Predikátová logika [Predicate logic]

Rozměr: px
Začít zobrazení ze stránky:

Download "Predikátová logika [Predicate logic]"

Transkript

1 Predikátová logika [Predicate logic] Přesněji predikátová logika prvého řádu. Formalizuje výroky o vlastnostech předmětů (entit) a vztazích mezi předměty, které patří do dané předmětné oblasti univerza. Příklad: Následovník každého lichého přirozeného čísla je sudé číslo. Číslo 7 je liché. Číslo 8 je sudé. Predikátové logiky vyšších řádů formalizují vztahy mezi vlastnostmi a vztahy, vztahy mezi vztahy vlastnostmi vztahů a vlastností. Výrokovou logiku lze považovat za predikátovou logiku nultého řádu. Formalizuje pouze výroky o entitách. S výrokovou logikou vědecké disciplíny nevystačí. S predikátovou logikou prvého řádu se zpravidla vystačí v matematice i informatice. Logické symboly: Jazyk predikátové logiky obsahuje tuto abecedu: 1. Konečnou nebo nekonečnou spočetnou množinu proměnných (značíme x, y, z, u, v, x 1, x 2,... ). 2. Logické spojky,,,, ( ). 3. Univerzální kvantifikátor (čti pro všechna ). 4. Existenční kvantifikátor (čti existuje). Speciální symboly: 1. Neprázdnou množinu predikátových symbolů P. Různé arity. Vyjadřují vlastnosti a vztahy. 2. Množinu funkčních symbolů F. - Různé arity. Konečnou nebo spočetnou. 3. Množinu konstantních symbolů K. Konečnou nebo spočetnou. Ty lze považovat za funkce arity 0 (nemají žádné proměnné a tedy mají vždy stejnou hodnotu). Značíme a, b, c, a 1, a 2,.... Pomocné symboly: závorky (, ), čárku,. Poznámka: Univerzální kvantifikátor lze chápat jako zobecnění konjunkce, Existenční kvantifikátor jako zobecnění disjunkce, na množiny, které mohou být i nekonečné. 1

2 Gramatika predikátové logiky udává jak vytvářet formule Term (rekurzivní definice) 1. Každý symbol proměnné je term. 2. Každá konstanta je term. 3. Jsou-li t 1,, t m termy a f je funkční symbol arity m, potom je i f(t 1,, t m ) term. 4. Nic jiného než to, co vznikne aplikací pravidel 1., 2. a 3. již term není. Atomická formule Je predikátový symbol aplikovaný na m termů, kde m je arita predikátového symbolu. p(t 1,, t m ). Formule (rekurzivní definice) 1. Každá atomická formule je formule. 2. Jsou-li ϕ a ψ formule, pak také ( ϕ), (ϕ ψ), (ϕ ψ), (ϕ ψ), (ϕ ψ) jsou formule. 3. Je-li ϕ formule a x proměnné, potom i ( x ϕ) a ( x ϕ) jsou formule. 4. Nic jiného než to, co vznikne aplikací pravidel 1., 2. a 3. již formule není. Závorky lze vynechat, pokud jsou zbytečné vzhledem k obvyklým preferenčním pravidlům pro logické spojky. Vnější závorky se též vynechávají. Výskyt proměnné x ve formuli A je vázaný, jestliže je součástí nějaké podformule x B(x) nebo x B(x) formule A. Proměnná x je vázaná ve formuli A, má-li v A vázaný výskyt. Výskyt proměnné x ve formuli A, který není vázaný, nazýváme volný. Proměnná x je volná ve formuli A, má-li v A volný výskyt. Formule, v níž každá proměnná má buď všechny výskyty volné nebo všechny výskyty vázané, se nazývá formulí s čistými proměnnými. Formule se nazývá uzavřenou, neobsahuje-li žádnou volnou proměnnou. Formule, která obsahuje aspoň jednu volnou proměnnou se nazývá otevřenou. Uzavřená formule se nazývá větou [sentence]. 2

3 Příklady zápisu výroků v predikátové logice: Univerzum je množina všech lidí. Nikdo, kdo není zapracován (P), nepracuje samostatně (S). x ( P(x) S(x)). Ne každý talentovaný (T) spisovatel (Sp) je slavný člověk (Sl). x ((T(x) Sp(x)) Sl(x)). Někdo je spokojen (Sn) a někdo není spokojen. x Sn(x) x Sn(x). Někteří chytří lidé (Ch) jsou líní (L). x (Ch(x) L(x)). Interpretace Pro to, abychom rozhodli zda je daná formule pravdivá či ne (má hodnotu TRUE či FALSE), je třeba mít vymezeno univerzum a vědět co znamenají všechny v ní užité predikáty, funkční symboly a konstanty. Takovému přiřazení říkáme interpretace. Formálně je interpretace dvojice (U, I), kde U je neprázdná množina zvaná univerzum, I je zobrazení které: Každé konstantě přiřazuje prvek univerza. Každému n-árnímu funkčnímu symbolu přiřazuje funkci n proměnných na univerzu s hodnotami z univerza. Každému n-árnímu predikátu přiřazuje n-ární relaci na univerzu, tvořenou všemi n-ticemi prvků univerza, pro které je daný predikát pravdivý. Pravdivost formule predikátového počtu lze vyhodnotit pouze na základě dané interpretace a daného ohodnocení (valuace) všech volných proměnných. Přitom: Pro stanovení pravdivostních hodnot složených formulí platí stejná pravidla jako u výrokové logiky. Výrok x ϕ(x) je pravdivý právě když I(ϕ) je celé univerzum U (výrok platí pro všechny prvky univerza). Výrok x ϕ(x) je pravdivý právě když I(ϕ) je neprázdná podmnožina univerza (výrok platí aspoň pro jeden prvek univerza). Formule A je splnitelná v interpretaci I, jestliže existuje aspoň jedno ohodnocení e volných proměnných takové, že vznikne pravdivý výrok. Formule A je pravdivá v interpretaci I, jestliže pro všechna možná ohodnocení e volných proměnných vznikne pravdivý výrok. Formule A je splnitelná, jestliže existuje interpretace I, ve které je splnitelná, tj. jestliže existuje interpretace I a ohodnocení volných proměnných e takové, že vznikne pravdivý výrok. Taková dvojice (I, e) interpretace I a valuace e se nazývá model formule. Formule A je tautologií je-li pravdivá v každé interpretaci. Formule A je kontradikcí, jestliže nemá model, tedy neexistuje interpretace I, v která by formule A byla splnitelná. 3

4 Pozn.: Zjevně platí, že A je kontradikce, právě když negace A je tautologie. Model množiny formulí {A 1,, A n } je taková interpretace I v kterém jsou všechny formule splnitelné, tedy interpretace I a ohodnocení e volných v kterém jsou všechny formule volných proměnných), která splňuje všechny formule A 1,, A n pravdivé. Sémantická a logická dedukce v predikátovém počtu Oba typy dedukce se definují obdobně jako ve výrokové logice. Uzavřená formule (věta) ϕ je sémantickým důsledkem (též tautologickým důsledkem značíme ) množiny uzavřených formulí S právě tehdy, když každý model S je také modelem ϕ. To však je obtížné ověřit. Pro logickou dedukci ( ) přebereme I-pravidla a E-pravidla výrokové logiky a přidáme k nim přirozená pravidla pro kvantifikované výroky. Jde především o pravidla ϕ(t) x ϕ(x) x ϕ(x) x ϕ(x) Tabulka pravidel logické dedukce v predikátové logice: Logická spojka Pravidlo pro zavedení Pravidlo pro vyloučení {ϕ ψ, ψ} ϕ princip nepřímého důkazu ϕ ϕ T; ϕ ϕ princip vyloučení třetího a princip dvojí negace {ϕ, ψ} {ϕ ψ, ψ ϕ} ϕ ψ {ϕ, ψ} definice konjunkce ϕ {ϕ ψ, ψ ϕ} definice disjunkce definice konjunkce {ϕ ψ, ϕ α α, ψ α} α princip důkazu rozborem případů {ϕ ψ} ϕ ψ definice implikace {ϕ, ϕ ψ} ψ pravidlo modus ponens Kvalifikátor Pravidlo pro zavedení Pravidlo pro vyloučení ϕ(x) x ϕ(x) x ϕ(x) ϕ(x) ϕ(a) x ϕ(x) { x ϕ(x), ϕ(y) ψ} ψ I zde (stejně jako u výrokové logiky) platí, že postačí jediné pravidlo, modus ponens. Užívání všech pravidel je však přirozenější a vede k závěru snáze. 4

5 Pro predikátovou logiku platí rovněž věta o úplnosti. Přirozená dedukce je bezrozporná (vše co se dá logicky odvodit je i sémantickým důsledkem). Přirozená dedukce je úplná. Vše co je sémantickým důsledkem lze odvodit i logicky. Tedy S α tehdy a jen tehdy když S α. Důkaz tohoto tvrzení však není snadný. Platí následující důležitá tvrzení: Větu lze odvodit bez předpokladů, právě když je tautologií. Množina vět je bezrozporná, právě když je splnitelná (tedy má nějaký model). Množina vět je rozporná, právě když z ní vyplývá kontradikce. Mezi výrokovým a predikátovým počtem je následující podstatný rozdíl: Každý jazyk predikátové logiky má nekonečně mnoho možných interpretací (už jenom universum lze stanovit nekonečně mnoha způsoby). Tím se liší od jazyka výrokové logiky, který má vždy jen konečný počet interpretací ohodnocení TRUE FALSE výrokových proměnných (jazyk výrokové logiky pracující s n výrokovými symboly má různých 2 n interpretací, je tedy možné, i když časově náročné, ověřit pravdivost všech interpretací ). Tautologičnost formulí predikátové logiky nelze proto sémanticky dokazovat tak, že ukážeme, že každá možná interpretace jazyka je i modelem dané formule. Tímto způsobem jsme postupovali ve výrokové logice, když jsme zjišťovali pravdivostní hodnotu formule pro každou kombinaci pravdivostních hodnot výrokových symbolů. I zde při velkém n narážel tento postup na exponenciální růst výpočetní složitosti. U predikátového počtu nelze tento způsob užít ani teoreticky, bez ohledu na rostoucí časové nároky na výpočet. Přímý logický důkaz probíhá takto: 1. Vyjdeme z množiny S daných předpokladů a prohlásíme ji za množinu dosud dokázaných formulí (tvrzení). 2. Použijeme libovolné pravidlo logické dedukce a libovolné a libovolnou formuli z množiny dosud dokázaných formulí. Důsledek bude formule, kterou k množině S přidáme. 3. Opakujeme bod 2. tak dlouho, dokud se nám nepodaří jako důsledek získat dokazovanou formuli ϕ. Problém je, jak vybírat pravidla a předpoklady z množiny již dokázaných, aby tato cesta vedla k důsledku ϕ. Takový postup je obtížné automatizovat. 5

6 Resoluční princip v predikátové logice Zaveďme některé pojmy analogické pojmům z výrokové logiky: Literál je atomická formule (n-ární predikát aplikovaný na n termů) nebo její negace. Komplementární literály je dvojice literálů z nichž každý je negací druhého. Klausule je věta (formule bez volných proměnných), taková, že obsahuje pouze univerzální kvantifikátory na začátku a následuje disjunkce konečného počtu literálů nebo jediný literál. Zavedeme následující úmluvu: U klausule budeme univerzální kvantifikátory proměnných vynechávat. Protože u disjunkce nezáleží na pořadí, budeme klausule zapisovat pouze jako množiny jejich literálů. Tedy například místo tří klauzulí P(x, y), a ( Q(a) R(a, x) S(f(a), a), a b S(a, b) Q(b) budeme psát pouze množinu tří množin literálů {P(x, y)}, { Q(a), R(a, x), S(f(a), a)}, {S(a, b), Q(b)}. Prázdná klausule neobsahuje žádné literály a je tedy kontradikcí. Obvykle se značí symbolem, někdy též F. Tato klausule není splnitelná. Její přítomnost v množině formulí znamená nesplnitelnost této množiny. Princip rezoluční metody u predikátové logiky je analogický jako u výrokové logiky. Je však komplikovanější, protože není k dispozici přímá analogie k konjunktivně disjunktivní normální formě. Postupně odvozujeme z daných klausulí resolventy tak, že vypouštíme dvojice komplementárních literálů. Původní klausule ponecháme. Postup je založen na tom, že tautologicky platí (ϕ η) (ψ η) (ϕ ψ). V případě výskytu predikátů s proměnnými, konstantami a funkčními symboly je třeba provést substituce. Ukážeme to na příkladech: Příklad 1: Resolventa klausulí C 1 = {P(x, y, z), Q(x, y)} a C 2 = { P(x, y, z), R(x)}, kde x, y, z jsou proměnné je klausule C = { Q(x, y), R(x)}. Komplementární literály P(x, y, z) a { P(x, y, z) lze vynechat. Množiny klausulí {C 1, C 2 } a {C 1, C 2, C} jsou tautologicky ekvivalentní. Mají tytéž modely. Abychom to dokázali, stačí ukázat, že pro každou interpretaci (U, I), kde C 1 a C 2 jsou pravdivé je pravdivé i C. Nechť a, b, c jsou libovolné konstanty z U. Substitujeme-li a za x, b za y a c za z (označme jako x/a, y/b, z/c) odvodíme, že { Q(a, b), R(a)} je pravdivé a tedy C je pravdivé v interpretaci (U, I). 6

7 Příklad 2 (již bez podrobného zdůvodnění) Resolventa klausulí {P(x, y, z), Q(x, y)} a C 2 = { P(a, b, z), R(a)}získaná substitucí x/a, y/b je { Q(a, b), R(a)}. Nalézání komplementárních literálů v množině klauzulí lze algoritmizovat. Tento postup je užit například při ověřování, zda dané tvrzení vyplývá z daných předpokladů. Jde o ověření tautologičnosti implikace tautologicky ekvivalentní s tedy s (p 1 p 2 p n ) q, (p 1 p 2 p n ) q, p 1 p 2 p n q Takováto klausule se nazývá Hornovou klausulí. Vyhodnocovací proces (tak zvaný inferenční mechanismus) logického programovacího jazyka PROLOG spočívá v odvozování resolvent z Hornových klausulí. Ty representují fakta a pravidla z databáze. Cílem je ověřit formuli danou dotazem, případně nalézt konstanty, pro které je splněna. Chceme-li rozhodnout zda je splnitelná jakákoliv množina klausulí S, sestrojíme množinu S 1, tak, že k S přidáme resolventy prvého řádu. Dále přidáme resolventy S 1, získáme S 2 a pokračujeme dokud nenastane rovnost S n = S n+1. Dostaneme množiny R 0 (S) = S, R j+1 (S) = R(R j (S)) pro j = 1, 2,.... Platí: S = R 0 (S) R 1 (S)... R k (S).... Položme R Resoluční princip predikátové logiky říká: * ( S) = j= 1 R j (S). Množina S je splnitelná právě když R * (S) neobsahuje prázdnou klausuli. Chceme-li zjistit zda klauzule ϕ je důsledkem (logickým a tedy i sémantickým) množiny klauzulí S, vytvoříme množinu S = S { ϕ} a zjistíme, zda je splnitelná, či nikoliv. Jeli S splnitelná ϕ není důsledkem S. Je-li nesplnitelná, je ϕ důsledkem S. To je princip nepřímého důkazu v matematice. 7

8 Příklad: Splnitelnost formulí S = {{P(x, y), Q(x, y, a)}, { Q(g(v), z, z), R(v, z)}, { R(b, a), { P(x, a)}}, kde a, b jsou konstantní symboly, x, y, z jsou proměnné: Sledujte potřebné dosazování konstant za proměnné! Odvodili jsme prázdnou klausuli. Množina formulí je tedy nesplnitelná. 8

9 Existuje algoritmický postup jak libovolnou množinu formulí predikátové logiky převést na množinu klausulí. Lze to provést v těchto po sobě následujících krocích: 1. Přejmenují se proměnné tak, aby každý kvantifikátor označoval různou proměnnou. Například x P(x) x Q(x, a) změníme na x y P(x) Q(x, a). 2. Spojky, vyjádříme pouze pomocí,, užitím tautologických ekvivalencí α β α β; α β ( α β) ( α β);. 3. Zařadíme negace dovnitř až před atomické formule pomocí tautologických ekvivalencí x α x α; x α x α ; (α β) α β; (α β) α β; α α. 4. Zařadíme disjunkce co nejhlouběji užitím tautologických ekvivalencí α (β γ) (α β) (α γ); α ( x β) x (α β); α ( x β) x (α β). 5. Přemístíme univerzální kvantifikátory užitím tautologické ekvivalence ( x α) ( x β) x (α β). Pokud formule neobsahuje existenční kvantifikátory, získali jsme konjunkci klausulí, která je tautologicky ekvivalentní původní formuli. V případě existenčních kvantifikátorů provedeme tak zvanou skolemizaci (název odvozen od norského matematika Thorlafa Skolema). Nahradíme formuli x P(x) formulí P(a), kde a je konstanta. V případě, že předcházejí univerzální kvantifikátory před existenčním, závisí tato konstanta na proměnných univerzálních kvantifikátorů. V tomto případě musíme tedy užít funkční symbol příslušné arity. Tedy například x z y P(x, y, z) nahradíme x y P(x, y, c(x)) a x y z P(x, y, z) nahradíme x y P(x, y, c(x, y)). Skolemova konstanta závisí tedy na předchozích univerzálních kvantifikátorech. Je tedy funkčním symbolem arity rovné počtu předchozích univerzálních kvantifikátorů. Obecně: x 1,, x n y ϕ(y, x 1,,x n ) nahradíme formulí x 1,, x n ϕ(f(x 1,,x n ), x 1,,x n ), kde f je nový funkční symbol arity n. Je-li n = 0 užijeme konstantní symbol. Celý postup ozřejmí následující příklad: Užitím resoluční metody ověřte správnost následujícího úsudku: Každý holič na ostrově holí kohokoliv, kdo se neholí sám. Žádný holič na ostrově neholí kohokoliv, kdo se holí sám. Důsledek: Na ostrově nejsou žádní holiči. Převod do predikátové logiky: Univerzum: Všichni lidé na ostrově. B(x) unární predikát: člověk je holič. S(x, y) binární predikát osoba x holí osobu y. 9

10 Náš úsudek ve formalizovaném tvaru: x (B(x) y ( S(y, y) S(x, y)) x (B(x) y (S(y, y) S(x, y)) x B(x). Úsudek bude správný, pokud je nesplnitelná následující množina tří formulí: { x (B(x) y ( S(y, y) S(x, y)), x (B(x) y (S(y, y) S(x, y)), x B(x)}. Tyto formule je třeba transformovat na tautologicky ekvivalentní klausule. Provedeme to standardním algoritmizovatelným postupem, který byl v předchozím odstavci popsán obecně: Přejmenujeme proměnné a převedeme prvé dvě formule na klausule. Poslední klausulí je. x (B(x) y ( S(y, y) S(x, y)) x ( B(x) y ((S(y, y) S(x, y))) x y( B(x) S(y, y) S(x, y)) ; x (B(x) y (S(y, y) S(x, y)) z ( B(z) u ( S(u, u) S(z, u)) z u ( B(z) S(u, u) S(z, u)). Poslední klausule obsahuje existenční kvantifikátor Zaměníme jej za klausuli B(a), kde a je Skolemův konstantní symbol. Úsudek bude správný, pokud bude množina klausulí nesplnitelná. Užijeme resoluční strom: S = {{ B(x), S(y, y), S(x, y)}, { B(z), S(u, u), S(z, u}, (B(a)}} Náš úsudek byl tedy správný. 10

Výroková logika - opakování

Výroková logika - opakování - opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α

Více

2.5 Rezoluční metoda v predikátové logice

2.5 Rezoluční metoda v predikátové logice 2.5. Rezoluční metoda v predikátové logice [101104-1520] 19 2.5 Rezoluční metoda v predikátové logice Rezoluční metoda v predikátové logice je obdobná stejnojmenné metodě ve výrokové logice. Ovšem vzhledem

Více

Predikátová logika. prvního řádu

Predikátová logika. prvního řádu Predikátová logika prvního řádu 2 Predikát Predikát je n-ární relace - vyjadřuje vlastnosti objektů a vztahy mezi objekty - z jednoduchého výroku vznikne vypuštěním alespoň jednoho jména objektu (individua)

Více

Okruh č.3: Sémantický výklad predikátové logiky

Okruh č.3: Sémantický výklad predikátové logiky Okruh č.3: Sémantický výklad predikátové logiky Predikátová logika 1.řádu formalizuje úsudky o vlastnostech předmětů a vztazích mezi předměty pevně dané předmětné oblasti (univerza). Nebudeme se zabývat

Více

Predikátová logika. Teoretická informatika Tomáš Foltýnek

Predikátová logika. Teoretická informatika Tomáš Foltýnek Predikátová logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz strana 2 Opakování z minulé přednášky Z čeho se skládá jazyk výrokové logiky? Jaká jsou schémata pro axiomy VL? Formulujte

Více

1 Pravdivost formulí v interpretaci a daném ohodnocení

1 Pravdivost formulí v interpretaci a daném ohodnocení 1 Pravdivost formulí v interpretaci a daném ohodnocení Než uvedeme konkrétní příklady, zopakujme si definici interpretace, ohodnocení a pravdivosti. Necht L je nějaký jazyk. Interpretaci U, jazyka L tvoří

Více

Rezoluční kalkulus pro logiku prvního řádu

Rezoluční kalkulus pro logiku prvního řádu AD4M33AU Automatické uvažování Rezoluční kalkulus pro logiku prvního řádu Petr Pudlák Logika prvního řádu (Někdy nepřesně nazývaná predikátová logika.) Výhody Vyšší vyjadřovací schopnost jazyka, V podstatě

Více

Unární je také spojka negace. pro je operace binární - příkladem může být funkce se signaturou. Binární je velká většina logických spojek

Unární je také spojka negace. pro je operace binární - příkladem může být funkce se signaturou. Binární je velká většina logických spojek Otázka 06 - Y01MLO Zadání Predikátová logika, formule predikátové logiky, sentence, interpretace jazyka predikátové logiky, splnitelné sentence, tautologie, kontradikce, tautologicky ekvivalentní formule.

Více

Výroková a predikátová logika - X

Výroková a predikátová logika - X Výroková a predikátová logika - X Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - X ZS 2018/2019 1 / 16 Rozšiřování teorií Extenze o definice Rozšiřování

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 18 Příklad Necht L je jazyk obsahující

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce

Více

Formální systém výrokové logiky

Formální systém výrokové logiky Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)

Více

4.2 Syntaxe predikátové logiky

4.2 Syntaxe predikátové logiky 36 [070507-1501 ] 4.2 Syntaxe predikátové logiky V tomto oddíle zavedeme syntaxi predikátové logiky, tj. uvedeme pravidla, podle nichž se tvoří syntakticky správné formule predikátové logiky. Význam a

Více

2.2 Sémantika predikátové logiky

2.2 Sémantika predikátové logiky 14 [101105-1155] 2.2 Sémantika predikátové logiky Nyní se budeme zabývat sémantikou formulí, tj. jejich významem a pravdivostí. 2.2.1 Interpretace jazyka predikátové logiky. Interpretace predikátové logiky

Více

Sémantika predikátové logiky

Sémantika predikátové logiky Sémantika predikátové logiky pro analýzu sémantiky potřebujeme nejprve specifikaci jazyka (doména, konstanty, funkční a predikátové symboly) příklad: formální jazyk s jediným binárním predikátovým symbolem

Více

platné nejsou Sokrates je smrtelný. (r) 1/??

platné nejsou Sokrates je smrtelný. (r) 1/?? Predikátová logika plně přejímá výsledky výrokové logiky zabývá se navíc strukturou jednotlivých jednoduchých výroků na základě této analýzy lze odvodit platnost některých výroků, které ve výrokové logice

Více

Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.

Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie. Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní

Více

Matematická logika. Miroslav Kolařík

Matematická logika. Miroslav Kolařík Matematická logika přednáška třetí Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika

Více

Základy logiky a teorie množin

Základy logiky a teorie množin Pracovní text k přednášce Logika a teorie množin (I/2007) 1 1 Struktura přednášky Matematická logika 2 Výroková logika Základy logiky a teorie množin Petr Pajas pajas@matfyz.cz Predikátová logika 1. řádu

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.    horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 20 Predikátová logika Motivace Výroková

Více

Výroková a predikátová logika - IX

Výroková a predikátová logika - IX Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2015/2016 1 / 16 Tablo metoda v PL Důsledky úplnosti Vlastnosti

Více

Výroková a predikátová logika - IX

Výroková a predikátová logika - IX Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2013/2014 1 / 15 Korektnost a úplnost Důsledky Vlastnosti teorií

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou

Více

Matematická logika. Miroslav Kolařík

Matematická logika. Miroslav Kolařík Matematická logika přednáška šestá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Sémantická věta o dedukci Věta Pro

Více

Základní pojmy matematické logiky

Základní pojmy matematické logiky KAPITOLA 1 Základní pojmy matematické logiky Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. 1. Výroková logika Co je

Více

Logika. 5. Rezoluční princip. RNDr. Luděk Cienciala, Ph. D.

Logika. 5. Rezoluční princip. RNDr. Luděk Cienciala, Ph. D. Logika 5. Rezoluční princip RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216,

Více

teorie logických spojek chápaných jako pravdivostní funkce

teorie logických spojek chápaných jako pravdivostní funkce Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových

Více

Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz

Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz Jednoduché úsudky, kde VL nestačí Všechny opice mají rády banány Judy je opice Judy má ráda banány Z hlediska VL

Více

Logika. 2. Výroková logika. RNDr. Luděk Cienciala, Ph. D.

Logika. 2. Výroková logika. RNDr. Luděk Cienciala, Ph. D. Logika 2. Výroková logika RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216, Logika:

Více

Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu

Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu VÝROKOVÁ LOGIKA Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. Co je výrok nedefinujejme, pouze si řekneme, co si pod

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2013/2014 1 / 20 Základní syntax Jazyk Výroková logika je logikou

Více

Úvod do TI - logika Výroková logika - pokračování (3.přednáška) Marie Duží

Úvod do TI - logika Výroková logika - pokračování (3.přednáška) Marie Duží Úvod do TI - logika Výroková logika - pokračování (3.přednáška) Marie Duží marie.duzi@vsb.cz Normální formy formulí výrokové logiky Každé formuli výrokové logiky přísluší právě jedna pravdivostní funkce,

Více

Výroková a predikátová logika - VI

Výroková a predikátová logika - VI Výroková a predikátová logika - VI Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VI ZS 2017/2018 1 / 24 Predikátová logika Úvod Predikátová logika Zabývá

Více

Výroková logika. Sémantika výrokové logiky

Výroková logika. Sémantika výrokové logiky Výroková logika Výroková logika se zabývá vztahy mezi dále neanalyzovanými elementárními výroky. Nezabývá se smyslem těchto elementárních výroků, zkoumá pouze vztahy mezi nimi. Elementární výrok je takový

Více

(zkráceně jen formule), jestliže vznikla podle následujících pravidel:

(zkráceně jen formule), jestliže vznikla podle následujících pravidel: 1 Kapitola 1 Výroková logika 1.1 Výroky 1.1.1 Výroky. Máme danou neprázdnou množinu A tzv. elementárních výroků (též jim říkáme logické nebo výrokové proměnné). Konečnou posloupnost prvků z množiny A,

Více

Další (neklasické) logiky. Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20

Další (neklasické) logiky. Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20 Predikátová logika Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20 Jazyk predikátové logiky Má dvě sorty: 1 Termy: to jsou objekty, o jejichž vlastnostech chceme hovořit. Mohou být proměnné. 2 Formule:

Více

Výroková a predikátová logika - V

Výroková a predikátová logika - V Výroková a predikátová logika - V Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - V ZS 2015/2016 1 / 21 Dokazovací systémy VL Hilbertovský kalkul Hilbertovský

Více

Predik atov a logika - pˇredn aˇska () Predik atov a logika - pˇredn aˇska / 16

Predik atov a logika - pˇredn aˇska () Predik atov a logika - pˇredn aˇska / 16 Predikátová logika - přednáška 3 6. 1. 2015 () Predikátová logika - přednáška 3 6. 1. 2015 1 / 16 Věta (o dedukci) Bud L jazyk, T teorie pro L, ϕ L-sentence a ψ L-formule. Pak Věta (o kompaktnosti) T ϕ

Více

Přednáška 2: Formalizace v jazyce logiky.

Přednáška 2: Formalizace v jazyce logiky. Přednáška 2: Formalizace v jazyce logiky. Marie Duží marie.duzi@vsb.cz Úvod do teoretické informatiky (logika) Dva základní logické systémy: Výroková logika a predikátová logika. řádu. Výroková logika

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Splnitelnost množin Definice Množina

Více

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α 1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny

Více

Výroková logika. Teoretická informatika Tomáš Foltýnek

Výroková logika. Teoretická informatika Tomáš Foltýnek Výroková logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Co je to formalismus a co je jeho cílem? Formulujte Russelův paradox

Více

Sémantika výrokové logiky. Alena Gollová Výroková logika 1/23

Sémantika výrokové logiky. Alena Gollová Výroková logika 1/23 Výroková logika Alena Gollová Výroková logika 1/23 Obsah 1 Formule výrokové logiky 2 Alena Gollová Výroková logika 2/23 Formule výrokové logiky Výrok je oznamovací věta, o jejíž pravdivosti lze rozhodnout.

Více

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu.

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu. 6 Kapitola 2 Příklady z predikátové logiky 2.1 Formule predikátové logiky 2.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolu uvedených

Více

Výroková a predikátová logika - VII

Výroková a predikátová logika - VII Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2013/2014 1 / 21 Sémantika PL Teorie Vlastnosti teorií Teorie

Více

Hilbertovský axiomatický systém

Hilbertovský axiomatický systém Hilbertovský axiomatický systém Predikátová logika H 1 Šárka Vavrečková Ústav informatiky, FPF SU Opava Poslední aktualizace: 24. října 2008 Specifikace H 1 Jazyk L H1 přejímáme jazyk predikátové logiky

Více

Marie Duží

Marie Duží Marie Duží marie.duzi@vsb.cz Normální formy formulí výrokové logiky Každé formuli výrokové logiky přísluší právě jedna pravdivostní funkce, zobrazení {p, q, r } {0, 1} (pravdivostní tabulka). Naopak však

Více

3.10 Rezoluční metoda ve výrokové logice

3.10 Rezoluční metoda ve výrokové logice 3.10. Rezoluční metoda ve výrokové logice [070405-1102 ] 27 3.10 Rezoluční metoda ve výrokové logice Rezoluční metoda rozhoduje, zda daná množina klausulí je splnitelná nebo je nesplnitelná. Tím je také

Více

Logika Libor Barto. Výroková logika

Logika Libor Barto. Výroková logika Logika Libor Barto Výroková logika Definice.(Jazyk výrokové logiky) Ve výrokové logice používáme tyto symboly: (1) Výrokové proměnné: velká písmena, případně opatřená indexy. (2) Výrokovéspojky:,,&,,,....

Více

Logické programy Deklarativní interpretace

Logické programy Deklarativní interpretace Logické programy Deklarativní interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 7 1 Algebry. (Interpretace termů) Algebra J pro jazyk termů L obsahuje Neprázdnou

Více

Rezoluční kalkulus pro výrokovou logiku

Rezoluční kalkulus pro výrokovou logiku AD4M33AU Automatické uvažování Rezoluční kalkulus pro výrokovou logiku Petr Pudlák Výroková logika Výhody Jednoduchý jazyk. Rozhodnutelnost dokazatelnosti i nedokazatelnosti. Rychlejší algoritmy. Nevýhody

Více

Predikátová logika dokončení

Predikátová logika dokončení Predikátová logika dokončení Jiří Velebil: X01DML 1. října 2010: Predikátová logika dokončení 1/18 Syntaktická analýza Jako ve výrokové logice (syntaktické stromy). Každý list úspěšného stromu je obsazen

Více

IA008 Computational logic Version: 6. května Formule je v konjunktivní normální formě (CNF), pokud má tvar α 1... α n,

IA008 Computational logic Version: 6. května Formule je v konjunktivní normální formě (CNF), pokud má tvar α 1... α n, 1 Převody do normálních forem Příklad 1.1: Vyjádřete následující formule v DNF pomocí pravdivostní tabulky a pomocí převodu logických spojek. a) (A B) C b) (A B) C c) (A B) (C D) Formule je v disjunktivní

Více

Výroková a predikátová logika - VII

Výroková a predikátová logika - VII Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2018/2019 1 / 15 Platnost (pravdivost) Platnost ve struktuře

Více

Výroková a predikátová logika - XII

Výroková a predikátová logika - XII Výroková a predikátová logika - XII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XII ZS 2018/2019 1 / 15 Rezoluční metoda v PL Rezoluční důkaz Obecné

Více

Logika. 6. Axiomatický systém výrokové logiky

Logika. 6. Axiomatický systém výrokové logiky Logika 6. Axiomatický systém výrokové logiky RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216,

Více

Úvod do výrokové a predikátové logiky

Úvod do výrokové a predikátové logiky Úvod do výrokové a predikátové logiky Eva Ondráčková Na této přednášce se seznámíte se základy výrokové a predikátové logiky. Zjistíte, že podstatou logiky není vyplňování pravdivostních tabulek ani negování

Více

Kapitola Výroky

Kapitola Výroky 1 Kapitola 1 Výroková logika 1.1 Výroky 1.1.1 Příklad Rozhodněte, zda následující posloupnosti symbolú jsou výrokové formule. Jde-li o formuli, pak sestrojte její strom, určete její hloubku a uved te všechny

Více

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

Základy matematické logiky

Základy matematické logiky OBSAH 1 Základy matematické logiky Obsah 1 Úvod 2 1.1 Předmět matematiky.......................... 2 1.2 Nástin historie.............................. 2 1.3 Axiomatická výstavba matematických teorií.............

Více

přednáška 2 Marie Duží

přednáška 2 Marie Duží Logika v praxi přednáška 2 Marie Duží marie.duzi@vsb.cz 1 1 Výroková logika Analyzuje způsoby skládání jednoduchých výroků do výroků složených pomocí logických spojek. Co je to výrok? Výrok je tvrzení,

Více

Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce

Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Marie Duží marie.duzi@vsb.cz 1 Úvod do teoretické informatiky (logika) Naivní teorie množin Co je to množina? Množina je soubor prvků

Více

Výroková a predikátová logika - VIII

Výroková a predikátová logika - VIII Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2017/2018 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule

Více

Normální formy. (provizorní text)

Normální formy. (provizorní text) Normální formy (provizorní text) Výrokový počet Definice. Jazyk výrokového počtu obsahuje výrokové proměnné p, q, r, s,..., spojky,,,.. a závorky (,). Výrokové proměnné jsou formule. Jestliže a jsou formule,

Více

Skolemizace. x(x + f(x) = 0). Interpretace f unární funkce, která pro daný

Skolemizace. x(x + f(x) = 0). Interpretace f unární funkce, která pro daný Skolemizace převod formulí na formule bez existenčních kvantifikátorů v jazyce, který je rozšířen o tzv. Skolemovy funkce; zachovává splnitelnost idea převodu: formuli x 1... x n yp (x 1,..., x n, y) transformujeme

Více

7 Jemný úvod do Logiky

7 Jemný úvod do Logiky 7 Jemný úvod do Logiky Základem přesného matematického vyjadřování je správné používání (matematické) logiky a logických úsudků. Logika jako filozofická discipĺına se intenzivně vyvíjí už od dob antiky,

Více

Logika a logické programování

Logika a logické programování Logika a logické programování témata ke zkoušce Poslední aktualizace: 16. prosince 2009 Zkouška je písemná, skládá se obvykle ze sedmi otázek (může být více nebo méně, podle náročnosti otázek), z toho

Více

Výroková a predikátová logika - VIII

Výroková a predikátová logika - VIII Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2016/2017 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2016/2017 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška první Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Co a k čemu je logika? 2 Výroky a logické spojky

Více

Modely Herbrandovské interpretace

Modely Herbrandovské interpretace Modely Herbrandovské interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 8 1 Uvedli jsme termové interpretace a termové modely pro logické programy a také nejmenší

Více

Úvod do predikátové logiky. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 1

Úvod do predikátové logiky. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 1 Úvod do predikátové logiky (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/28.0216 2013 1 / 1 Relace Neuspořádaná vs. uspořádaná dvojice {m, n} je neuspořádaná dvojice. m, n je uspořádaná dvojice. (FLÚ AV ČR) Logika:

Více

Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

0. ÚVOD - matematické symboly, značení,

0. ÚVOD - matematické symboly, značení, 0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní

Více

Klasická predikátová logika

Klasická predikátová logika Klasická predikátová logika Matematická logika, LS 2012/13, závěrečná přednáška Libor Běhounek www.cs.cas.cz/behounek/teaching/malog12 PřF OU, 6. 5. 2013 Symboly klasické predikátové logiky Poznámky Motivace

Více

Predikátová logika. Z minula: 1. jazyk logiky 1. řádu. 2. term a formule. 3. interpretace jazyka (relační struktura) 4. Tarského definice pravdy

Predikátová logika. Z minula: 1. jazyk logiky 1. řádu. 2. term a formule. 3. interpretace jazyka (relační struktura) 4. Tarského definice pravdy 1 Predikátová logika Z minula: 1. jazyk logiky 1. řádu 2. term a formule 3. interpretace jazyka (relační struktura) 4. Tarského definice pravdy 5. vázané a volné výskyty proměnných ve formuli 6. otevřené

Více

Výroková logika syntaxe a sémantika

Výroková logika syntaxe a sémantika syntaxe a sémantika Jiří Velebil: AD0B01LGR 2015 Handout 01: & sémantika VL 1/16 1 Proč formální jazyk? 1 Přirozené jazyky jsou složité a často nejednoznačné. 2 Komunikace s formálními nástroji musí být

Více

Základy logiky Logika a logické systémy. Umělá inteligence a rozpoznávání, LS

Základy logiky Logika a logické systémy. Umělá inteligence a rozpoznávání, LS Základy logiky 22. 4. 2015 Umělá inteligence a rozpoznávání, LS 2015 6-1 Logika je naukou, která se zabývá studiem lidského uvažování. Mezi základní úlohy logiky patří nalézání metod správného usuzování,

Více

Systém přirozené dedukce výrokové logiky

Systém přirozené dedukce výrokové logiky Systém přirozené dedukce výrokové logiky Korektnost, úplnost a bezespornost Šárka Vavrečková Ústav informatiky, FPF SU Opava Poslední aktualizace: 6. října 2008 Věta o korektnosti Věta (O korektnosti Systému

Více

V této výukové jednotce se student seznámí se základními pojmy z teorie predikátového počtu.

V této výukové jednotce se student seznámí se základními pojmy z teorie predikátového počtu. 1 Predikátová logika Základní informace V této výukové jednotce se student seznámí se základními pojmy z teorie predikátového počtu. Výstupy z výukové jednotky Student se seznámí se základními termíny

Více

6. Logika a logické systémy. Základy logiky. Lucie Koloušková, Václav Matoušek / KIV. Umělá inteligence a rozpoznávání, LS

6. Logika a logické systémy. Základy logiky. Lucie Koloušková, Václav Matoušek / KIV. Umělá inteligence a rozpoznávání, LS Základy logiky Umělá inteligence a rozpoznávání, LS 2012 6-1 Logika je naukou, která se zabývá studiem lidského uvažování. Mezi základní úlohy logiky patří nalézání metod správného usuzování, tedy postupů,

Více

Výroková a predikátová logika - IV

Výroková a predikátová logika - IV Výroková a predikátová logika - IV Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IV ZS 2018/2019 1 / 17 Tablo metoda Tablo Tablo - příklady F (((p q)

Více

1 Výroková logika 1. 2 Predikátová logika 3. 3 Důkazy matematických vět 4. 4 Doporučená literatura 7

1 Výroková logika 1. 2 Predikátová logika 3. 3 Důkazy matematických vět 4. 4 Doporučená literatura 7 1 Výroková logika 1 Výroková logika 1 2 Predikátová logika 3 3 Důkazy matematických vět 4 4 Doporučená literatura 7 Definice 1.1 Výrokem rozumíme každé sdělení, o kterém má smysl uvažovat, zda je, či není

Více

Vyrokova logika. Zakladnim pojmem vyrokove logiky je vyrok.

Vyrokova logika. Zakladnim pojmem vyrokove logiky je vyrok. Vyrokova logika Zakladnim pojmem vyrokove logiky je vyrok. V tzv. dvouhodnotove logice vyrokem rozumime tvrzeni (oznamovaci větu), o kterem je smysluplne prohlasit, zda je pravdive či nikoliv. Je-li tvrzeni

Více

LOGIKA VÝROKOVÁ LOGIKA

LOGIKA VÝROKOVÁ LOGIKA LOGIKA Popisuje pravidla odvozování jedněch tvrzení z druhých. Je to myšlenková cesta ke správným závěrům. Vznikla jako součást filosofie. Zakladatelem byl Aristoteles. VÝROKOVÁ LOGIKA Obsahuje syntaktická,

Více

Klasická výroková logika - tabulková metoda

Klasická výroková logika - tabulková metoda 1 Klasická výroková logika - tabulková metoda Na úrovni výrokové logiky budeme interpretací rozumět každé přiřazení pravdivostních hodnot výrokovým parametrům. (V případě přiřazení pravdivostních hodnot

Více

Přednáška 3: rozhodování o platnosti úsudku

Přednáška 3: rozhodování o platnosti úsudku Přednáška 3: rozhodování o platnosti úsudku Marie Duží marie.duzi@vsb.cz 1 Úvod do teoretické informatiky Úsudky Úsudek je platný, jestliže nutně, za všech okolností, tj. při všech interpretacích, ve kterých

Více

Výroková a predikátová logika - IX

Výroková a predikátová logika - IX Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2018/2019 1 / 13 Dokončené tablo Chceme, aby dokončená bezesporná

Více

Výroková a predikátová logika - III

Výroková a predikátová logika - III Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/2018 1 / 16 2-SAT 2-SAT Výrok je v k-cnf, je-li v CNF a

Více

vhodná pro strojové dokazování (Prolog) metoda založená na vyvracení: dokazuje se nesplnitelnost formulí

vhodná pro strojové dokazování (Prolog) metoda založená na vyvracení: dokazuje se nesplnitelnost formulí Rezoluce: další formální systém vhodná pro strojové dokazování (Prolog) metoda založená na vyvracení: dokazuje se nesplnitelnost formulí pracujeme s formulemi v nkf (též klauzulárním tvaru), ale používáme

Více

Výroková a predikátová logika - X

Výroková a predikátová logika - X Výroková a predikátová logika - X Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - X ZS 2015/2016 1 / 22 Herbrandova věta Úvod Redukce nesplnitelnosti na

Více

Booleovská algebra. Booleovské binární a unární funkce. Základní zákony.

Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz

Více

1. Matematická logika

1. Matematická logika Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018 1. Matematická logika Základem každé vědy (tedy i matematiky i fyziky) je soubor jistých znalostí. To, co z těchto izolovaných poznatků

Více

Výroková a predikátová logika - III

Výroková a predikátová logika - III Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2014/2015 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2014/2015 1 / 21 Výroková logika Horn-SAT Horn-SAT Jednotková

Více

Databázové systémy. * relační kalkuly. Tomáš Skopal. - relační model

Databázové systémy. * relační kalkuly. Tomáš Skopal. - relační model Databázové systémy Tomáš Skopal - relační model * relační kalkuly Osnova přednášky relační kalkuly doménový n-ticový Relační kalkuly využití aparátu predikátové logiky 1. řádu pro dotazování rozšíření

Více

Matematická logika. Lekce 1: Motivace a seznámení s klasickou výrokovou logikou. Petr Cintula. Ústav informatiky Akademie věd České republiky

Matematická logika. Lekce 1: Motivace a seznámení s klasickou výrokovou logikou. Petr Cintula. Ústav informatiky Akademie věd České republiky Matematická logika Lekce 1: Motivace a seznámení s klasickou výrokovou logikou Petr Cintula Ústav informatiky Akademie věd České republiky www.cs.cas.cz/cintula/mal Petr Cintula (ÚI AV ČR) Matematická

Více

1 Úvod do matematické logiky

1 Úvod do matematické logiky 1 Úvod do matematické logiky Logikou v běžném slova smyslu rozumíme myšlenkovou cestu, která vede k určitým závěrům. Logika je také formální věda, která zkoumá způsob vyvozování závěrů. Za zakladatele

Více

Úvod do logiky (VL): 4. Zjištění průběhu pravdivostních hodnot formule tabulkovou metodou

Úvod do logiky (VL): 4. Zjištění průběhu pravdivostních hodnot formule tabulkovou metodou Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 4. Zjištění průběhu pravdivostních hodnot

Více

Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Logika pro každodenní přežití Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Cvičení ke kursu Klasická logika II

Cvičení ke kursu Klasická logika II Cvičení ke kursu Klasická logika II (12. května 2017) 1. Nechť P a Q jsou unární a R binární predikát. Dokažte, že následující formule jsou logicky platné, ale obrátíme-li (vnější) implikaci, ve všech

Více