Predikátová logika: Axiomatizace, sémantické stromy, identita. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
|
|
- Dominik Beránek
- před 6 lety
- Počet zobrazení:
Transkript
1 Predikátová logika: Axiomatizace, sémantické stromy, identita (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
2 Axiomatizace predikátové logiky Axiomatizace predikátové logiky Definice Hilbertovský kalkul pro klasickou predikátovou logiku sestává ze čtyř axiomatických schémat H1 ϑ (χ ϑ), H2 (ϑ (χ γ)) ((ϑ χ) (ϑ γ)), H3 ( χ ϑ) (ϑ χ), H4 xϑ ϑ x t, plus dvou odvozovacích pravidel: mp ϑ, ϑ χ/χ. gen ϑ χ/ϑ xχ, je-li term t substituovatelný za x v ϑ nevyskytuje-li se x volně v ϑ (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
3 Axiomatizace predikátové logiky Úplnost a korektnost Hilbertovského kalkulu Věta o korektnosti: Jestliže ψ je odvoditelná z ϕ 1,..., ϕ n, pak ϕ 1,..., ϕ n = ψ. Věta o úplnosti: Jestliže ϕ 1,..., ϕ n = ψ, pak ψ je odvoditelná z ϕ 1,..., ϕ n. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
4 Axiomatizace predikátové logiky Úplnost a korektnost Hilbertovského kalkulu Věta o korektnosti: Jestliže ψ je odvoditelná z ϕ 1,..., ϕ n, pak ϕ 1,..., ϕ n = ψ. Věta o úplnosti: Jestliže ϕ 1,..., ϕ n = ψ, pak ψ je odvoditelná z ϕ 1,..., ϕ n. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
5 Axiomatizace predikátové logiky Úplnost a korektnost Hilbertovského kalkulu Věta o korektnosti: Jestliže ψ je odvoditelná z ϕ 1,..., ϕ n, pak ϕ 1,..., ϕ n = ψ. Věta o úplnosti: Jestliže ϕ 1,..., ϕ n = ψ, pak ψ je odvoditelná z ϕ 1,..., ϕ n. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
6 Metoda sémantických stromů Metoda sémantických stromů Metoda sémantických stromů slouží k řešení sémantických otázek predikátové logiky. Získáme ji tak, že rozšíříme metodu sémantických stromů výrokové logiky o pravidla pro kvantifikátory. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
7 Metoda sémantických stromů Negativní pravidla pro kvantifikátory yϕ y ϕ yϕ y ϕ (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
8 Metoda sémantických stromů Pozitivní pravidlo pro obecný kvantifikátor yϕ ϕ y c kde c je nějaké jméno, které se vyskytuje na té větvi, na které pravidlo aplikujeme. Pouze v případě, že se na takové větvi doposud žádné jméno nevyskytlo, představuje c nějaké nově zavedené jméno. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
9 Metoda sémantických stromů Pozitivní pravidlo pro existenční kvantifikátor yϕ ϕ y c kde c je nějaké nově zavedené jméno, které se na větvi doposud nevyskytlo. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
10 Metoda sémantických stromů Úplnost a korektnost metody sémantických stromů (formulovaná pro pojem vyplývání) Věta o korektnosti: Jestliže se úplně rozvinutý strom pro formule ϕ 1,..., ϕ n, ψ uzavře na všech větvích, pak ϕ 1,..., ϕ n = ψ. Věta o úplnosti: Jestliže ϕ 1,..., ϕ n = ψ, pak se úplně rozvinutý strom pro formule ϕ 1,..., ϕ n, ψ uzavře na všech větvích. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
11 Metoda sémantických stromů Úplnost a korektnost metody sémantických stromů (formulovaná pro pojem vyplývání) Věta o korektnosti: Jestliže se úplně rozvinutý strom pro formule ϕ 1,..., ϕ n, ψ uzavře na všech větvích, pak ϕ 1,..., ϕ n = ψ. Věta o úplnosti: Jestliže ϕ 1,..., ϕ n = ψ, pak se úplně rozvinutý strom pro formule ϕ 1,..., ϕ n, ψ uzavře na všech větvích. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
12 Metoda sémantických stromů Úplnost a korektnost metody sémantických stromů (formulovaná pro pojem vyplývání) Věta o korektnosti: Jestliže se úplně rozvinutý strom pro formule ϕ 1,..., ϕ n, ψ uzavře na všech větvích, pak ϕ 1,..., ϕ n = ψ. Věta o úplnosti: Jestliže ϕ 1,..., ϕ n = ψ, pak se úplně rozvinutý strom pro formule ϕ 1,..., ϕ n, ψ uzavře na všech větvích. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
13 Metoda sémantických stromů Rozhodnutelnost Výroková logika je rozhodnutelná. Existuje algoritmus pro řešení sémantických problémů. Predikátová logika je nerozhodnutelná. Neexistuje algoritmus pro řešení sémantických problémů. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
14 Metoda sémantických stromů Rozhodnutelnost Výroková logika je rozhodnutelná. Existuje algoritmus pro řešení sémantických problémů. Predikátová logika je nerozhodnutelná. Neexistuje algoritmus pro řešení sémantických problémů. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
15 Metoda sémantických stromů Rozhodnutelnost Výroková logika je rozhodnutelná. Existuje algoritmus pro řešení sémantických problémů. Predikátová logika je nerozhodnutelná. Neexistuje algoritmus pro řešení sémantických problémů. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
16 Identita v predikátové logice Identita jako predikát Stanovíme-li, že = je logický (nikoli mimologický) symbol, musíme fixovat sémantiku tohoto symbolu následujícím způsobem: IV = t 1 = t 2 právě tehdy, když v interpretaci I a valuaci V je hodnota termu t 1 identická s hodnotou termu t 2. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
17 Identita v predikátové logice Identita jako predikát Stanovíme-li, že = je logický (nikoli mimologický) symbol, musíme fixovat sémantiku tohoto symbolu následujícím způsobem: IV = t 1 = t 2 právě tehdy, když v interpretaci I a valuaci V je hodnota termu t 1 identická s hodnotou termu t 2. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
18 Identita v predikátové logice Příklady Nejhlubší jezero na světě je Bajkal. Existuje nanejvýš jeden bůh. Mars má (právě) dva měsíce. Současný král Francie je holohlavý. Ke každým dvěma různým bodům existuje právě jedna přímka, která je obsahuje. Ke každým třem bodům, které neleží na jedné přímce, existuje právě jedna rovina, která je obsahuje. Pokud mají dvě roviny nějaký společný bod, pak mají společný ještě nějaký jiný bod. Existují nejméně čtyři různé body, které neleží v jedné rovině. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
19 Identita v predikátové logice Příklady Nejhlubší jezero na světě je Bajkal. Existuje nanejvýš jeden bůh. Mars má (právě) dva měsíce. Současný král Francie je holohlavý. Ke každým dvěma různým bodům existuje právě jedna přímka, která je obsahuje. Ke každým třem bodům, které neleží na jedné přímce, existuje právě jedna rovina, která je obsahuje. Pokud mají dvě roviny nějaký společný bod, pak mají společný ještě nějaký jiný bod. Existují nejméně čtyři různé body, které neleží v jedné rovině. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
20 Identita v predikátové logice Příklady Nejhlubší jezero na světě je Bajkal. Existuje nanejvýš jeden bůh. Mars má (právě) dva měsíce. Současný král Francie je holohlavý. Ke každým dvěma různým bodům existuje právě jedna přímka, která je obsahuje. Ke každým třem bodům, které neleží na jedné přímce, existuje právě jedna rovina, která je obsahuje. Pokud mají dvě roviny nějaký společný bod, pak mají společný ještě nějaký jiný bod. Existují nejméně čtyři různé body, které neleží v jedné rovině. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
21 Identita v predikátové logice Příklady Nejhlubší jezero na světě je Bajkal. Existuje nanejvýš jeden bůh. Mars má (právě) dva měsíce. Současný král Francie je holohlavý. Ke každým dvěma různým bodům existuje právě jedna přímka, která je obsahuje. Ke každým třem bodům, které neleží na jedné přímce, existuje právě jedna rovina, která je obsahuje. Pokud mají dvě roviny nějaký společný bod, pak mají společný ještě nějaký jiný bod. Existují nejméně čtyři různé body, které neleží v jedné rovině. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
22 Identita v predikátové logice Příklady Nejhlubší jezero na světě je Bajkal. Existuje nanejvýš jeden bůh. Mars má (právě) dva měsíce. Současný král Francie je holohlavý. Ke každým dvěma různým bodům existuje právě jedna přímka, která je obsahuje. Ke každým třem bodům, které neleží na jedné přímce, existuje právě jedna rovina, která je obsahuje. Pokud mají dvě roviny nějaký společný bod, pak mají společný ještě nějaký jiný bod. Existují nejméně čtyři různé body, které neleží v jedné rovině. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
23 Identita v predikátové logice Příklady Nejhlubší jezero na světě je Bajkal. Existuje nanejvýš jeden bůh. Mars má (právě) dva měsíce. Současný král Francie je holohlavý. Ke každým dvěma různým bodům existuje právě jedna přímka, která je obsahuje. Ke každým třem bodům, které neleží na jedné přímce, existuje právě jedna rovina, která je obsahuje. Pokud mají dvě roviny nějaký společný bod, pak mají společný ještě nějaký jiný bod. Existují nejméně čtyři různé body, které neleží v jedné rovině. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
24 Identita v predikátové logice Příklady Nejhlubší jezero na světě je Bajkal. Existuje nanejvýš jeden bůh. Mars má (právě) dva měsíce. Současný král Francie je holohlavý. Ke každým dvěma různým bodům existuje právě jedna přímka, která je obsahuje. Ke každým třem bodům, které neleží na jedné přímce, existuje právě jedna rovina, která je obsahuje. Pokud mají dvě roviny nějaký společný bod, pak mají společný ještě nějaký jiný bod. Existují nejméně čtyři různé body, které neleží v jedné rovině. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
25 Identita v predikátové logice Příklady Nejhlubší jezero na světě je Bajkal. Existuje nanejvýš jeden bůh. Mars má (právě) dva měsíce. Současný král Francie je holohlavý. Ke každým dvěma různým bodům existuje právě jedna přímka, která je obsahuje. Ke každým třem bodům, které neleží na jedné přímce, existuje právě jedna rovina, která je obsahuje. Pokud mají dvě roviny nějaký společný bod, pak mají společný ještě nějaký jiný bod. Existují nejméně čtyři různé body, které neleží v jedné rovině. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
26 Identita v predikátové logice Axiomy identity K axiomatickému systému pro predikátovou logiku přidáme následující axiomy: R1 x(x = x) R2 x y(x = y y = x) R3 x y z((x = y y = z) x = z) plus schéma, které které pro každé n a pro každý n-místný predikát Q obsahuje formuli PE x 1... x n y 1... y n ((x 1 = y 1... x n = y n ) (Q(x 1,..., x n ) Q(y 1,..., y n ))) (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
27 Identita v predikátové logice Hilbertovský kalkul pro predikátovou logiku obohacený o axiomy identity je korektní a úplný vůči sémantice predikátové logiky s fixovanou interpretací rovnosti. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
Výroková a predikátová logika - IX
Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2013/2014 1 / 15 Korektnost a úplnost Důsledky Vlastnosti teorií
Obsah Předmluva Rekapitulace základních pojmů logiky a výrokové logiky Uvedení do predikátové logiky...17
Obsah Předmluva...3 0. Rekapitulace základních pojmů logiky a výrokové logiky...11 0.1 Logika jako věda o vyplývání... 11 1. Uvedení do predikátové logiky...17 1.1 Základní terminologie... 17 1.2 Základní
Predikátová logika. Z minula: 1. jazyk logiky 1. řádu. 2. term a formule. 3. interpretace jazyka (relační struktura) 4. Tarského definice pravdy
1 Predikátová logika Z minula: 1. jazyk logiky 1. řádu 2. term a formule 3. interpretace jazyka (relační struktura) 4. Tarského definice pravdy 5. vázané a volné výskyty proměnných ve formuli 6. otevřené
Výroková a predikátová logika - XII
Výroková a predikátová logika - XII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XII ZS 2018/2019 1 / 15 Rezoluční metoda v PL Rezoluční důkaz Obecné
Úvod do predikátové logiky. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 1
Úvod do predikátové logiky (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/28.0216 2013 1 / 1 Relace Neuspořádaná vs. uspořádaná dvojice {m, n} je neuspořádaná dvojice. m, n je uspořádaná dvojice. (FLÚ AV ČR) Logika:
Výroková a predikátová logika - XI
Výroková a predikátová logika - XI Petr Gregor KTIML MFF UK ZS 2014/2015 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XI ZS 2014/2015 1 / 21 Další dokazovací systémy PL Hilbertovský kalkul
Predik atov a logika - pˇredn aˇska () Predik atov a logika - pˇredn aˇska / 16
Predikátová logika - přednáška 3 6. 1. 2015 () Predikátová logika - přednáška 3 6. 1. 2015 1 / 16 Věta (o dedukci) Bud L jazyk, T teorie pro L, ϕ L-sentence a ψ L-formule. Pak Věta (o kompaktnosti) T ϕ
Matematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 18 Příklad Necht L je jazyk obsahující
Hilbertovský axiomatický systém
Hilbertovský axiomatický systém Predikátová logika H 1 Šárka Vavrečková Ústav informatiky, FPF SU Opava Poslední aktualizace: 24. října 2008 Specifikace H 1 Jazyk L H1 přejímáme jazyk predikátové logiky
postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy
Formální systémy (výrokové) logiky postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy cíl: získat formální teorii jako souhrn dokazatelných
Logika. 6. Axiomatický systém výrokové logiky
Logika 6. Axiomatický systém výrokové logiky RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216,
Výroková a predikátová logika - VIII
Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2017/2018 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule
Výroková a predikátová logika - V
Výroková a predikátová logika - V Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - V ZS 2015/2016 1 / 21 Dokazovací systémy VL Hilbertovský kalkul Hilbertovský
Matematická logika. Lekce 1: Motivace a seznámení s klasickou výrokovou logikou. Petr Cintula. Ústav informatiky Akademie věd České republiky
Matematická logika Lekce 1: Motivace a seznámení s klasickou výrokovou logikou Petr Cintula Ústav informatiky Akademie věd České republiky www.cs.cas.cz/cintula/mal Petr Cintula (ÚI AV ČR) Matematická
Výroková a predikátová logika - VIII
Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2016/2017 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2016/2017 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule
Výroková a predikátová logika - III
Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2014/2015 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2014/2015 1 / 21 Výroková logika Horn-SAT Horn-SAT Jednotková
Výroková a predikátová logika - VI
Výroková a predikátová logika - VI Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VI ZS 2017/2018 1 / 24 Predikátová logika Úvod Predikátová logika Zabývá
Rezoluční kalkulus pro logiku prvního řádu
AD4M33AU Automatické uvažování Rezoluční kalkulus pro logiku prvního řádu Petr Pudlák Logika prvního řádu (Někdy nepřesně nazývaná predikátová logika.) Výhody Vyšší vyjadřovací schopnost jazyka, V podstatě
Sémantika predikátové logiky
Sémantika predikátové logiky pro analýzu sémantiky potřebujeme nejprve specifikaci jazyka (doména, konstanty, funkční a predikátové symboly) příklad: formální jazyk s jediným binárním predikátovým symbolem
Sylogistika. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 16
(FLÚ AV ČR) Logika: CZ.1.07/2.2.00/28.0216 2013 1 / 16 Výstavba logické teorie Sylogistika 1) Syntax základní symboly (logické, mimologické) gramatická pravidla (pojem formule) 2) Sémantika pojem interpretace
Predikátová logika. Teoretická informatika Tomáš Foltýnek
Predikátová logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz strana 2 Opakování z minulé přednášky Z čeho se skládá jazyk výrokové logiky? Jaká jsou schémata pro axiomy VL? Formulujte
Cvičení ke kursu Logika II, část III
Cvičení ke kursu Logika II, část III (30. listopadu 2008) Osnova přednášky přednáška je určena studentům, kteří absolvovali úvodní kursy logiky a teorie rekurzívních funkcí. Předpokládané znalosti: syntax
Výroková a predikátová logika - IX
Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2015/2016 1 / 16 Tablo metoda v PL Důsledky úplnosti Vlastnosti
Výroková a predikátová logika - IX
Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2018/2019 1 / 13 Dokončené tablo Chceme, aby dokončená bezesporná
Výroková a predikátová logika - III
Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/2018 1 / 16 2-SAT 2-SAT Výrok je v k-cnf, je-li v CNF a
Matematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 20 Predikátová logika Motivace Výroková
Logika a logické programování
Logika a logické programování témata ke zkoušce Poslední aktualizace: 16. prosince 2009 Zkouška je písemná, skládá se obvykle ze sedmi otázek (může být více nebo méně, podle náročnosti otázek), z toho
Výroková a predikátová logika - VII
Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2013/2014 1 / 21 Sémantika PL Teorie Vlastnosti teorií Teorie
Výroková a predikátová logika - XIII
Výroková a predikátová logika - XIII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XIII ZS 2013/2014 1 / 13 Úvod Algoritmická (ne)rozhodnutelnost Které
Cvičení ke kursu Klasická logika II
Cvičení ke kursu Klasická logika II (12. května 2017) 1. Nechť P a Q jsou unární a R binární predikát. Dokažte, že následující formule jsou logicky platné, ale obrátíme-li (vnější) implikaci, ve všech
Matematická logika. Miroslav Kolařík
Matematická logika přednáška třetí Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
10. Techniky formální verifikace a validace
Fakulta informačních technologií MI-NFA, zimní semestr 2011/2012 Jan Schmidt EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI 10. Techniky formální verifikace a validace 1 Simulace není
MATEMATICKÁ LOGIKA. Petr Hájek a Vítězslav Švejdar. Praha, listopad (povrchní typografická revize v červnu 99)
MATEMATICKÁ LOGIKA Předběžný studijní text Petr Hájek a Vítězslav Švejdar Praha, listopad 1994 (povrchní typografická revize v červnu 99) 2 OBSAH Obsah Úvod 3 1 Výroková a predikátová logika 5 1.1 Formule
Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz
Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz Jednoduché úsudky, kde VL nestačí Všechny opice mají rády banány Judy je opice Judy má ráda banány Z hlediska VL
Matematická logika. Miroslav Kolařík
Matematická logika přednáška šestá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
Cvičení Aktivita 1. část 2. část 3. část Ústní Celkem Známka
Celkové hodnocení BI-MLO (nevyplňujte!) Semestr Zkouška Cvičení Aktivita 1. část 2. část 3. část Ústní Celkem Známka BI-MLO Písemná zkouška 9. února 2016 Matematická logika FIT ČVUT v Praze Varianta B
Další (neklasické) logiky. Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20
Predikátová logika Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20 Jazyk predikátové logiky Má dvě sorty: 1 Termy: to jsou objekty, o jejichž vlastnostech chceme hovořit. Mohou být proměnné. 2 Formule:
Logický důsledek. Petr Kuchyňka (7765@mail.muni.cz)
Logický důsledek Petr Kuchyňka (7765@mail.muni.cz) Úvod P 1 Logický důsledek je hlavním předmětem zájmu logiky. Je to relace mezi premisami a závěry logicky platných úsudků: v logicky platném úsudku závěr
Výroková a predikátová logika - X
Výroková a predikátová logika - X Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - X ZS 2018/2019 1 / 16 Rozšiřování teorií Extenze o definice Rozšiřování
Výroková a predikátová logika - X
Výroková a predikátová logika - X Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - X ZS 2015/2016 1 / 22 Herbrandova věta Úvod Redukce nesplnitelnosti na
Predikátová logika dokončení
Predikátová logika dokončení Jiří Velebil: X01DML 1. října 2010: Predikátová logika dokončení 1/18 Syntaktická analýza Jako ve výrokové logice (syntaktické stromy). Každý list úspěšného stromu je obsazen
Rezoluční kalkulus pro výrokovou logiku
AD4M33AU Automatické uvažování Rezoluční kalkulus pro výrokovou logiku Petr Pudlák Výroková logika Výhody Jednoduchý jazyk. Rozhodnutelnost dokazatelnosti i nedokazatelnosti. Rychlejší algoritmy. Nevýhody
Výroková a predikátová logika - I
Výroková a predikátová logika - I Petr Gregor KTIML MFF UK ZS 2019/2020 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - I ZS 2019/2020 1 / 19 K čemu je logika? Pro matematiky: matematika o matematice.
Výroková a predikátová logika - IV
Výroková a predikátová logika - IV Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IV ZS 2018/2019 1 / 17 Tablo metoda Tablo Tablo - příklady F (((p q)
Úvod do logiky (VL): 13. Axiomatické systémy VL a pojem důkazu
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 13. Axiomatické systémy VL a pojem důkazu
Logika, Gödel, neúplnost
Logika, Gödel, neúplnost Vítězslav Švejdar Karlova Univerzita v Praze, http://www.cuni.cz/~svejdar/ Český klub skeptiků, 23. únor 2018 Vítězslav Švejdar, FF UK Praha Logika, Gödel, neúplnost 1/13 Obsah
Logika Libor Barto. Výroková logika
Logika Libor Barto Výroková logika Definice.(Jazyk výrokové logiky) Ve výrokové logice používáme tyto symboly: (1) Výrokové proměnné: velká písmena, případně opatřená indexy. (2) Výrokovéspojky:,,&,,,....
2.5 Rezoluční metoda v predikátové logice
2.5. Rezoluční metoda v predikátové logice [101104-1520] 19 2.5 Rezoluční metoda v predikátové logice Rezoluční metoda v predikátové logice je obdobná stejnojmenné metodě ve výrokové logice. Ovšem vzhledem
Převyprávění Gödelova důkazu nutné existence Boha
Převyprávění Gödelova důkazu nutné existence Boha Technické podrobnosti Důkaz: Konečná posloupnost výrokůkorektně utvořených formulí nějakého logického kalkulu), z nichž každý jelogickým) axiomem, postulátemteorie),
Systém přirozené dedukce výrokové logiky
Systém přirozené dedukce výrokové logiky Korektnost, úplnost a bezespornost Šárka Vavrečková Ústav informatiky, FPF SU Opava Poslední aktualizace: 6. října 2008 Věta o korektnosti Věta (O korektnosti Systému
platné nejsou Sokrates je smrtelný. (r) 1/??
Predikátová logika plně přejímá výsledky výrokové logiky zabývá se navíc strukturou jednotlivých jednoduchých výroků na základě této analýzy lze odvodit platnost některých výroků, které ve výrokové logice
1. Predikátová logika jako prostedek reprezentace znalostí
1. Predikátová logika jako prostedek reprezentace znalostí 1.1 Historie výrokové logiky Problém explicitních znalostí a údaj, kterých je obrovské množství, vedl ke vzniku výrokové logiky. lovk si obecn
Predikátová logika. prvního řádu
Predikátová logika prvního řádu 2 Predikát Predikát je n-ární relace - vyjadřuje vlastnosti objektů a vztahy mezi objekty - z jednoduchého výroku vznikne vypuštěním alespoň jednoho jména objektu (individua)
Výroková a predikátová logika - VII
Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2018/2019 1 / 15 Platnost (pravdivost) Platnost ve struktuře
2.2 Sémantika predikátové logiky
14 [101105-1155] 2.2 Sémantika predikátové logiky Nyní se budeme zabývat sémantikou formulí, tj. jejich významem a pravdivostí. 2.2.1 Interpretace jazyka predikátové logiky. Interpretace predikátové logiky
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2013/2014 1 / 20 Základní syntax Jazyk Výroková logika je logikou
Výroková logika dokazatelnost
Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových
Základy logiky a teorie množin
Pracovní text k přednášce Logika a teorie množin (I/2007) 1 1 Struktura přednášky Matematická logika 2 Výroková logika Základy logiky a teorie množin Petr Pajas pajas@matfyz.cz Predikátová logika 1. řádu
Výroková a predikátová logika - XII
Výroková a predikátová logika - XII Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XII ZS 2015/2016 1 / 15 Algebraické teorie Základní algebraické teorie
4.2 Syntaxe predikátové logiky
36 [070507-1501 ] 4.2 Syntaxe predikátové logiky V tomto oddíle zavedeme syntaxi predikátové logiky, tj. uvedeme pravidla, podle nichž se tvoří syntakticky správné formule predikátové logiky. Význam a
Třída PTIME a třída NPTIME. NP-úplnost.
VAS - Přednáška 9 Úvod ke kursu. Složitost algoritmu. Model RAM. Odhady složitosti. Metoda rozděl a panuj. Greedy algoritmy. Metoda dynamického programování. Problémy, třídy složitosti problémů, horní
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 11 METODY VERIFIKACE SYSTÉMŮ NA ČIPU Hana Kubátov vá doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta 1 informačních
Výroková logika. Teoretická informatika Tomáš Foltýnek
Výroková logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Co je to formalismus a co je jeho cílem? Formulujte Russelův paradox
Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu
VÝROKOVÁ LOGIKA Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. Co je výrok nedefinujejme, pouze si řekneme, co si pod
Základní pojmy matematické logiky
KAPITOLA 1 Základní pojmy matematické logiky Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. 1. Výroková logika Co je
Formální systém výrokové logiky
Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)
Úvod do logiky (PL): sémantika predikátové logiky
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): sémantika predikátové logiky doc. PhDr. Jiří
Výroková logika syntaxe a sémantika
syntaxe a sémantika Jiří Velebil: AD0B01LGR 2015 Handout 01: & sémantika VL 1/16 1 Proč formální jazyk? 1 Přirozené jazyky jsou složité a často nejednoznačné. 2 Komunikace s formálními nástroji musí být
Matematická logika. Miroslav Kolařík
Matematická logika přednáška desátá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. Obsah 1 Úvod do modální logiky 2 Logické programování a Prolog 3
verze 29/9/09 textu o logice, aritmetice a M. Bizzarrimu.
1 verze 29/9/09 Toto je prozatím definitivní verze provizorního textu o logice, aritmetice a množinách. věnováno Laskavým čtenářům a čtenářkám, kteří navštěvovali tyto přednášky. poděkování Za upozornění
1 Pravdivost formulí v interpretaci a daném ohodnocení
1 Pravdivost formulí v interpretaci a daném ohodnocení Než uvedeme konkrétní příklady, zopakujme si definici interpretace, ohodnocení a pravdivosti. Necht L je nějaký jazyk. Interpretaci U, jazyka L tvoří
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou
Teoretická informatika Tomáš Foltýnek Úvod do předmětu Formalismus a jeho užití Teorie a axiomy
Tomáš Foltýnek foltynek@pef.mendelu.cz Úvod do předmětu Formalismus a jeho užití Teorie a axiomy 2 Cíle předmětu Poskytnout dostatečné teoretické zázemí Dát jiný pohled na informatiku Odlišit inženýra
Výroková a predikátová logika - XIV
Výroková a predikátová logika - XIV Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XIV ZS 2018/2019 1 / 20 Nerozhodnutelnost Úvod Rekurzivní a rekurzivně
Úvod do výrokové a predikátové logiky
Úvod do výrokové a predikátové logiky Eva Ondráčková Na této přednášce se seznámíte se základy výrokové a predikátové logiky. Zjistíte, že podstatou logiky není vyplňování pravdivostních tabulek ani negování
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce
Základy matematické logiky
OBSAH 1 Základy matematické logiky Obsah 1 Úvod 2 1.1 Předmět matematiky.......................... 2 1.2 Nástin historie.............................. 2 1.3 Axiomatická výstavba matematických teorií.............
Základy logiky a teorie množin
1 Základy logiky a teorie množin Petr Pajas pajas@matfyz.cz URL (slajdy): http://pajas.matfyz.cz/vyuka 2 Proč studovat matematickou logiku a teorii množin objasnění vztahu jazyka a významu (syntaxe a sémantiky)
Matematická logika. Miroslav Kolařík
Matematická logika přednáška pátá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
Základy logiky a teorie množin
1 2 Proč studovat matematickou logiku a teorii množin Základy logiky a teorie množin objasnění vztahu jazyka a významu (syntaxe a sémantiky) precizace klíčových matematických pojmů: axiom, teorie, důkaz,
ZÁKLADY LOGIKY A METODOLOGIE
ZÁKLADY LOGIKY A METODOLOGIE Metodický list č. 1 Téma: Předmět logiky a metodologie, základy logiky a formalizace. Toto téma lze rozdělit do tří základních tématických oblastí: 1) Předmět logiky a metodologie
Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α
1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny
Úvod do teorie deskripcí (pokračování)
Úvod do teorie deskripcí (pokračování) Označující fráze je esenciálně součástí věty a nemá význam sama o sobě. Scott byl člověk x byl člověk : Scott je subjektem výroku. Autor Wawerly byl člověk x byl
Tableaux metody. Jiří Vyskočil 2011
Tableaux metody Jiří Vyskočil 2011 Tableau [tabló] metoda Tableau metoda je další oblíbená metoda užívaná pro automatické dokazování vět v predikátové logice, ale i v dalších (modálních, temporálních,
IA008 Computational logic Version: 6. května Formule je v konjunktivní normální formě (CNF), pokud má tvar α 1... α n,
1 Převody do normálních forem Příklad 1.1: Vyjádřete následující formule v DNF pomocí pravdivostní tabulky a pomocí převodu logických spojek. a) (A B) C b) (A B) C c) (A B) (C D) Formule je v disjunktivní
Skolemizace. x(x + f(x) = 0). Interpretace f unární funkce, která pro daný
Skolemizace převod formulí na formule bez existenčních kvantifikátorů v jazyce, který je rozšířen o tzv. Skolemovy funkce; zachovává splnitelnost idea převodu: formuli x 1... x n yp (x 1,..., x n, y) transformujeme
6. Logika a logické systémy. Základy logiky. Lucie Koloušková, Václav Matoušek / KIV. Umělá inteligence a rozpoznávání, LS
Základy logiky Umělá inteligence a rozpoznávání, LS 2012 6-1 Logika je naukou, která se zabývá studiem lidského uvažování. Mezi základní úlohy logiky patří nalézání metod správného usuzování, tedy postupů,
Okruh č.3: Sémantický výklad predikátové logiky
Okruh č.3: Sémantický výklad predikátové logiky Predikátová logika 1.řádu formalizuje úsudky o vlastnostech předmětů a vztazích mezi předměty pevně dané předmětné oblasti (univerza). Nebudeme se zabývat
Logika. 2. Výroková logika. RNDr. Luděk Cienciala, Ph. D.
Logika 2. Výroková logika RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216, Logika:
Úvod do logiky a logického programování.
Úvod do logiky a logického programování Luboš Popelínský popel@fi.muni.cz www.fi.muni.cz/~popel Přehled učiva Opakování základů výrokové a predikátové logiky Normální formy ve výrokové a predikátové logice
Logické programy Deklarativní interpretace
Logické programy Deklarativní interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 7 1 Algebry. (Interpretace termů) Algebra J pro jazyk termů L obsahuje Neprázdnou
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška první Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Co a k čemu je logika? 2 Výroky a logické spojky
Logika. Materiály ke kurzu MA007. Poslední modifikace: prosinec zkoumá způsob vyvozování. Lidské uvažování
Výroková úplnosti Materiály ke kurzu MA007 Poslední modifikace: prosinec 2018 http://www.fi.muni.cz/usr/kucera/teaching.html 2. věta o dokazování prosinec 2018 1/171 Logika. Výroková úplnosti 2. věta o
Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé?
Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Jiří Močkoř University of Ostrava Department of Mathematics Institute for Research and Applications of Fuzzy Modeling 30. dubna 22,
Modely Herbrandovské interpretace
Modely Herbrandovské interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 8 1 Uvedli jsme termové interpretace a termové modely pro logické programy a také nejmenší
Rejstřík. anotace 167 krok 167 nepřímý 169 podmiňovaný 181 rezolucí 210 rozborem případů 170 sporem 170 z hypotéz 167 z předpokladů 167 Duns Scotus 79
Rejstřík Rejstřík A antecedent 27 Aristotelés 13 axiom 163 nezávislá množina 164 axiomatické systémy 163 axiom distributivity 222 axiomová schémata 164 B Beth 197 bezesporný 171 Bolzano 14 booleovské funktory
Výroková a predikátová logika - I
Výroková a predikátová logika - I Petr Gregor KTIML MFF UK ZS 2016/2017 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - I ZS 2016/2017 1 / 24 Úvod Plán přednášky 1/2 Úvod 1. Trocha historie,
vhodná pro strojové dokazování (Prolog) metoda založená na vyvracení: dokazuje se nesplnitelnost formulí
Rezoluce: další formální systém vhodná pro strojové dokazování (Prolog) metoda založená na vyvracení: dokazuje se nesplnitelnost formulí pracujeme s formulemi v nkf (též klauzulárním tvaru), ale používáme
Deskripční logika. Petr Křemen FEL ČVUT. Petr Křemen (FEL ČVUT) Deskripční logika 37 / 157
Deskripční logika Petr Křemen FEL ČVUT Petr Křemen (FEL ČVUT) Deskripční logika 37 / 157 Co nás čeká 1 Základy deskripční logiky 2 Jazyk ALC Syntax a sémantika 3 Cyklické a acyklické TBOXy Petr Křemen
Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Logika pro každodenní přežití Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti