Výroková a predikátová logika - III
|
|
- Veronika Urbanová
- před 7 lety
- Počet zobrazení:
Transkript
1 Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/ / 16
2 2-SAT 2-SAT Výrok je v k-cnf, je-li v CNF a každá jeho klauzule má nejvýše k literálů. k-sat je následující problém (pro pevné k > 0) INSTANCE: Výrok ϕ v k-cnf. OTÁZKA: Je ϕ splnitelný? Zatímco už pro k = 3 jde o NP-úplný problém, ukážeme, že 2-SAT lze řešit v lineárním čase (vzhledem k délce ϕ). Vynecháme implementační detaily (výpočetní model, reprezentace v paměti) a využijeme následující znalosti, viz [ADS I]. Tvrzení Rozklad orientovaného grafu (V, E) na silně souvislé komponenty lze nalézt v čase O( V + E ). Orientovaný graf G je silně souvislý, pokud pro každé dva vrcholy u a v existují v G orientované cesty jak z u do v, tak i z v do u. Silně souvislá komponenta grafu G je maximální silně souvislý podgraf G. Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/ / 16
3 2-SAT Implikační graf Implikační graf výroku ϕ v 2-CNF je orientovaný graf G ϕ, v němž vrcholy jsou proměnné výroku ϕ nebo jejich negace, klauzuli l 1 l 2 výroku ϕ reprezentujeme dvojicí hran l 1 l 2, l 2 l 1, klauzuli l 1 výroku ϕ reprezentujeme hranou l 1 l 1. r t q x y s p p s y x q t r c c p ( p q) ( q r) (p r) (r s) ( p t) (q t) s (x y) Tvrzení ϕ je splnitelný, právě když žádná silně souvislá komponenta v G ϕ neobsahuje dvojici opačných literálů. Důkaz Každé splňující ohodnocení ohodnotí všechny literály ze stejné komponenty stejně. Implikace zleva doprava tedy platí. Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/ / 16
4 2-SAT Nalezení ohodnocení Naopak, označme Gϕ graf vzniklý z G ϕ kontrakcí silně souvislých komponent. Pozorování Gϕ je acyklický, má tedy topologické uspořádání <. Orientovaný graf je acyklický, neobsahuje-li orientovaný cyklus. Lineární uspořádání < vrcholů orientovaného grafu je topologické, pokud p < q pro každou hranu z p do q. Nyní pro každou komponentu v rostoucím pořadí dle <, nejsou-li její literály dosud ohodnocené, nastav je na 0 a literály v opačné komponentě na 1. Zbývá ukázat, že takto získané ohodnocení v splňuje ϕ. Kdyby ne, existovaly by v Gϕ hrany p q a q p s v(p) = 1 a v(q) = 0. To je ve sporu s pořadím nastavení komponent na 0 resp. 1, nebot p < q a q < p. Důsledek 2-SAT je řešitelný v lineárním čase. Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/ / 16
5 Horn-SAT Horn-SAT Jednotková klauzule je klauzule obsahující jediný literál, Hornova klauzule je klauzule obsahující nejvýše jeden pozitivní literál, p 1 p n q (p 1 p n ) q Hornův výrok je konjunkcí Hornových klauzulí, Horn-SAT je problém splnitelnosti daného Hornova výroku. Algoritmus (1) obsahuje-li ϕ dvojici jednotkových klauzulí l a l, není splnitelný, (2) obsahuje-li ϕ jednotkovou klauzuli l, nastav l na 1, odstraň všechny klauzule obsahující l, odstraň l ze všech klauzulí a opakuj od začátku, (3) neobsahuje-li ϕ jednotkovou klauzuli, je splnitelný ohodnocením 0 všech zbývajících proměnných. Krok (2) se nazývá jednotková propagace. Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/ / 16
6 Horn-SAT Jednotková propagace ( p q) ( p q r) ( r s) ( t s) s v(s) = 1 ( p q) ( p q r) r v( r) = 1 ( p q) ( p q) v(p) = v(q) = v(t) = 0 Pozorování Necht ϕ l je výrok získaný z ϕ jednotkovou propagací. Pak ϕ l je splnitelný, právě když ϕ je splnitelný. Důsledek Algoritmus je korektní (řeší Horn-SAT). Důkaz Korektnost 1. kroku je zřejmá, v 2. kroku plyne z pozorování, v 3.kroku díky Hornově tvaru, nebot každá zbývající klauzule obsahuje negativní literál. Poznámka Přímočará implementace vyžaduje kvadratický čas, při vhodné reprezentaci v paměti lze dosáhnout lineárního času (vzhledem k délce ϕ). Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/ / 16
7 Teorie - sémantika Teorie Neformálně, teorie je popis světa, na který vymezujeme svůj diskurz. Výroková teorie nad jazykem P je libovolná množina T výroků z VF P. Výrokům z T říkáme axiomy teorie T. Model teorie T nad P je ohodnocení v M(P) (tj. model jazyka), ve kterém platí všechny axiomy z T, značíme v = T. Třída modelů T je M P (T ) = {v M(P) v = ϕ pro každé ϕ T }. Např. pro teorii T = {p, p q, q r} nad P = {p, q, r} je M P (T ) = {(1, 0, 0), (1, 0, 1)} Je-li teorie T konečná, lze ji nahradit konjunkcí jejích axiomů. Zápis M(T, ϕ) značí M(T {ϕ}). Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/ / 16
8 Teorie - sémantika Sémantika vzhledem k teorii Sémantické pojmy zobecníme vzhledem k teorii, respektive k jejím modelům. Necht T je teorie nad P. Výrok ϕ nad P je pravdivý v T (platí v T ), pokud platí v každém modelu T, značíme T = ϕ, Říkáme také, že ϕ je (sémantickým) důsledkem teorie T. lživý v T (sporný v T ), pokud neplatí v žádném modelu teorie T, nezávislý v T, pokud platí v nějakém modelu teorie T a neplatí v jiném, splnitelný v T (konzistentní s T ), pokud platí v nějakém modelu T. Výroky ϕ a ψ jsou ekvivalentní v T (T -ekvivalentní), psáno ϕ T ψ, pokud každý model teorie T je modelem ϕ právě když je modelem ψ. Poznámka Jsou-li všechny axiomy teorie T pravdivé (tautologie), např. pro T =, všechny pojmy vzhledem k T se shodují s původními (logickými) pojmy. Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/ / 16
9 Teorie - sémantika Důsledek teorie Důsledek teorie T nad P je množina θ P (T ) všech výroků pravdivých v T, tj. θ P (T ) = {ϕ VF P T = ϕ}. Tvrzení Pro každé dvě teorie T, T a výroky ϕ, ϕ 1,..., ϕ n nad P (1) T θ P (T ) = θ P (θ P (T )), (2) T T θ P (T ) θ P (T ), (3) ϕ θ P ({ϕ 1,..., ϕ n }) = (ϕ 1... ϕ n ) ϕ. Důkaz Snadno z definic, nebot T = ϕ M(T ) M(ϕ) a navíc (1) M(θ(T )) = M(T ), (2) T T M(T ) M(T ), (3) = ψ ϕ M(ψ) M(ϕ), M(ϕ 1... ϕ n ) = M(ϕ 1,..., ϕ n ). Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/ / 16
10 Teorie - sémantika Vlastnosti teorií Výroková teorie T nad P je (sémanticky) sporná, jestliže v ní platí (spor), jinak je bezesporná (splnitelná), kompletní, jestliže není sporná a každý výrok je v ní pravdivý či lživý, tj. žádný výrok v ní není nezávislý, extenze teorie T nad P, jestliže P P a θ P (T ) θ P (T ), o extenzi T teorie T řekneme, že je jednoduchá, pokud P = P, a konzervativní, pokud θ P (T ) = θ P (T ) VF P, ekvivalentní s teorií T, jestliže T je extenzí T a T je extenzí T, Pozorování Necht T a T jsou teorie nad P. Teorie T je (sémanticky) (1) bezesporná, právě když má model, (2) kompletní, právě když má jediný model, (3) extenze T, právě když M P (T ) M P (T ), (4) ekvivalentní s T, právě když M P (T ) = M P (T ). Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/ / 16
11 Teorie - sémantika Algebra výroků Necht T je bezesporná teorie nad P. Na množině VF P / T lze zadefinovat operace,,,, (korektně) pomocí reprezentantů, např. [ϕ] T [ψ] T = [ϕ ψ] T Pak AV P (T ) = VF P / T,,,,, je algebra výroků vzhledem k T. Jelikož ϕ T ψ M(T, ϕ) = M(T, ψ), je h([ϕ] T ) = M(T, ϕ) korektně definovaná prostá funkce h : VF P / T P(M(T )) a platí h( [ϕ] T ) = M(T ) \ M(T, ϕ) h([ϕ] T [ψ] T ) = M(T, ϕ) M(T, ψ) h([ϕ] T [ψ] T ) = M(T, ϕ) M(T, ψ) h([ ] T ) =, h([ ] T ) = M(T ) Navíc h je na, pokud M(T ) je konečná. Důsledek Je-li T bezesporná nad konečnou P, je AV P (T ) Booleova algebra izomorfní s (konečnou) potenční algebrou P(M(T )) via h. Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/ / 16
12 Teorie - sémantika Analýza teorií nad konečně prvovýroky Necht T je bezesporná teorie nad P, kde P = n N + a m = M P (T ). Pak neekvivalentních výroků (popř. teorií) nad P je 2 2n, neekvivalentních výroků nad P pravdivých (lživých) v T je 2 2n m, neekvivalentních výroků nad P nezávislých v T je 2 2n 2.2 2n m, neekvivalentních jednoduchých extenzí teorie T je 2 m, z toho sporná 1, neekvivalentních kompletních jednoduchých extenzí teorie T je m, T -neekvivalentních výroků nad P je 2 m, T -neekvivalentních výroků nad P pravdivých (lživých) (v T ) je 1, T -neekvivalentních výroků nad P nezávislých (v T ) je 2 m 2. Důkaz Díky bijekci VF P / resp. VF P / T s P(M(P)) resp. P(M P (T )) stačí zjistit počet podmnožin s vhodnou vlastností. Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/ / 16
13 Dokazovací systémy Formální dokazovací systémy Naším cílem je přesně formalizovat pojem důkazu jako syntaktické procedury. Ve (standardních) formálních dokazovacích systémech, důkaz je konečný objekt, může vycházet z axiomů dané teorie, T ϕ značí, že ϕ je dokazatelná z T, pokud důkaz dané formule existuje, lze ho nalézt algoritmicky, (Je-li T rozumně zadaná.) Od formálního dokazovacího systému obvykle očekáváme, že bude korektní, tj. každá formule ϕ dokazatelná z teorie T je v T pravdivá, nejlépe i úplný, tj. každá formule ϕ pravdivá v T je z T dokazatelná. Příklady formálních dokazovacích systémů (kalkulů): tablo metody, Hilbertovské systémy, Gentzenovy systémy, systémy přirozené dedukce. Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/ / 16
14 Tablo metoda Úvod Tablo metoda - úvod Budeme předpokládat, že jazyk je pevný a spočetný, tj. množina prvovýroků P je spočetná. Pak každá teorie nad P je spočetná. Hlavní rysy tablo metody (neformálně) tablo pro danou formuli ϕ je binární značkovaný strom reprezentující vyhledávání protipříkladu k ϕ, tj. modelu teorie, ve kterém ϕ neplatí, formule má důkaz, pokud každá větev příslušného tabla selže, tj. nebyl nalezen protipříklad, v tom případě bude (systematické) tablo konečné, pokud protipříklad existuje, v (dokončeném) tablu bude větev, která ho poskytuje, tato větev může být i nekonečná. Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/ / 16
15 Tablo metoda Úvod Úvodní příklady F (((p q) p) p) T ((p q) p) F p T ((p q) p) F (( q p) p) T ( q p) F p T ( q p) F (p q) T p T ( q) T p F (p q) T ( q) T p F q F q Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/ / 16
16 Tablo metoda Úvod Komentář k příkladům Vrcholy tabla jsou značeny položkami. Položka je formule s příznakem T / F, který reprezentuje předpoklad, že formule v nějakém modelu platí / neplatí. Je-li tento předpoklad u položky správný, je správný i v nějaké větvi pod ní. V obou příkladech jde o dokončená (systematická) tabla z prázdné teorie. Vlevo je tablo důkaz pro ((p q) p) p. Všechny větve tabla selhaly, značeno, nebot je na nich dvojice T ϕ, Fϕ pro nějaké ϕ (protipříklad tedy nelze nalézt). Formule má důkaz, píšeme ((p q) p) p Vpravo je (dokončené) tablo pro ( q p) p. Levá větev neselhala a je dokončená (není třeba v ní pokračovat) (ta poskytuje protipříklad v(p) = v(q) = 0). Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/ / 16
Výroková a predikátová logika - III
Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2014/2015 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2014/2015 1 / 21 Výroková logika Horn-SAT Horn-SAT Jednotková
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2013/2014 1 / 20 Základní syntax Jazyk Výroková logika je logikou
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou
Výroková a predikátová logika - IV
Výroková a predikátová logika - IV Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IV ZS 2018/2019 1 / 17 Tablo metoda Tablo Tablo - příklady F (((p q)
Výroková a predikátová logika - VII
Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2013/2014 1 / 21 Sémantika PL Teorie Vlastnosti teorií Teorie
Výroková a predikátová logika - V
Výroková a predikátová logika - V Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - V ZS 2015/2016 1 / 21 Dokazovací systémy VL Hilbertovský kalkul Hilbertovský
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce
Výroková a predikátová logika - VII
Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2018/2019 1 / 15 Platnost (pravdivost) Platnost ve struktuře
Výroková a predikátová logika - IX
Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2018/2019 1 / 13 Dokončené tablo Chceme, aby dokončená bezesporná
Výroková a predikátová logika - IX
Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2013/2014 1 / 15 Korektnost a úplnost Důsledky Vlastnosti teorií
Výroková a predikátová logika - VIII
Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2017/2018 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule
Výroková a predikátová logika - VIII
Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2016/2017 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2016/2017 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule
Výroková a predikátová logika - IX
Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2015/2016 1 / 16 Tablo metoda v PL Důsledky úplnosti Vlastnosti
Výroková a predikátová logika - XI
Výroková a predikátová logika - XI Petr Gregor KTIML MFF UK ZS 2014/2015 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XI ZS 2014/2015 1 / 21 Další dokazovací systémy PL Hilbertovský kalkul
Výroková a predikátová logika - XIII
Výroková a predikátová logika - XIII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XIII ZS 2013/2014 1 / 13 Úvod Algoritmická (ne)rozhodnutelnost Které
Výroková a predikátová logika - XII
Výroková a predikátová logika - XII Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XII ZS 2015/2016 1 / 15 Algebraické teorie Základní algebraické teorie
Výroková a predikátová logika - XII
Výroková a predikátová logika - XII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XII ZS 2018/2019 1 / 15 Rezoluční metoda v PL Rezoluční důkaz Obecné
Výroková a predikátová logika - X
Výroková a predikátová logika - X Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - X ZS 2018/2019 1 / 16 Rozšiřování teorií Extenze o definice Rozšiřování
Výroková a predikátová logika - VI
Výroková a predikátová logika - VI Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VI ZS 2017/2018 1 / 24 Predikátová logika Úvod Predikátová logika Zabývá
Matematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Splnitelnost množin Definice Množina
Systém přirozené dedukce výrokové logiky
Systém přirozené dedukce výrokové logiky Korektnost, úplnost a bezespornost Šárka Vavrečková Ústav informatiky, FPF SU Opava Poslední aktualizace: 6. října 2008 Věta o korektnosti Věta (O korektnosti Systému
Výroková a predikátová logika - XIV
Výroková a predikátová logika - XIV Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XIV ZS 2018/2019 1 / 20 Nerozhodnutelnost Úvod Rekurzivní a rekurzivně
Základy logiky a teorie množin
Pracovní text k přednášce Logika a teorie množin (I/2007) 1 1 Struktura přednášky Matematická logika 2 Výroková logika Základy logiky a teorie množin Petr Pajas pajas@matfyz.cz Predikátová logika 1. řádu
Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.
Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní
Výroková logika - opakování
- opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α
Logika. 6. Axiomatický systém výrokové logiky
Logika 6. Axiomatický systém výrokové logiky RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216,
Výroková a predikátová logika Výpisky z cvičení Martina Piláta
Výroková a predikátová logika Výpisky z cvičení Martina Piláta Jan Štětina 1. prosince 2009 Cviˇcení 29.9.2009 Pojem: Sekvence je konečná posloupnost, značíme ji predikátem seq(x). lh(x) je délka sekvence
Výroková logika. Teoretická informatika Tomáš Foltýnek
Výroková logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Co je to formalismus a co je jeho cílem? Formulujte Russelův paradox
Matematická logika. Miroslav Kolařík
Matematická logika přednáška třetí Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
Výroková a predikátová logika - I
Výroková a predikátová logika - I Petr Gregor KTIML MFF UK ZS 2019/2020 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - I ZS 2019/2020 1 / 19 K čemu je logika? Pro matematiky: matematika o matematice.
Predik atov a logika - pˇredn aˇska () Predik atov a logika - pˇredn aˇska / 16
Predikátová logika - přednáška 3 6. 1. 2015 () Predikátová logika - přednáška 3 6. 1. 2015 1 / 16 Věta (o dedukci) Bud L jazyk, T teorie pro L, ϕ L-sentence a ψ L-formule. Pak Věta (o kompaktnosti) T ϕ
Formální systém výrokové logiky
Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)
postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy
Formální systémy (výrokové) logiky postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy cíl: získat formální teorii jako souhrn dokazatelných
Matematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Sémantická věta o dedukci Věta Pro
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 204 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Rezoluční kalkulus pro výrokovou logiku
AD4M33AU Automatické uvažování Rezoluční kalkulus pro výrokovou logiku Petr Pudlák Výroková logika Výhody Jednoduchý jazyk. Rozhodnutelnost dokazatelnosti i nedokazatelnosti. Rychlejší algoritmy. Nevýhody
Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1
Negativní informace Petr Štěpánek S použitím materiálu M.Gelfonda a V. Lifschitze 2009 Logické programování 15 1 Negace jako neúspěch Motivace: Tvrzení p (atomická formule) neplatí, jestliže nelze odvodit
Výroková a predikátová logika - X
Výroková a predikátová logika - X Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - X ZS 2015/2016 1 / 22 Herbrandova věta Úvod Redukce nesplnitelnosti na
3.10 Rezoluční metoda ve výrokové logice
3.10. Rezoluční metoda ve výrokové logice [070405-1102 ] 27 3.10 Rezoluční metoda ve výrokové logice Rezoluční metoda rozhoduje, zda daná množina klausulí je splnitelná nebo je nesplnitelná. Tím je také
vhodná pro strojové dokazování (Prolog) metoda založená na vyvracení: dokazuje se nesplnitelnost formulí
Rezoluce: další formální systém vhodná pro strojové dokazování (Prolog) metoda založená na vyvracení: dokazuje se nesplnitelnost formulí pracujeme s formulemi v nkf (též klauzulárním tvaru), ale používáme
Sémantika výrokové logiky. Alena Gollová Výroková logika 1/23
Výroková logika Alena Gollová Výroková logika 1/23 Obsah 1 Formule výrokové logiky 2 Alena Gollová Výroková logika 2/23 Formule výrokové logiky Výrok je oznamovací věta, o jejíž pravdivosti lze rozhodnout.
10. Techniky formální verifikace a validace
Fakulta informačních technologií MI-NFA, zimní semestr 2011/2012 Jan Schmidt EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI 10. Techniky formální verifikace a validace 1 Simulace není
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 206 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
2.2 Sémantika predikátové logiky
14 [101105-1155] 2.2 Sémantika predikátové logiky Nyní se budeme zabývat sémantikou formulí, tj. jejich významem a pravdivostí. 2.2.1 Interpretace jazyka predikátové logiky. Interpretace predikátové logiky
Predikátová logika. Z minula: 1. jazyk logiky 1. řádu. 2. term a formule. 3. interpretace jazyka (relační struktura) 4. Tarského definice pravdy
1 Predikátová logika Z minula: 1. jazyk logiky 1. řádu 2. term a formule 3. interpretace jazyka (relační struktura) 4. Tarského definice pravdy 5. vázané a volné výskyty proměnných ve formuli 6. otevřené
Hilbertovský axiomatický systém
Hilbertovský axiomatický systém Predikátová logika H 1 Šárka Vavrečková Ústav informatiky, FPF SU Opava Poslední aktualizace: 24. října 2008 Specifikace H 1 Jazyk L H1 přejímáme jazyk predikátové logiky
teorie logických spojek chápaných jako pravdivostní funkce
Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových
Výroková logika syntaxe a sémantika
syntaxe a sémantika Jiří Velebil: AD0B01LGR 2015 Handout 01: & sémantika VL 1/16 1 Proč formální jazyk? 1 Přirozené jazyky jsou složité a často nejednoznačné. 2 Komunikace s formálními nástroji musí být
Matematická analýza 1
Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod
Cvičení Aktivita 1. část 2. část 3. část Ústní Celkem Známka
Celkové hodnocení BI-MLO (nevyplňujte!) Semestr Zkouška Cvičení Aktivita 1. část 2. část 3. část Ústní Celkem Známka BI-MLO Písemná zkouška 9. února 2016 Matematická logika FIT ČVUT v Praze Varianta B
Matematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 18 Příklad Necht L je jazyk obsahující
Přijímací zkouška - matematika
Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,
Logika. 5. Rezoluční princip. RNDr. Luděk Cienciala, Ph. D.
Logika 5. Rezoluční princip RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216,
Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α
1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny
Logika a logické programování
Logika a logické programování témata ke zkoušce Poslední aktualizace: 16. prosince 2009 Zkouška je písemná, skládá se obvykle ze sedmi otázek (může být více nebo méně, podle náročnosti otázek), z toho
Obsah Předmluva Rekapitulace základních pojmů logiky a výrokové logiky Uvedení do predikátové logiky...17
Obsah Předmluva...3 0. Rekapitulace základních pojmů logiky a výrokové logiky...11 0.1 Logika jako věda o vyplývání... 11 1. Uvedení do predikátové logiky...17 1.1 Základní terminologie... 17 1.2 Základní
1 Výroková logika 1. 2 Predikátová logika 3. 3 Důkazy matematických vět 4. 4 Doporučená literatura 7
1 Výroková logika 1 Výroková logika 1 2 Predikátová logika 3 3 Důkazy matematických vět 4 4 Doporučená literatura 7 Definice 1.1 Výrokem rozumíme každé sdělení, o kterém má smysl uvažovat, zda je, či není
10 Přednáška ze
10 Přednáška ze 17. 12. 2003 Věta: G = (V, E) lze nakreslit jedním uzavřeným tahem G je souvislý a má všechny stupně sudé. Důkaz G je souvislý. Necht v je libovolný vrchol v G. A mějme uzavřený eurelovský
5 Orientované grafy, Toky v sítích
Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost
Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce
Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Marie Duží marie.duzi@vsb.cz 1 Úvod do teoretické informatiky (logika) Naivní teorie množin Co je to množina? Množina je soubor prvků
Rezoluční kalkulus pro logiku prvního řádu
AD4M33AU Automatické uvažování Rezoluční kalkulus pro logiku prvního řádu Petr Pudlák Logika prvního řádu (Někdy nepřesně nazývaná predikátová logika.) Výhody Vyšší vyjadřovací schopnost jazyka, V podstatě
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta.
6 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info množina vrcholů a množina hran hrana vždy spojuje
Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...
Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -
Predikátová logika: Axiomatizace, sémantické stromy, identita. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
Predikátová logika: Axiomatizace, sémantické stromy, identita (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/28.0216 2013 1 / 13 Axiomatizace predikátové logiky Axiomatizace predikátové logiky Definice Hilbertovský
Stromové rozklady. Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom,
Stromové rozklady Zdeněk Dvořák 25. října 2017 Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom, β je funkce přiřazující každému vrcholu T podmnožinu vrcholů v G, pro každé
NAIVNÍ TEORIE MNOŽIN, okruh č. 5
NAIVNÍ TEORIE MNOŽIN, okruh č. 5 Definování množiny a jejích prvků Množina je souhrn nějakých věcí. Patří-li věc do množiny X, říkáme, že v ní leží, že je jejím prvkem nebo že množina X tuto věc obsahuje.
4.2 Syntaxe predikátové logiky
36 [070507-1501 ] 4.2 Syntaxe predikátové logiky V tomto oddíle zavedeme syntaxi predikátové logiky, tj. uvedeme pravidla, podle nichž se tvoří syntakticky správné formule predikátové logiky. Význam a
Matematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 20 Predikátová logika Motivace Výroková
Logický důsledek. Petr Kuchyňka (7765@mail.muni.cz)
Logický důsledek Petr Kuchyňka (7765@mail.muni.cz) Úvod P 1 Logický důsledek je hlavním předmětem zájmu logiky. Je to relace mezi premisami a závěry logicky platných úsudků: v logicky platném úsudku závěr
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Úvod do TI - logika Výroková logika - pokračování (3.přednáška) Marie Duží
Úvod do TI - logika Výroková logika - pokračování (3.přednáška) Marie Duží marie.duzi@vsb.cz Normální formy formulí výrokové logiky Každé formuli výrokové logiky přísluší právě jedna pravdivostní funkce,
Predikátová logika. Teoretická informatika Tomáš Foltýnek
Predikátová logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz strana 2 Opakování z minulé přednášky Z čeho se skládá jazyk výrokové logiky? Jaká jsou schémata pro axiomy VL? Formulujte
Logika. 2. Výroková logika. RNDr. Luděk Cienciala, Ph. D.
Logika 2. Výroková logika RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216, Logika:
Modely Herbrandovské interpretace
Modely Herbrandovské interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 8 1 Uvedli jsme termové interpretace a termové modely pro logické programy a také nejmenší
Unární je také spojka negace. pro je operace binární - příkladem může být funkce se signaturou. Binární je velká většina logických spojek
Otázka 06 - Y01MLO Zadání Predikátová logika, formule predikátové logiky, sentence, interpretace jazyka predikátové logiky, splnitelné sentence, tautologie, kontradikce, tautologicky ekvivalentní formule.
Predikátová logika dokončení
Predikátová logika dokončení Jiří Velebil: X01DML 1. října 2010: Predikátová logika dokončení 1/18 Syntaktická analýza Jako ve výrokové logice (syntaktické stromy). Každý list úspěšného stromu je obsazen
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška první Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Co a k čemu je logika? 2 Výroky a logické spojky
Sémantika predikátové logiky
Sémantika predikátové logiky pro analýzu sémantiky potřebujeme nejprve specifikaci jazyka (doména, konstanty, funkční a predikátové symboly) příklad: formální jazyk s jediným binárním predikátovým symbolem
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška pátá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní
LOGIKA VÝROKOVÁ LOGIKA
LOGIKA Popisuje pravidla odvozování jedněch tvrzení z druhých. Je to myšlenková cesta ke správným závěrům. Vznikla jako součást filosofie. Zakladatelem byl Aristoteles. VÝROKOVÁ LOGIKA Obsahuje syntaktická,
1 Pravdivost formulí v interpretaci a daném ohodnocení
1 Pravdivost formulí v interpretaci a daném ohodnocení Než uvedeme konkrétní příklady, zopakujme si definici interpretace, ohodnocení a pravdivosti. Necht L je nějaký jazyk. Interpretaci U, jazyka L tvoří
Další (neklasické) logiky. Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20
Predikátová logika Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20 Jazyk predikátové logiky Má dvě sorty: 1 Termy: to jsou objekty, o jejichž vlastnostech chceme hovořit. Mohou být proměnné. 2 Formule:
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
YZTI - poznámky ke složitosti
YZTI - poznámky ke složitosti LS 2018 Abstrakt Poznámky k přednášce YZTI zabývající se složitostí algoritmických problémů a teorií NP-úplnosti. Složitost algoritmu a problému Zabýváme se už pouze rekurzivními
Třídy složitosti P a NP, NP-úplnost
Třídy složitosti P a NP, NP-úplnost Cíle přednášky: 1. Definovat, za jakých okolností můžeme problém považovat za efektivně algoritmicky řešitelný. 2. Charakterizovat určitou skupinu úloh, pro které není
Logické programy Deklarativní interpretace
Logické programy Deklarativní interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 7 1 Algebry. (Interpretace termů) Algebra J pro jazyk termů L obsahuje Neprázdnou
Řešení: Ano. Řešení: Ne.
1 ÚLOHY Z PREDIKÁTOVÉ LOGIKY Instance, varianty. UF.1.1. Substituovatelnost. 1. Buď ϕ formule ( z)(x=z)&y < x a dále x, y, z různé proměnné, F unární funkční symbol, c konstantní symbol. Uveďte, zda je
Marie Duží
Marie Duží marie.duzi@vsb.cz Normální formy formulí výrokové logiky Každé formuli výrokové logiky přísluší právě jedna pravdivostní funkce, zobrazení {p, q, r } {0, 1} (pravdivostní tabulka). Naopak však
Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.
Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy
H {{u, v} : u,v U u v }
Obyčejný graf Obyčejný graf je dvojice G= U, H, kde U je konečná množina uzlů (vrcholů) a H {{u, v} : u,v U u v } je (konečná) množina hran. O hraně h={u, v} říkáme, že je incidentní s uzly u a v nebo
Úvod do výrokové a predikátové logiky
Úvod do výrokové a predikátové logiky Eva Ondráčková Na této přednášce se seznámíte se základy výrokové a predikátové logiky. Zjistíte, že podstatou logiky není vyplňování pravdivostních tabulek ani negování
Matematická logika. Miroslav Kolařík
Matematická logika přednáška šestá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
Matematická logika. Lekce 1: Motivace a seznámení s klasickou výrokovou logikou. Petr Cintula. Ústav informatiky Akademie věd České republiky
Matematická logika Lekce 1: Motivace a seznámení s klasickou výrokovou logikou Petr Cintula Ústav informatiky Akademie věd České republiky www.cs.cas.cz/cintula/mal Petr Cintula (ÚI AV ČR) Matematická
Problémy třídy Pa N P, převody problémů
Problémy třídy Pa N P, převody problémů Cvičení 1. Rozhodněte o příslušnosti následujících problémů do tříd Pa N P(N PCověříme později): a)jedanýgrafsouvislý? danýproblémjeztřídy P,řešíhonapř.algoritmyDFS,BFS.
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 11 METODY VERIFIKACE SYSTÉMŮ NA ČIPU Hana Kubátov vá doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta 1 informačních
(zkráceně jen formule), jestliže vznikla podle následujících pravidel:
1 Kapitola 1 Výroková logika 1.1 Výroky 1.1.1 Výroky. Máme danou neprázdnou množinu A tzv. elementárních výroků (též jim říkáme logické nebo výrokové proměnné). Konečnou posloupnost prvků z množiny A,
7 Jemný úvod do Logiky
7 Jemný úvod do Logiky Základem přesného matematického vyjadřování je správné používání (matematické) logiky a logických úsudků. Logika jako filozofická discipĺına se intenzivně vyvíjí už od dob antiky,
NP-ÚPLNÉ PROBLÉMY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
NP-ÚPLNÉ PROBLÉMY Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 13 Evropský sociální fond Praha & EU: Investujeme do
Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část
Matematika I 1/15 2/15 Organizace Zápočet: test 6. + 11. týden semestru (pátek) 80 bodů 50 79 bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část www.vscht.cz/mat Výuka www.vscht.cz/mat/jana.nemcova