Laboratoř analýz a modifikace látek iontovými svazky Ústavu jaderné fyziky AV ČR
|
|
- Ladislav Pospíšil
- před 8 lety
- Počet zobrazení:
Transkript
1 Laboratoř analýz a modifikace látek iontovými svazky Ústavu jaderné fyziky AV ČR 1. Kapitola ÚVOD Účelem této publikace je stručná informace o aktivitách skupiny nukleárních analytických metod v Ústavu jaderné fyziky AV ČR a zejména možnostech využití nového urychlovače typu Tandetron 4130 MC, který bude uveden do provozu počátkem r V následujícím období bude urychlovač postupně doplněn dalším experimentálním zařízením umožňujícím jeho efektivní využití. Nový urychlovač představuje moderní, universální zařízení využitelné v mnoha oblastech základního a aplikovaného výzkumu a při školení studentů v oborech jaderná fyzika, jaderné analytické metody, modifikace látek iontovými svazky, radiační chemie, dozimetrie ionizujícího záření, radiobiologie a materiálový výzkum. Ústav jaderné fyziky má mimořádný zájem na efektivním a mnohostranném využití nového urychlovače a vyzývá studenty a zainteresované vědecké pracovníky k účasti na budování experimentálních zařízení a na jejich budoucím provozování. Počátek rozvoje a širšího využití jaderných analytických metod v Ústavu jaderné fyziky AV ČR spadá do první poloviny 60. let minulého století. Jednalo se především o neutronovou aktivační analýzu a o promptní metody analýzy na svazcích neutronů a nabitých částic. Během uplynulého období byla zavedena řada analytických metod, získány praktické zkušenosti s jejich aplikací a navázána spolupráce s mnoha českými a zahraničními výzkumnými pracovišti. Svazky urychlených iontů se využívají k modifikaci povrchových vrstev pevných látek a pro analýzu jejich složení a struktury. Tyto metody mají řadu unikátních vlastností pro které nemohou být nahrazeny jinými alternativními postupy. V Ústavu jaderné fyziky AV ČR (ÚJF) se pro tyto účely zatím využívá elektrostatický urychlovač Van de Graaffova typu. V průběhu posledních 10 letech byly v ÚJF vybudovány aparatury pro analýzy metodami protonové fluorescenční analýzy (PIXE), pružným rozptylem nabitých částic (RBS, ERDA) a různými jadernými reakcemi (PIGE, NRM) a byly získány značné praktické zkušenosti s využitím těchto analytických postupů v základním a aplikovaném výzkumu. Široce pojatý interdisciplinární výzkum se provádí v těsné spolupráci se specializovanými pracovišti v ČR a v zahraničí. Dosavadní činnost je zaměřena zejména na sledování procesů vytváření tenkých vrstev a vrstevnatých struktur s význačnými mechanickými, elektrickými, magnetickými, optickými, chemickými a biologickými vlastnostmi a na studium fyzikálních a chemických procesů, které v nich probíhají. Pozornost se věnuje analýze vzorků životního prostředí, biologických objektů a vzorků pro lékařský výzkum. Při využití iontových svazků pro analýzy a modifikaci látek dosahuje ÚJF srovnatelné mezinárodní úrovně. Skupina jaderných analytických metod ÚJF AV ČR se systematicky podílí na studiu syntézy, struktury a vlastností progresivních materiálů pro mikroelektroniku, optiku, optoelektroniku, kryogeniku a materiálů s význačnými vlastnostmi (mikrotvrdost, chemická odolnost, biokompatibilita a pod.). Povrchové struktury a systémy připravované ve spolupráci
2 s našimi a zahraničními pracovišti různými metodami (epitaxní růst, Czochralskiho metoda, iontová implantace, plasmová deposice, chemická deposice, CVD, magnetronové naprašování, atp.) jsou na našem pracovišti analyzovány metodami RBS (Rutherford Backscattering Spectrometry), ERDA (Elastic Recoil Detection Analysis), PIXE (Particle Induced X-ray Emission), PIGE (Particle Induced Gamma Ray Emission). Analýzy prováděné v ÚJF jsou nepostradatelné pro vývoj nových progresivních materiálů. Pro udržení dosavadní úrovně a dalšího pokroku v oblasti modifikace látek iontovými svazky a jejich analýz nukleárními metodami byl zakoupen nový elektrostatický urychlovač typu Tandetron 4130 MC od firmy High Voltage Engineering Europa B.V., který bude uveden do provozu počátkem r Urychlovač bude poskytovat svazky iontů od vodíku po zlato s intovými toky do desítek µa a energiemi od stovek kev do desítek MeV Obrázek 1: Urychlovač Tandetron 4130 MC s iontovými trasami. Nový urychlovač,. jediný svého druhu v ČR, umožní podstatným způsobem rozšířit dosavadní analytické možnosti, zavést nové způsoby modifikace látek a syntézy nových materiálů a struktur. Otevře nové možnosti v základním a aplikovaném výzkumu v jaderné a atomové fyzice, v radiační chemii a biologii. V souvislosti s instalací nového urychlovače počítáme v budoucnosti s omezením analytického servisu a posílením výzkumu zejména v oblastech materiálového inženýrství, radiobiologie, radiační chemie a interakce nabitých částic s prostředím. V současné době vybavujeme naše pracoviště dalšími zařízeními pro deposici tenkých vrstev a pro sledování fyzikálně-chemických procesů v povrchových vrstvách látek in situ. Hodláme spolupracovat s tradičními i novými partnery, kteří mohou zajistit přípravu materiálů a struktur speciálními metodami, které nejsou v ÚJF k disposici. Tato pracoviště rovněž zajišťují diagnostiku materiálů komplementárními metodami optické spektroskopie (FTIR, UV-VIS, Ramanovská spektroskopie), elektronové mikroskopie (HRTEM, SEM), atomové tunelovací mikroskopie (AFM), elektronové spektrometrie (XPS), difrakce RTG záření a neutronových svazků a klasickým měřením elektrických parametrů a povrchové polarity.
3 2. Kapitola STÁVAJÍCÍ JADERNÉ ANALYTICKÉ METODY 2.1 Rutherford Back-Scattering spectrometry (RBS) Metoda RBS je nedestruktivní analytické technika, která je hojně využívána pro studium tenkých, řádově nm, vrstev až po multi-vrstevnaté systémy o tloušťce desítek mikrometrů. Rovněž je vhodná pro studium bulkových materiálů jak amorfních tak krystalických, které jsou připravovány nejrůznějšími metodami. Metoda RBS je založená na registraci energetických spekter pružně rozptýlených částic viz. obrázek 2. Tato metoda je vhodná pro nedestruktivní stanovení hloubkových koncentračních profilů prakticky všech prvků. Těžké ionty z nového urychlovače umožní dosáhnout lepšího hmotnostního a hloubkového rozlišení, což je významné pro uplatnění metody RBS v moderních nanotechnologiích. Velké spektrum urychlovaných iontů umožní optimalizaci analytického postupu pro každý konkrétní materiál. RBS je založena na principu pružného odrazu iontů, jejichž spektrum detekujeme polovodičovými detektory s povrchovou bariérou. Obrázek 2. Pružný rozptyl iontů s hmotností M 1 na jádrech s hmotností M 2. θ r úhel zpětného rázu a θ úhel rozptylu.
4 Obrázek 3. Schéma rozptylu nabité částice na atomu ležícím v hloubce x pod povrchem vzorku ve vrstvě se složením A m B a, která je depoována na lehčím substrátu. Svazek nabitých částic s energií E 0 dopadá šikmo pod úhlem α vzhledem k normále k povrchu vzorku a rozptýlené částice se registrují detektorem umístěným pod úhlem β. V hloubce x se dopadající částice s okamžitou energií E 1 pružně rozptyluje, těsně po rozptylu má energii E 2 a při vstupu do detektoru energii E 3. Ω je prostorový úhel detektoru. Ve výřezu je schematicky znázorněno příslušné RBS spektrum. Velikost energie zpětně odražených iontů, které detekujeme pod určitým úhlem, je ovlivněna ztrátou energie vlivem změny hybnosti při srážce s jádrem atomu vzorku a ztrátě energie způsobené průchodem částice v krystalové mřížce vzorku. Detekční limity metody RBS se pohybují v rozmezí atomů/cm 2, hloubkové rozlišení průměrně činí 10 nm, ve vhodné geometrii měření může být i zlepšeno. Hmotností rozlišení může být výrazně zlepšeno použitím těžších iontů, které bude poskytovat nový Tandetron.
5 Příklady použití metody RBS Planární optické vlnovody ve sklech, využívané jako základní komponenty v integrovaných optických strukturách jako multiplexory, splittery atd., mají celou řadu výhod. Sklo je relativně levný materiál, má transparentní vlastnosti, vysoký práh optického poškození a je dostupný i ve větších rozměrech. Optické vlastnosti jsou získány dopací laserově aktivních iontů např. Er 3+ metodou difůze s použitím elektrického pole, kdy tento iont difunduje do skla a vytváří tak obohacenou vrstvu využitelnou jako planární vlnovod v oblasti laserových vlnových délek. Na obrázku 4 vidíme vlevo RBS spektrum skla, které neobsahuje těžké příměsi, a signál od erbia, které nadifundovalo do určité hloubky. Použitá geometrie měření je naznačena nahoře uprostřed. Z RBS spektra můžeme pomocí softwaru GISA extrahovat hloubkové profily koncentrace Er ve skle. Vpravo vidíme hloubkové profily pro dva vzorky u nichž se lišili podmínky difůze asistované elektrickým polem a hloubkové profily Er pro tytéž vzorky, které byly žíhány při teplotě 550 C. Při zvýšené teplotě se Er ionty dostávají hlouběji do skla. Obrázek 4 Difůze Er 3+ laserově aktivních iontů do skla, hloubkové profily Er.
6 Metodou RBS také zkoumáme zajímavou problematiku interakce kovů a polymerů. Polymery mají velmi široké uplatnění díky svým různorodým vlastnostem. Metalizované polymery jsou velmi perspektivní pro použití v mikroelektronice. Výzkum byl zaměřen na studium mobility kovových klastrů event. nano-klastrů v polymerní matrici v souvislosti s jejich elektrickými vlastnostmi. RBS měření nám poskytne informaci o hloubkovém profilu Ag do polymeru PET viz. obrázek, z něhož lze extrahovat difůzní koeficienty charakterizující aktivitu kovových částic v polymeru. Difůzní koeficienty jsou vyneseny v Arrheniově grafu v závislosti na reciproké teplotě viz. obrázek nežíhaný cetnost ºC 50ºC ºC císlo kanálu Obrázek 5. Vlevo- RBS spektrum odpovídající Ag signálu měnící se s teplotou. Vpravo- Odpovídající extrahované difůzní koeficienty Ag v PET pro jednotlivé teploty Elastic Recoil Detection Analysis (ERDA) Metoda ERDA je založena na detekci atomů vyražených dopadajícími ionty. Při vhodně zvolené geometrii viz. Obr 4 lze detekovat vyražené částice a měřením spektra jejich energií a četností lze stanovit hloubkový profil detekovaného prvku. Standardní metoda ERDA je proto využívána ke studiu hloubkových profilů lehkých prvků jako je vodík, deuterium viz. Obr. 4b v případě našeho uspořádání s využitím svazku He + iontů. V případě nového urychlovače nám umožní urychlené těžší ionty výrazně rozšířit možnosti detekce dalších lehčích prvků jako O, C, N atd. (viz. obrázek 4)
7 Příklady použití metody ERDA Ozáření polymerních materiálů energetickými ionty způsobuje nevratné změny detektor fólie Odražený iont dopadající iont Obrázek 4 Použití metody ERDA pro studium vodíku v deponovaných vrstvách v makromolekulární struktuře polymeru a můžeme tak kontrolovaným způsobem měnit mechanické a chemické vlastnosti povrchové vrstvy, která je iontovými svazky modifikována. ERDA je často používána pro sledování obsahu vodíku v takto upravených polymerech, ozáření ionty způsobuje rozpad polymerních řetězců a posléze vznik nových vazeb, kdy během tohoto procesu se uvolňují lehké fragmenty z modifikované vrstvy. Sledovali jsme změny složení např. v polymeru PET implantovaném ionty Ar +, s energií150 kev. V případě nejvyšších dávek iontů/cm 2 vykazoval polymer úbytek vodíku a kyslíku v povrchové vrstvě, jejíž tloušťka odpovídá střednímu doletu těchto iontů v polymeru PET obrázek 5. Jedním z procesů probíhajících pod vlivem ozařování ionty je vznik dvojitých vazeb v rámci polymerních řetězců. Kvantitativně lze množství těchto vazeb odhadnout na základě míry absorpce v oboru UV-VIS záření. Na obrázku 6 vidíme prudký nárůst absorbance pro použité vyšší dávky iontů Ar +. A obrázku 5 vpravo byl metodou ERDA určen výrazný úbytek vodíku v povrchové vrstvě polyimidu ozářeném 60 kev ionty Fe +.
8 Obrázek 5. Hloubkové profily prvků v polymerech implantovaných Ar + a Fe + ionty stanovené metodami RBS a ERDA PET/Ar PET Obrázek 6. UV-VIS absorpce polymerů implantovaných Ar + ionty Kapitola JADERNÉ ANALYTICKÉ METODY REALIZOVANÉ V BUDOUCNU 3.1 ERDA-TOF
9 Metoda ERDA-TOF (Time-of-Flight) s těžkými ionty umožňuje současné stanovení hloubkových profilů několika lehkých prvků s vysokou mírou správnosti. Metoda je založena na simultánním měření energie a rychlosti atomů vyražených z povrchu vzorku dopadajícími ionty. Z energie a rychlosti se stanoví hmotnost atomů. Rychlost je stanovena měřením času průletu atomu mezi dvěma detektory umístěnými na fixní vzdálenosti. Výsledkem je třídimenzionální spektrum viz. Obr. 7, kde jsou zaznamenány počty částic v závislosti na čase průletu (hmotnosti) a na energii částic. Obrázek 7 Spektrum měřené metodou ERDA-TOF RBS-channeling Metoda kanálování nabitých částic je unikátním a nenahraditelným prostředkem pro nedestruktivní studium struktury krystalů, poruch krystalické struktury a chování atomů příměsí. Metoda je založena na efektu kanálování obrázek 8, kdy se ionty převážně pohybují v kanálech mezi uspořádanými atomy. Měříme-li závislost počtu rozptýlených částic na úhlu natočení krystalu vůči dopadajícímu svazku částic, projeví se kanálování prudkým poklesem intenzity rozptýlených částic v okamžiku, kdy svazek vstupuje do vzorku v některém z kanálovacích směrů totožných se směrem význačných krystalových os. V porovnáním s náhodným spektrem je výtěžek (počet detekovaných částic) při kanálování podstatně menší obrázek 10. Přítomnost cizích atomů v intersticiálních polohách se projeví typickými změnami úhlové závislosti výtěžku rozptylu a tvaru energetického spektra rozptýlených částic. K realizaci této metody je nezbytná instalace goniometru, který natáčí krystalický vzorek a umožní nalezení kritického úhlu pro měření kanálovacího směru v krystalickém materiálu.
10 Obrázek 8 Schéma procesu kanálování Aplikace metody RBS-channeling Pomocí metody RBS channeling lze studovat následujících typy materiálů: 1. Opto-elektronické prvky, vlnovody, vlnovodné lasery na bázi monokrystalických materiálů např. LiNbO 3, safíru Al 2 O 3. Signál od substrátu v kanálovacím spektru odražených částic je výrazně snížen, proto lze měřit i příměsi lehkých prvků a kvalitu krystalu event. počet dislokací. 2. Polovodiče monokrystalické epitaxní vrstvy, určování poloh dopantů, natočení krystalické mříže epitaxní vrstvy a substrátu. 3. Nové technologie přípravy vlnovodných struktur tvořících základ planárních vlnovodných laserů, zesilovačů a konvertorů na bázi krystalických vrstev na bázi GaN, GaInN a karbidů GaN, GaInN a karbidy jsou krystalické materiály, které lze velmi úspěšně použít pro integrovanou optiku. V současné době jsou připravovány vzorky tohoto typu technologií epitaxe jsou dopovány opticky aktivními ionty Er, Yb, Nd. RBS channeling je jedinou metodou, která může úspěšně tyto struktury zkoumat a definovat polohy a hloubkové profily opticky aktivních atomů. V současné době se zabýváme ve spolupráci s Forschungzentrum Rossendorf měřením dopovaných monokrystalických struktur Er: LiNbO 3 za účelem determinace polohy laserově aktivního dopantu Er v krystalické mřížce. Podrobným studiem tvaru axiálního skenu, integrálního výtežku iontů při skenu axiálního kanálu, a následné simulaci s využitím metod molekulární dynamiky a Monte Carlo algoritmu lze determinovat přesnou polohu dopantu Er v krystalické mřížce. Ukázka axiálního skenu řezu <11-20> monokrystalu Er: LiNbO 3 viz. obrázek 9.
11 Obrázek 9 Úhlový skenu řezu <11-20> a <0001> monokrystalu LiNbO 3 dopovaného Er 3+ metodou RBS-channeling. Spektra získaná metodou RBS-channeling lze rovněž využít ke studiu modifikace monokrystalického materiálu, jak jsme rovněž učinili v případě dopovaného, kdy původní dopovaný materiál byl metodou protonové výměny modifikován tak, že byla vytvožena cca 10 mikrometrová vrstva s odlišným indexem lomu. Takto byl vytvořena planární vlnovodná struktura. Ukazuje se, že protonová výměna způsobí modifikaci krystalu mřížková konstanta se ve dvou směrech podél krystalických os zvětší, pro různé řezy krystalem tak sledujeme různé tvary spekter v kanálovacím směru viz. obrázek 10. Obrázek 10 Srovnání standardního RBS spektra se spektrem ve směru hlavní krystalické osy Er:LiNbO 3 a Er: LiNbO 3 modifikovaného protonovou výměnou. RBS spektrum RBS-channeling - původní krystal RBS-channeling modif. krystal RBS spektrum RBS-channeling - původní krystal RBS-channeling modif. krystal
12 3.3 Iontová mikrosonda Iontová mikrosonda vyžaduje velmi stabilní svazek nabitých částic fokuzovaný na µm průměr. Ve spojení s metodami, PIXE, RBS nebo ERDA umožňuje studium rozložení prvků na povrchu materiálů s µm stranovým rozlišením a mezemi stanovitelnosti o 2-3 řády nižšími, než je běžné u elektronové mikrosondy. Iontová mikrosonda se využívá pro mapování biologických objektů, uměleckých artefaktů, identifikaci defektů na mikrostrukturách a pro iontové mikroobrábění. Takové zařízení v ČR dosud není k disposici ale počítá se s jeho vybudováním na novém urychlovači Accelerator Mass Spectrometry (AMS) Urychlovačová hmotnostní analýza Accelerator Mass Spectrometry (AMS) je jednou z nejcitlivějších analytických metod, umožňuje stanovit příměsi prvků resp izotopů v koncentracích Jde o variantu klasické hmotnostní spektrometrie s využitím výkonného urychlovače. V zahraničí se metoda AMS široce využívá pro uhlíkové datování. Dále pro stanovení dlouho žijících radionuklidů ( 3 H, 41 Ca, 129 I), které jsou vedlejším produktem jaderných technologií a pokusných jaderných explozí. Metoda AMS slouží mimo jiné i pro detekci ilegálních jaderných aktivit. Významné je rovněž použití metody AMS v biologii a medicíně pro sledování migrace sloučenin značených např. isotopy 3 H a 14 C. V ČR zařízení pro analýzy metodou AMS není a na existujících urychlovačích ho principiálně nelze realizovat. Nový urychlovač by po doplnění dalšími speciálními zařízeními může být použit pro stanovení radionuklidů 3 H, 14 C, 26 Al a 41 Ca.
13 4. Kapitola VYUŽITÍ URYCHLOVAČE NABITÝCH ČÁSTIC V INTERDISCIPLINÁRNÍM VÝZKUMU 4.1. Iontová implantace a syntéza nových materiálů. Nový urychlovač tandémového typu, který urychluje ionty většiny prvků na energie od kev může být využit pro iontovou implantaci, která je jednou z nejvýznamnějších technik používaných v materiálovém inženýrství pro modifikaci látek. Zařízení se srovnatelnými parametry v ČR zatím neexistuje. Předpokládá se využití iontové implantace pro vytváření struktur s význačnými optickými, elektrickými a biologickými vlastnostmi. V tomto směru navážeme zejména na existující, dlouhodobý výzkum modifikace polymerních materiálů iontovou implantací. Hloubkový profil (nahoře) a znázornění trajektorií iontů Au s energií 4 MeV implantovaných do SiO 2 (dole).
14 4.2. Iontová litografie a mikroobrábění iontovými svazky jsou v současné době rychle se rozvíjející obory zaměřené na přípravu mikroelektrických a optoelektrických komponent vysoké integrace a výrobu miniaturních mechanických zařízení s možnými aplikacemi např. v medicíně. Tuto techniku bude možné realizovat na novém urychlovači po jeho vybavení iontovou mikrosondou (viz. výše). Ozubená kolečka vytvořená metodou iontové litografie ve fotorezistu.
15 4.3 Biologické účinky nabitých částic. Nový urychlovač umožní studovat biologické účinky nabitých částic v závislosti na jejich energii a hmotnosti. Takový výzkum má význam fundamentální pro poznání interakce nabitých částic s biologickými objekty i praktický pro optimalizaci ozařování zhoubných nádorů. V této oblasti se předpokládá spolupráce s našimi specialisty v oblasti mikrodozimetrie. Aerace chromosomů vyvolané ozářením těžkými ionty. 4.4 Jaderné reakce pro jadernou fúzi a astrofyziku. Nový urychlovač poskytne nové možnosti pro studium jaderných reakcí významných pro realizaci řízené termonukleární reakce a pro astrofyziku. V tomto směru experimenty na novém urychlovači navazovat na experimenty, kterými se ÚJF tradičně zabývá.
16 4.5. Studium radiačního poškození. Mechanismy radiačního poškození konstrukčních materiálů mají základní význam pro odhady životnosti jaderných zařízení, plánování úložišť jaderných odpadů, pro plánování nových zařízení určených pro likvidaci jaderných odpadů (projekty transmutoru jaderných odpadů) a pro projekci zařízení pro řízenou termonukleární reakci jako nového zdroje energie Průchod nabitých částic prostředím. Energetické ztráty nabitých částic při průchodu prostředím mají zásadní význam pro jaderné analytické metody, dozimetrii a konstrukci detektorů nabitých částic. Široké spektrum a rozsah energií iontů z nového urychlovače umožní detailní studium takových procesů jako je excitace atomů a s tím spojená emise charakteristického rtg. záření, desorpce atomů při dopadu nabitých částic (sputtering), emise elektronů při interakci nabitých částic s látkami atp. Studium těchto procesů je aktuální jak z hlediska fundamentálního tak i pro rozvoj metod pro analýzu povrchových vrstev látek viz. obrázek. Obrázek Procesy probíhající v pevné látce indukované procházejícími ionty. 4.7
17 Testování nových detekčních systémů. Předpokládá se využití nového urychlovače pro testování detektorů resp. detekčních systémů nabitých částic vyvíjených pro experimenty na velkých urychlovačích v zahraničí. V tomto směru by bylo možné využít i metodu IBIC (Ion Beam Induced Current) pro zjišťování účinnosti sběru náboje a délky driftu nosičů náboje zejména v polovodičových materiálech a součástkách. Spočívá v bombardování objektu mikrosvazkem iontů nebo jednotlivými ionty a měření elektrické odezvy. Metoda má význam pro optimalizaci mikroelektronických komponent a zjišťování jejich radiační odolnosti. U této problematiky se předpokládá spolupráce s pracovišti na ČVUT a v AV ČR. Typický sortiment polovodičových detektorů nabitých částic 4.8 Jaderné analytické metody jsou účinným, v mnoha případech nepostradatelným nástrojem pro studium struktury a složení látek. Podobně jako jiné analytické metody nemohou poskytnout o zkoumaném objektu vyčerpávající informaci. Doplňující údaje musí být získány jinými, komplementárními postupy. Jednou z metod, které jsou rovněž rozvíjeny v ÚJF je neutronové hloubkové profilování (NDP), které využívá pro analýzu lehkých prvků interakce neutronů s atomovými jádry izotopů He, Li, Be, B, N a některých dalších lehkých prvků. Příkladem použití metody NDP je studium difůze atomů Li v tantalu
18
Využití iontových svazků pro analýzu materiálů
Využití iontových svazků pro analýzu materiálů A. Macková, J. Bočan, P. Malinský Skupina jaderných analytických metod, Ústav jaderné fyziky AV ČR, Řež u Prahy, 250 68 Mackova@ujf.cas.cz. Úvod Počátek rozvoje
Co všechno umí urychlovač TANDETRON a jak vlastně funguje?
Co všechno umí urychlovač TANDETRON a jak vlastně funguje? AnnaMacková** 24. listopadu 2006 1 Úvod Cílem přednášky bylo představit nové unikátní zařízení, které přitáhlo i zájem médií. Myslím,žejevelmipotřebnéstudentůmukazovat,jaksevědavnašemstátěrozvíjíaje
Typy interakcí. Obsah přednášky
Co je to inteligentní a progresivní materiál - Jaderné analytické metody-využití iontových svazků v materiálové analýze Anna Macková Ústav jaderné fyziky AV ČR, Řež 250 68 Obsah přednášky fyzikální princip
V001 Dokončení a kalibrace experimentálních zařízení v laboratoři urychlovače Tandetron
V001 Dokončení a kalibrace experimentálních zařízení v laboratoři urychlovače Tandetron Údaje o provozu urychlovačů v ÚJF AV ČR ( hodiny 2009/hodiny 2008) Urychlovač Celkový počet hodin Analýzy Implantace
INTERAKCE IONTŮ S POVRCHY II.
Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených
RBS (Rutherford Backscattering Spectrometry) + ERDA (Elastic Recoil Detection) PIXE (Particle Induced X-ray Emission)
RBS (Rutherford Backscattering Spectrometry) + ERDA (Elastic Recoil Detection) PIXE (Particle Induced X-ray Emission) V ČR lze tyto a další metody používat na AV v Řeži u Prahy odkud je také většina v
Informační bulletin. Obsah
Informační bulletin Skupina jaderných analytických metod Ústav jaderné fyziky AV ČR 1 Obsah Kapitola I Úvod 3 Kapitola II Stávájící jaderné analytické metody 5 2.1 Rutherford Back-Scattering spectrometry
Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec
Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm
Příloha 1 - Strukturovaný odborný životopis
Příloha 1 - Strukturovaný odborný životopis RNDr. Anna Macková, Ph.D. Ústav jaderné fyziky AV ČR, v. v. i. Narozena 9.7.1973, Most, Česká Republika Vzdělání 1991-1996 Magisterské studium matematicko fyzikální
Metody analýzy povrchu
Metody analýzy povrchu Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Povrch pevné látky: Poslední monoatomární vrstva + absorbovaná monovrstva Ovlivňuje fyzikální vlastnosti (ukončení
METODY ANALÝZY POVRCHŮ
METODY ANALÝZY POVRCHŮ (c) - 2017 Povrch vzorku 3 definice IUPAC: Povrch: vnější část vzorku o nedefinované hloubce (Užívaný při diskuzích o vnějších oblastech vzorku). Fyzikální povrch: nejsvrchnější
2. FYZIKÁLNÍ ZÁKLADY ANALYTICKÉ METODY RBS
RBS Jaroslav Král, katedra fyzikální elektroniky FJFI, ČVUT. ÚVOD Spektroskopie Rutherfordova zpětného rozptylu (RBS) umožňuje stanovení složení a hloubkové struktury tenkých vrstev. Na základě energetického
Metody analýzy povrchu
Metody analýzy povrchu Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. 2 Povrch pevné látky: Poslední monoatomární vrstva + absorbovaná monovrstva Ovlivňuje fyzikální vlastnosti (ukončení
Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm
Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.
Vybrané spektroskopické metody
Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky
Centrum urychlovačů a jaderných analytických metod (CANAM)
Separát z publikace Aplikační laboratoře Akademie věd České republiky, vydala AV ČR, 2018 Centrum urychlovačů a jaderných analytických metod (CANAM) Posláním velké infrastruktury CANAM je využití svazků
Co je litografie? - technologický proces sloužící pro vytváření jemných struktur (obzvláště mikrostruktur a nanostruktur)
Co je litografie? - technologický proces sloužící pro vytváření jemných struktur (obzvláště mikrostruktur a nanostruktur) -přenesení dané struktury na povrch strukturovaného substrátu Princip - interakce
V Rmax 3500 V T = 125 o C I. no protons
Příprava, modifikace a charakterizace materiálů energetickým zářením ČVUT Praha, fakulta elektrotechnická, Praha 6 Řešitelský tým katedra mikroelektroniky FEL, ČVUT v Praze Jan Vobecký garant, člen Rady
Matematicko-fyzikální fakulta Univerzity Karlovy. Habilita ní práce Modikace a charakterizace materiál energetickými ionty
Matematicko-fyzikální fakulta Univerzity Karlovy Habilita ní práce Modikace a charakterizace materiál energetickými ionty RNDr. Anna Macková, Ph.D. Ústav jaderné fyziky AV ƒr Odd lení neutronové fyziky
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. rentgenová spektroskopická metoda k určen
Aplikace jaderné fyziky (několik příkladů)
Aplikace jaderné fyziky (několik příkladů) Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK pavel.cejnar@mff.cuni.cz Příklad I Datování Galileiho rukopisů Galileo Galilei (1564 1642) Všechny vázané
SPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová
SPEKTROMETRIE aneb co jsem se dozvěděla autor: Zdeňka Baxová FTIR spektrometrie analytická metoda identifikace látek (organických i anorganických) všech skupenství měříme pohlcení IČ záření (o různé vlnové
Oblasti průzkumu kovů
Průzkum kovů Oblasti průzkumu kovů Identifikace kovů, složení slitin. Studium struktury kovu-technologie výroby, defektoskopie. Průzkum aktuálního stavu kovu, typu a stupně koroze. Průzkumy předchozích
Měření absorbce záření gama
Měření absorbce záření gama Úkol : 1. Změřte záření gama přirozeného pozadí. 2. Změřte záření gama vyzářené gamazářičem. 3. Změřte záření gama vyzářené gamazářičem přes absorbátor. 4. Naměřené závislosti
Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce
Metody využívající rentgenové záření Rentgenografie, RTG prášková difrakce 1 Rentgenovo záření 2 Rentgenovo záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá se v lékařství a krystalografii.
13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Chemie a fyzika pevných látek p2
Chemie a fyzika pevných látek p2 difrakce rtg. záření na pevných látkch, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl
Theory Česky (Czech Republic)
Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider
Metody povrchové analýzy založené na detekci iontů. Pavel Matějka
Metody povrchové analýzy založené na detekci iontů Pavel Matějka Metody povrchové analýzy založené na detekci iontů 1. sekundárních iontů - SIMS 1. Princip metody 2. Typy bombardování 3. Analyzátory iontů
Glass temperature history
Glass Glass temperature history Crystallization and nucleation Nucleation on temperature Crystallization on temperature New Applications of Glass Anorganické nanomateriály se skelnou matricí Martin Míka
Příprava, modifikace a charakterizace materiálů energetickým zářením
Příprava, modifikace a charakterizace materiálů energetickým zářením ČVUT Praha, fakulta elektrotechnická, Praha 6 Výsledky 2008 Řešitelský tým FEL - ČVUT v Praze, katedra mikroelektroniky Jan Vobecký
Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření
Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá
3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).
PŘEDMĚTY KE STÁTNÍM ZÁVĚREČNÝM ZKOUŠKÁM V BAKALÁŘSKÉM STUDIU SP: CHEMIE A TECHNOLOGIE MATERIÁLŮ SO: MATERIÁLOVÉ INŽENÝRSTVÍ POVINNÝ PŘEDMĚT: NAUKA O MATERIÁLECH Ing. Alena Macháčková, CSc. 1. Souvislost
Náboj a hmotnost elektronu
1911 určení náboje elektronu q pomocí mlžné komory q = 1.602 177 10 19 C Náboj a hmotnost elektronu Elektrický náboj je kvantován Každý náboj je celistvým násobkem elementárního náboje (elektronu) z hodnoty
Elektronová Mikroskopie SEM
Elektronová Mikroskopie SEM 26. listopadu 2012 Historie elektronové mikroskopie První TEM Ernst Ruska (1931) Nobelova cena za fyziku 1986 Historie elektronové mikroskopie První SEM Manfred von Ardenne
Úvod do spektrálních metod pro analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz
Chemie a fyzika pevných látek l
Chemie a fyzika pevných látek l p2 difrakce rtg.. zářenz ení na pevných látkch,, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie
Úvod do fyziky tenkých vrstev a povrchů. Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál
Úvod do fyziky tenkých vrstev a povrchů Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál ty i hlavní typy nepružných srážkových proces pr chodu energetických
Detekce a spektrometrie neutronů
Detekce a spektrometrie neutronů 1. Pomalé neutrony a) aktivní detektory, b) pasivní detektory, c) mechanické monochromátory 2. Rychlé neutrony a) detektory používající zpomalování neutronů b) přímá detekce
Náboj a hmotnost elektronu
1911 změřil náboj elektronu Pomocí mlžné komory q = 1.602 177 10 19 C Náboj a hmotnost elektronu Elektrický náboj je kvantován, Každý náboj je celistvým násobkem elementárního náboje (elektronu) z hodnoty
2. Atomové jádro a jeho stabilita
2. Atomové jádro a jeho stabilita Atom je nejmenší hmotnou a chemicky nedělitelnou částicí. Je tvořen jádrem, které obsahuje protony a neutrony, a elektronovým obalem. Elementární částice proton neutron
LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií)
LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií) RHEED (Reflection High-Energy Electron Diffraction difrakce elektronů s vysokou energií na odraz) Úvod Zkoumání povrchů pevných
Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika
Jaderná fyzika Vlastnosti atomových jader Radioaktivita Jaderné reakce Jaderná energetika Vlastnosti atomových jader tomové jádro rozměry jsou řádově 1-15 m - složeno z protonů a neutronů Platí: X - soustředí
Základy Mössbauerovy spektroskopie. Libor Machala
Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických
Svazek pomalých pozitronů
Svazek pomalých pozitronů pozitrony emitované + zářičem moderované pozitrony střední hloubka průniku Příklad: 0 z P z dz 1 Mg: -1 =154 m Al: -1 = 99 m Cu: -1 = 30 m z pravděpodobnost, p že pozitron pronikne
Hmotnostní spektrometrie
Hmotnostní spektrometrie Princip: 1. Ze vzorku jsou tvořeny ionty na úrovni molekul, nebo jejich zlomků (fragmentů), nebo až volných atomů dodáváním energie, např. uvolnění atomů ze vzorku nebo přímo rozštěpení
Emise vyvolaná působením fotonů nebo částic
Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová
Domácí úlohy ke kolokviu z předmětu Panorama fyziky II Tomáš Krajča, , Jaro 2008
Domácí úlohy ke kolokviu z předmětu Panorama fyziky II Tomáš Krajča, 255676, Jaro 2008 Úloha 1: Jaká je vzdálenost sousedních atomů v hexagonální struktuře grafenové roviny? Kolik atomů je v jedné rovině
Nabídkový list spolupráce 2014
Nabídkový list spolupráce 2014 Fyzikální ústav AV ČR v Praze Centrum pro inovace a transfer technologií www.citt.cz 2014 Kontaktní osoba prof. Jan Řídký, DrSc. e-mail: ridky@fzu.cz citt@fzu.cz tel: 266
10. Tandemová hmotnostní spektrometrie. Princip tandemové hmotnostní spektrometrie
10. Tandemová hmotnostní spektrometrie Princip tandemové hmotnostní spektrometrie Informace získávané při tandemové hmotnostní spektrometrii Možné způsoby uspořádání tandemové HS a/ scan fragmentů vzniklých
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou?
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? 10/20/2004 1 Bethe Blochova formule (1) je maximální možná předaná energie elektronu N r e - vogadrovo čislo - klasický poloměr elektronu
Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.
Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka
Hmotnostní spektrometrie. Historie MS. Schéma MS
Hmotnostní spektrometrie MS mass spectrometry MS je analytická technika, která se používá k měření poměru hmotnosti ku náboji (m/z) u iontů původně studium izotopového složení dnes dynamicky se vyvíjející
Metody charakterizace
Metody y strukturní analýzy Metody charakterizace nanomateriálů I Význam strukturní analýzy pro studium vlastností materiálů Experimentáln lní metody využívan vané v materiálov lovém m inženýrstv enýrství:
Iradiace tenké vrstvy ionty
Iradiace tenké vrstvy ionty Ve většině technologických aplikací dochází k depozici tenké vrstvy za nízké teploty > jsme v zóně I nebo T > vrstvá má sloupcovou strukturu, je porézní a hrubá. Ukazuje se,
DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj
DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým
Spektrometrie záření gama
Spektrometrie záření gama M. Kroupa, Gymnázium Děčín, trellac@centrum.cz B. Dvorský, Gymnázium Šternberk, bohuslav.dvorsky@seznam.cz Abstrakt Tento článek pojednává o spektroskopii záření gama. Bylo měřeno
Příprava, modifikace a charakterizace materiálů energetickým zářením
Příprava, modifikace a charakterizace materiálů energetickým zářením ČVUT Praha, fakulta elektrotechnická, Praha 6 Řešitelský tým FEL - ČVUT v Praze, katedra mikroelektroniky Jan Vobecký garant, člen Rady
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura
Rentgenfluorescenční analýza, pomocník nejen při studiu památek
Rentgenfluorescenční analýza, pomocník nejen při studiu památek Ondřej Vrba (vrba.ondrej@gmail.com) Do Hoang Diep - Danka(dohodda@gmail.com) Verča Chadimová (verusyk@email.cz) Metoda využívající RTG záření
Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou
Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou Autor práce: Petr Valenta Vedoucí práce: Ing. Ondřej Klimo, Ph.D. Konzultanti: prof. Ing. Jiří Limpouch,
Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok
Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok 2014-15 Stavba hmoty Elementární částice; Kvantové jevy, vlnové vlastnosti částic; Ionizace, excitace; Struktura el. obalu atomu; Spektrum
DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ
DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ T. Jeřábková Gymnázium, Brno, Vídeňská 47 ter.jer@seznam.cz V. Košař Gymnázium, Brno, Vídeňská 47 vlastik9a@atlas.cz G. Malenová Gymnázium Třebíč malena.vy@quick.cz
Nebezpečí ionizujícího záření
Nebezpečí ionizujícího záření Radioaktivita versus Ionizující záření Radioaktivita je schopnost jader prvků samovolně se rozpadnout na jádra menší stabilnější. Rozeznáváme pak radioaktivitu přírodní (viz.
Plazmová depozice tenkých vrstev oxidu zinečnatého
Plazmová depozice tenkých vrstev oxidu zinečnatého Bariérový pochodňový výboj za atmosférického tlaku Štěpán Kment Doc. Dr. Ing. Petr Klusoň Mgr. Zdeněk Hubička Ph.D. Obsah prezentace Úvod do problematiky
Krystalografie a strukturní analýza
Krystalografie a strukturní analýza O čem to dneska bude (a nebo také nebude): trocha historie aneb jak to všechno začalo... jak a čím pozorovat strukturu látek difrakce - tak trochu jiný mikroskop rozptyl
Aplikace jaderné fyziky
Aplikace jaderné fyziky Ing. Carlos Granja, Ph.D. Ustav technické a experimentální fyziky ČVUT v Praze XI 2004 1 Aplikace jaderné fyziky lékařské aplikace (zobrazování, radioterapie) výroba radioisotopů
Lasery optické rezonátory
Lasery optické rezonátory Optické rezonátory Optickým rezonátorem se rozumí dutina obklopená odrazovými plochami, v níž je pasivní dielektrické prostředí. Rezonátor je nezbytnou součástí laseru, protože
Základy NIR spektrometrie a její praktické využití
Nicolet CZ s.r.o. The world leader in serving science Základy NIR spektrometrie a její praktické využití NIR praktická metoda molekulové spektroskopie, nahrazující pracnější, časově náročnější a dražší
Nanotechnologie a Nanomateriály na PřF UJEP Pavla Čapková
Přírodovědecká fakulta UJEP Ústí n.l. a Ústecké materiálové centrum na PřF UJEP http://sci.ujep.cz/faculty-of-science.html Nanotechnologie a Nanomateriály na PřF UJEP Pavla Čapková Kontakt: Doc. RNDr.
Test vlastnosti látek a periodická tabulka
DUM Základy přírodních věd DUM III/2-T3-2-08 Téma: Test vlastnosti látek a periodická tabulka Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Mgr. Josef Kormaník TEST Test vlastnosti
Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích
[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka
10 KVANTOVÁ FYZIKA Vznik kvantové fyziky zapříčinilo několik základních jevů, které nelze vysvětlit pomocí klasické fyziky. Z tohoto důvodu musela vzniknout nová teorie, která by je přijatelně vysvětlila.
LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) Použití GC-MS spektrometrie
LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) C Použití GC-MS spektrometrie Vedoucí práce: Doc. Ing. Petr Kačer, Ph.D., Ing. Kamila Syslová Umístění práce: laboratoř 79 Použití GC-MS spektrometrie
Slitiny titanu pro použití (nejen) v medicíně
Slitiny titanu pro použití (nejen) v medicíně Josef Stráský a spol. Katedra fyziky materiálů MFF UK Obsah Vývoj slitin Ti pro použití v ortopedii Spolupráce: Beznoska s.r.o., Kladno Ultrajemnozrnné slitiny
CHARAKTERIZACE MATERIÁLU POMOCÍ DIFRAKČNÍ METODY DEBYEOVA-SCHERREROVA NA ZPĚTNÝ ODRAZ
CHARAKTERIZACE MATERIÁLU POMOCÍ DIFRAKČNÍ METODY DEBYEOVA-SCHERREROVA NA ZPĚTNÝ ODRAZ Lukáš ZUZÁNEK Katedra strojírenské technologie, Fakulta strojní, TU v Liberci, Studentská 2, 461 17 Liberec 1, CZ,
Koordinuje: Ústav fyziky materiálů AV ČR, v. v. i. LIV. Akademické fórum, 18. 9. 2014
Koordinuje: Ústav fyziky materiálů AV ČR, v. v. i. 1 Ústav fyziky materiálů, AV ČR, v. v. i. Zkoumat a objasňovat vztah mezi chováním a vlastnostmi materiálů a jejich strukturními charakteristikami Dlouholetá
Moderní nástroje v analýze biomolekul
Moderní nástroje v analýze biomolekul Definice Hmotnostní spektrometrie (zkratka MS z anglického Mass spectrometry) je fyzikálně chemická metoda. Metoda umožňující určit molekulovou hmotnost chemických
Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky
Nauka o materiálu Přednáška č.2 Poruchy krystalické mřížky Opakování z minula Materiál Degradační procesy Vnitřní stavba atomy, vazby Krystalické, amorfní, semikrystalické Vlastnosti materiálů chemické,
Senzory ionizujícího záření
Senzory ionizujícího záření Senzory ionizujícího záření dozimetrie α = β = He e 2+, e + γ, n X... elmag aktivita [Bq] (Becquerel) A = A e 0 λt λ...rozpadová konstanta dávka [Gy] (Gray) = [J/kg] A = 0.5
MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA
MAKRO- A MIKRO- MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA STAV... (v dřívějším okamţiku)...... info o vnějším působení STAV... (v určitém okamţiku) ZÁKLADNÍ INFO O... (v tomto okamţiku) VŠCHNY DALŠÍ
Bezpečnostní inženýrství. - Detektory požárů a senzory plynů -
Bezpečnostní inženýrství - Detektory požárů a senzory plynů - Úvod 2 Včasná detekce požáru nebo úniku nebezpečných látek = důležitá součást bezpečnostního systému Základní požadavky včasná detekce omezení
nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL
Inovace a rozvoj studia nanomateriálů na TUL nano.tul.cz Tyto materiály byly vytvořeny v rámci projektu ESF OP VK: Inovace a rozvoj studia nanomateriálů na Technické univerzitě v Liberci Experimentální
Příprava polarizačního stavu světla
Příprava polarizačního stavu světla Konzultant: RNDr. Jakub Zázvorka (zazvorka.jakub@gmail.com) Projekt bude zaměřen na přípravu a charakterizaci polarizačního stavu světla pro spinově závislou luminiscenci
Stanovení 14 C s využitím urychlovačové hmotnostní spektrometrie (AMS)
Stanovení 14 C s využitím urychlovačové hmotnostní spektrometrie (AMS) Fejgl 1,2, M., Černý 1,3, R., Světlík 1,2, I., Tomášková 1, L. 1 CRL ODZ ÚJF AV ČR, v.v.i., Na Truhlářce 39/64, 180 86 Praha 8 2 SÚRO,
Vytržení jednotlivých atomů, molekul či jejich shluků bombardováním terče (targetu) ionty s vysokou energií (~kev)
Naprašování: Vytržení jednotlivých atomů, molekul či jejich shluků bombardováním terče (targetu) ionty s vysokou energií (~kev) Po nárazu iont předává hybnost částicím terče, dojde k vytržení Depozice
Stručný úvod do spektroskopie
Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,
Moderní aplikace přírodních věd a informatiky. Břehová 7, Praha 1
Moderní aplikace přírodních věd a informatiky www.jaderka.cz Břehová 7, 115 19 Praha 1 Informatika a software lasery elektronika matematika elementární částice kvantová fyzika zdroje energie aplikace v
ZADAVATEL: Fyzikální ústav AV ČR, v. v. i. Sídlem: Na Slovance 2, Praha 8 doc. Jan Řídký, DrSc., ředitel IČ:
ZADAVATEL: Fyzikální ústav AV ČR, v. v. i. Sídlem: Na Slovance 2, 182 21 Praha 8 Jednající: doc. Jan Řídký, DrSc., ředitel IČ: 68378271 VEŘEJNÁ ZAKÁZKA: Multifunkční fotoelektronový spektrometr s rychlým
DOUTNAVÝ VÝBOJ. 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace
DOUTNAVÝ VÝBOJ 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace Doutnavý výboj Připomeneme si voltampérovou charakteristiku výboje v plynech : Doutnavý výboj Připomeneme si, jaké
Konfokální XRF. Ing. Radek Prokeš Katedra dozimetrie a aplikace ionizujícího záření Fakulta jaderná a fyzikálně inženýrská ČVUT v Praze
Konfokální XRF Ing. Radek Prokeš Katedra dozimetrie a aplikace ionizujícího záření Fakulta jaderná a fyzikálně inženýrská ČVUT v Praze Obsah Od klasické ke konfokální XRF Princip konfokální XRF Polykapilární
Elektronová mikroskopie SEM, TEM, AFM
Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první
Princip metody Transport částic Monte Carlo v praxi. Metoda Monte Carlo. pro transport částic. Václav Hanus. Koncepce informatické fyziky, FJFI ČVUT
pro transport částic Koncepce informatické fyziky, FJFI ČVUT Obsah Princip metody 1 Princip metody Náhodná procházka 2 3 Kódy pro MC Příklady použití Princip metody Náhodná procházka Příroda má náhodný
Lasery RTG záření Fyzika pevných látek
Lasery RTG záření Fyzika pevných látek Lasery světlo monochromatické koherentní malá rozbíhavost svazku lze ho dobře zfokusovat aktivní prostředí rezonátor fotony bosony laser stejný kvantový stav učební
Techniky prvkové povrchové analýzy elemental analysis
Techniky prvkové povrchové analýzy elemental analysis (Foto)elektronová spektroskopie (pro chemickou analýzu) ESCA, XPS X-ray photoelectron spectroscopy (XPS) Any technique in which the sample is bombarded
F7030 Rentgenový rozptyl na tenkých vrstvách
F7030 Rentgenový rozptyl na tenkých vrstvách O. Caha PřF MU Prezentace k přednášce Numerické simulace Příklady experimentů Vybrané vztahy Sylabus Elementární popis vlnového pole: Rtg vlna ve vakuu; Greenova
FYZIKA VE FIRMĚ HVM PLASMA
FYZIKA VE FIRMĚ HVM PLASMA Jiří Vyskočil HVM Plasma spol.s r.o. Na Hutmance 2, 158 00 Praha 5 OBSAH HVM PLASMA spol. s r.o. zaměření a historie firmy hlavní činnost a produkty POVRCHOVÉ TECHNOLOGIE metody
Laboratorní úloha č. 7 Difrakce na mikro-objektech
Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového
Tenké vrstvy pro lékařství 1. Laserové vrstvy ( metody přípravy vrstev, laser, princip metody pulzní laserové depozice PLD, růst vrstev, )
Tenké vrstvy pro lékařství 1. Laserové vrstvy ( metody přípravy vrstev, laser, princip metody pulzní laserové depozice PLD, růst vrstev, ) 2. Vybrané vrstvy a aplikace - gradientní vrstvy, nanokrystalické