cz 1 Úvod do teoretické informatiky (logika) Naivní teorie množin Co je to množina? Množina je soubor prvků

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Sémantická věta o dedukci Věta Pro

Více

Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu

Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu VÝROKOVÁ LOGIKA Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. Co je výrok nedefinujejme, pouze si řekneme, co si pod

Více