Název: Vlastnosti oka, porovnání s fotoaparátem
|
|
- Renata Jarošová
- před 9 lety
- Počet zobrazení:
Transkript
1 Název: Vlastnosti oka, porovnání s fotoaparátem Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Biologie) Tematický celek: Optika Ročník: 5. (3. ročník vyššího gymnázia) Popis - stručná anotace: Žák porovná vlastností oka a fotoaparátu. Popíše princip fotoaparátu a vyrobí dírkovou komoru. Žák provede několik pokusů přibližujících funkci oka. Tento výukový materiál byl vytvořen v rámci projektu Přírodní vědy prakticky a v souvislostech inovace výuky přírodovědných předmětů na Gymnáziu Jana Nerudy (číslo projektu CZ.2.17/3.1.00/36047) financovaného z Operačního programu Praha - Adaptabilita.
2 Výukové materiály Úkol Seznámit se s principem fungování lidského oka a s principem fungování fotoaparátu a porovnat je; vyrobit dírkovou komoru. Pomůcky Tužka, papír, barevné fólie (např. obaly na knížky), krabička, kelímek, pauzovací papír. Teorie Oko má téměř tvar koule. Uvedeme zde pouze ty jeho součásti, které jsou nejpodstatnější pro tvorbu obrazu. Oko se skládá ze tří vrstev. Vnější vrstvu tvoří bělima a rohovka. Rohovka je průhledná a má tvar hodinového sklíčka. Nemá cévy, je naprosto čirá a má lesklý povrch. Je optickým prvkem, který v oku nejvíce láme světlo. Střední vrstvu tvoří cévnatka, která obsahuje vrstvu s velkým množstvím tmavého pigmentu, který pohlcuje nadbytečné světlo dopadající do oka a tak zajišťuje, že uvnitř oka zůstává tma. Zajišťuje tak podmínky k tvorbě zřetelných obrazů na sítnici. Za rohovkou se nachází duhovka, uprostřed níž je otvor - zornička. Duhovka dělí prostor mezi zadní stěnou rohovky a přední stranou čočky na oční komory. Ty jsou vyplněny komorovou tekutinou, sestávající se hlavně z vody. Za duhovkou je průhledná pružná čočka. Vnitřní vrstvu oka tvoří sítnice nacházející se na zadní straně oka. Je pokryta světločivnými buňkami - tyčinkami a čípky. Uprostřed sítnice je žlutá skvrna pokrytá čípky. Ty potřebují ke své činnosti dostatek světla a umožňují barevné vidění. Mimo žlutou skvrnu se nacházejí tyčinky. Ty jsou velmi citlivé na světlo, ale nedokážou rozlišit barvy. Při nižší intenzitě světla používá oko k vnímání tyčinky i čípky. Tím je celkový vjem méně barevný. Při velmi nízké intenzitě světla fungují jen tyčinky a vidíme černobíle.. Vedle žluté skvrny se nachází slepá skvrna, což je místo vyústění zrakového nervu do oka. Nejsou na něm tyčinky ani čípky. Vlastnosti oka: Ohnisková vzdálenost oční čočky činí přibližně 1,6 cm. Z toho vyplývá její optická mohutnost přibližně 62,5 D. Oko se maximálně namáhá při pohledu na krátké vzdálenosti; nejmenší vzdálenost, na kterou ještě oko vidí ostře, je blízký bod. Pro zdravé oko je tato vzdálenost maximálně 25 cm. Největší vzdálenost, při které se pozorovaný předmět zobrazí ostře, je pro zdravé oko nekonečná. Zorný úhel ve vodorovné rovině je asi 140, ve svislé asi 95. Oko má omezenou rozlišovací schopnost, tj. existuje nejmenší zorný úhel, při němž dva body vnímáme odděleně. Oko rozliší dva body, je-li zorný úhel 1. Při
3 konvenční zrakové vzdálenosti (25 cm) tomu odpovídá vzájemná vzdálenost bodů 0,072 mm. Princip fotoaparátu Konstrukce digitální a filmové zrcadlovky je v zásadě stejná, rozdíl je jen v záznamovém médiu. V klidovém stavu, kdy se neexponuje a funguje hledáček, prochází světlo objektivem, v jehož středu je umístěna clona. Ta je v tomto klidovém stavu otevřená vždy na maximum, aby obraz v hledáčku byl co nejjasnější a aby všechny senzory v těle zrcadlovky měly dostatek světla pro svojí práci. Světlo dopadá na zrcátko, které je skloněné v úhlu 45 a tím odráží světlo vzhůru do hledáčku. Světlo odražené od zrcátka dopadá na matnici, což je průhledná skleněná či plastová destička, na níž se obraz promítne a je tak možné ho sledovat hledáčkem. Obraz vytvořený objektivem je převrácený, a tak je třeba ho pro pozorování v hledáčku opět otočit. To se dělá hranolem umístěným v hledáčku. Čím kvalitnější je hranol, tím jasnější a ostřejší je obraz v hledáčku. Moderní zrcadlovky jsou schopné automatického ostření. Toho se docílí tím, že zrcátko odrážející světlo do hledáčku je polopropustné a tak se jen část světla odrazí do hledáčku a zbytek světla zrcátkem projde. Za hlavním zrcátkem však narazí na druhé, menší zrcátko, které je také skloněné v úhlu 45, ale odráží světlo dolů. Tam jsou umístěny senzory zodpovědné za automatické ostření. Z uvedeného vyplývá, že po celou dobu, kdy je možné sledovat obraz v hledáčku a kdy pracují expoziční i zaostřovací senzory, je hlavní obrazový senzor zakryt jednak zrcátky a zavřenou závěrkou a je tedy zcela slepý. V okamžiku, kdy stiskneme spoušť, se poměry v přístroji změní. Obě zrcátka se sklopí vzhůru, takže přestanou clonit senzor a současně zakryjí hledáček. Clona v objektivu se uzavře na změřenou a nastavenou hodnotu a otevře se závěrka. Světlo tak dopadá na senzor a vytváří snímek. Po nastavené době expozice se závěrka uzavře a expozice snímku skončí. Clona se opět otevře na maximum, aby zajistila co nejjasnější obraz v hledáčku, obě zrcátka se opět sklopí dolů a obraz se opět objeví v hledáčku. Dírková komora Dírková komora, nazývaná také camera obscura (tj. temná komora), je jednoduché optické zobrazovací zařízení ve tvaru uzavřené skříňky, v jejíž jedné stěně je malý otvor. Obraz v dírkové komoře vzniká díky přímočarému šíření světla. Každý bod na povrchu osvětleného předmětu odráží světelné paprsky všemi směry. Určitou část těchto paprsků dírka propustí a ony vytvoří na zadní straně komory (proti otvoru) převrácený obraz předmětu. Obraz vytvořený dírkovou komorou má některé vlastnosti, které u klasické fotografie s objektivem nenajdeme. Protože jde o skutečný středový průmět, mají obrázky v dírkové komoře dokonalé podání perspektivy. Jinou zajímavou vlastností je naprostá hloubka ostrosti, která umožňuje na jednom snímku zachytit stejně ostře zároveň předměty velmi blízké i velmi vzdálené.
4 Výroba dírkové komory Dírková komora je krabice s malou dírkou na jedné straně. Protější stěna je tvořena průsvitným papírem. Stěny krabice nesmí propouštět světlo. Je možné použít mnoho různých konkrétních technických řešení, například kelímek od jogurtu, jehož vnitřní část nabarvíte černou temperovou barvou smíchanou např. se škrobem či disperzním lepidlem a po zaschnutí upevníte na horní část kelímku gumičkou průsvitný papír. Jinou možností je černá krabička od kinofilmu, do které uděláte špendlíkem dírku a otvor pro víčko zakryjete kouskem průsvitného papíru. Možné je též použít menší papírovou krabička (např. od zápalek), u které odříznete jednu stěnu a nahradíte ji průsvitným papírem. Postup práce 1. Funkce duhovky: jeden student si zakryje jedno oko a druhým se dívá na silný zdroj světla. Potom se oběma očima podívá na spolužáka, který vidí jasný rozdíl ve velikosti obou duhovek. 2. Slepá skvrna: na papír nakreslete tužkou dva malé tmavé kroužky vzdálené 10 cm od sebe. Zakryjeme si levé oko dlaní a pravým okem sledujeme pouze levý kroužek. Papír přitom posunujte do různé vzdálenosti od oka. Ve vzdálenosti kolem 30 cm náhle pravý kroužek zmizí. 3. Prostorové vidění: na papír nakreslete malý kroužek a položte ho na stůl, alespoň 50 cm daleko. Chvíli se dívejte jinam, pak vezměte tužku, zavřete jedno oko a snažte se jedním plynulým pohybem ruky trefit tužkou do kroužku. 4. Únava čípků: sledujte dobře osvětlenou bílou plochu přes barevnou fólii. Následně fólii odložíme a sledujeme dál stěnu. Ještě lépe je jev pozorovatelný, díváme-li se nejdříve například na obarvenou žárovku a potom na stěnu. 5. Vysvětlete výše pozorované jevy. 6. Porovnejte vlastnosti lidského oka s vybraným fotoaparátem. 7. Vyrobte dírkovou komoru. Popište jaký obraz vzniká na stínítku. Literatura D. Halliday, R. Resnick, J. Walker Fyzika, Vysoké učení technické v Brně Nakladatelství PROMETHEUS Praha, 2000
5 Pracovní list žáka Vlastnosti oka, porovnání s fotoaparátem Laboratorní práce č.: Třída, školní rok: Vypracoval: Spolupracovali: Úkol Seznámit se s principem fungování lidského oka a s principem fungování fotoaparátu a porovnat je; vyrobit dírkovou komoru. Pomůcky Tužka, papír, barevné fólie (např. obaly na knížky), krabička, kelímek, pauzovací papír. Teorie Oko má téměř tvar koule. Uvedeme zde pouze ty jeho součásti, které jsou nejpodstatnější pro tvorbu obrazu. Oko se skládá ze tří vrstev. Vnější vrstvu tvoří bělima a rohovka. Rohovka je průhledná a má tvar hodinového sklíčka. Nemá cévy, je naprosto čirá a má lesklý povrch. Je optickým prvkem, který v oku nejvíce láme světlo. Střední vrstvu tvoří cévnatka, která obsahuje vrstvu s velkým množstvím tmavého pigmentu, který pohlcuje nadbytečné světlo dopadající do oka a tak zajišťuje, že uvnitř oka zůstává tma. Zajišťuje tak podmínky k tvorbě zřetelných obrazů na sítnici. Za rohovkou se nachází duhovka, uprostřed níž je otvor - zornička. Duhovka dělí prostor mezi zadní stěnou rohovky a přední stranou čočky na oční komory. Ty jsou vyplněny komorovou tekutinou, sestávající se hlavně z vody. Za duhovkou je průhledná pružná čočka. Vnitřní vrstvu oka tvoří sítnice nacházející se na zadní straně oka. Je pokryta světločivnými buňkami - tyčinkami a čípky. Uprostřed sítnice je žlutá skvrna pokrytá čípky. Ty potřebují ke své činnosti dostatek světla a umožňují barevné vidění. Mimo žlutou skvrnu se nacházejí tyčinky. Ty jsou velmi citlivé na světlo, ale nedokážou rozlišit barvy. Při nižší intenzitě světla používá oko k vnímání tyčinky i čípky. Tím je celkový vjem méně barevný. Při velmi nízké intenzitě světla fungují jen tyčinky a vidíme černobíle.. Vedle žluté skvrny se nachází slepá skvrna, což je místo vyústění zrakového nervu do oka. Nejsou na něm tyčinky ani čípky. Vlastnosti oka: Ohnisková vzdálenost oční čočky činí přibližně 1,6 cm. Z toho vyplývá její optická mohutnost přibližně 62,5 D. Oko se maximálně namáhá při pohledu na krátké vzdálenosti; nejmenší vzdálenost, na kterou ještě oko vidí ostře, je blízký bod. Pro zdravé oko je tato vzdálenost maximálně 25 cm.
6 Největší vzdálenost, při které se pozorovaný předmět zobrazí ostře, je pro zdravé oko nekonečná. Zorný úhel ve vodorovné rovině je asi 140, ve svislé asi 95. Oko má omezenou rozlišovací schopnost, tj. existuje nejmenší zorný úhel, při němž dva body vnímáme odděleně. Oko rozliší dva body, je-li zorný úhel 1. Při konvenční zrakové vzdálenosti (25 cm) tomu odpovídá vzájemná vzdálenost bodů 0,072 mm. Princip fotoaparátu Konstrukce digitální a filmové zrcadlovky je v zásadě stejná, rozdíl je jen v záznamovém médiu. V klidovém stavu, kdy se neexponuje a funguje hledáček, prochází světlo objektivem, v jehož středu je umístěna clona. Ta je v tomto klidovém stavu otevřená vždy na maximum, aby obraz v hledáčku byl co nejjasnější a aby všechny senzory v těle zrcadlovky měly dostatek světla pro svojí práci. Světlo dopadá na zrcátko, které je skloněné v úhlu 45 a tím odráží světlo vzhůru do hledáčku. Světlo odražené od zrcátka dopadá na matnici, což je průhledná skleněná či plastová destička, na níž se obraz promítne a je tak možné ho sledovat hledáčkem. Obraz vytvořený objektivem je převrácený, a tak je třeba ho pro pozorování v hledáčku opět otočit. To se dělá hranolem umístěným v hledáčku. Čím kvalitnější je hranol, tím jasnější a ostřejší je obraz v hledáčku. Moderní zrcadlovky jsou schopné automatického ostření. Toho se docílí tím, že zrcátko odrážející světlo do hledáčku je polopropustné a tak se jen část světla odrazí do hledáčku a zbytek světla zrcátkem projde. Za hlavním zrcátkem však narazí na druhé, menší zrcátko, které je také skloněné v úhlu 45, ale odráží světlo dolů. Tam jsou umístěny senzory zodpovědné za automatické ostření. Z uvedeného vyplývá, že po celou dobu, kdy je možné sledovat obraz v hledáčku a kdy pracují expoziční i zaostřovací senzory, je hlavní obrazový senzor zakryt jednak zrcátky a zavřenou závěrkou a je tedy zcela slepý. V okamžiku, kdy stiskneme spoušť, se poměry v přístroji změní. Obě zrcátka se sklopí vzhůru, takže přestanou clonit senzor a současně zakryjí hledáček. Clona v objektivu se uzavře na změřenou a nastavenou hodnotu a otevře se závěrka. Světlo tak dopadá na senzor a vytváří snímek. Po nastavené době expozice se závěrka uzavře a expozice snímku skončí. Clona se opět otevře na maximum, aby zajistila co nejjasnější obraz v hledáčku, obě zrcátka se opět sklopí dolů a obraz se opět objeví v hledáčku. Dírková komora Dírková komora, nazývaná také camera obscura (tj. temná komora), je jednoduché optické zobrazovací zařízení ve tvaru uzavřené skříňky, v jejíž jedné stěně je malý otvor. Obraz v dírkové komoře vzniká díky přímočarému šíření světla. Každý bod na povrchu osvětleného předmětu odráží světelné paprsky všemi směry. Určitou část těchto paprsků dírka propustí a ony vytvoří na zadní straně komory (proti otvoru) převrácený obraz předmětu.
7 Obraz vytvořený dírkovou komorou má některé vlastnosti, které u klasické fotografie s objektivem nenajdeme. Protože jde o skutečný středový průmět, mají obrázky v dírkové komoře dokonalé podání perspektivy. Jinou zajímavou vlastností je naprostá hloubka ostrosti, která umožňuje na jednom snímku zachytit stejně ostře zároveň předměty velmi blízké i velmi vzdálené. Výroba dírkové komory Dírková komora je krabice s malou dírkou na jedné straně. Protější stěna je tvořena průsvitným papírem. Stěny krabice nesmí propouštět světlo. Je možné použít mnoho různých konkrétních technických řešení, například kelímek od jogurtu, jehož vnitřní část nabarvíte černou temperovou barvou smíchanou např. se škrobem či disperzním lepidlem a po zaschnutí upevníte na horní část kelímku gumičkou průsvitný papír. Jinou možností je černá krabička od kinofilmu, do které uděláte špendlíkem dírku a otvor pro víčko zakryjete kouskem průsvitného papíru. Možné je též použít menší papírovou krabička (např. od zápalek), u které odříznete jednu stěnu a nahradíte ji průsvitným papírem. Postup práce Závěr 1. Funkce duhovky: jeden student si zakryje jedno oko a druhým se dívá na silný zdroj světla. Potom se oběma očima podívá na spolužáka, který vidí jasný rozdíl ve velikosti obou duhovek. 2. Slepá skvrna: na papír nakreslete tužkou dva malé tmavé kroužky vzdálené 10 cm od sebe. Zakryjeme si levé oko dlaní a pravým okem sledujeme pouze levý kroužek. Papír přitom posunujte do různé vzdálenosti od oka. Ve vzdálenosti kolem 30 cm náhle pravý kroužek zmizí. 3. Prostorové vidění: na papír nakreslete malý kroužek a položte ho na stůl, alespoň 50 cm daleko. Chvíli se dívejte jinam, pak vezměte tužku, zavřete jedno oko a snažte se jedním plynulým pohybem ruky trefit tužkou do kroužku. 4. Únava čípků: sledujte dobře osvětlenou bílou plochu přes barevnou fólii. Následně fólii odložíme a sledujeme dál stěnu. Ještě lépe je jev pozorovatelný, díváme-li se nejdříve například na obarvenou žárovku a potom na stěnu. 5. Vysvětlete výše pozorované jevy. 6. Porovnejte vlastnosti lidského oka s vybraným fotoaparátem. 7. Vyrobte dírkovou komoru. Popište jaký obraz vzniká na stínítku.
Název: Odraz a lom světla
Název: Odraz a lom světla Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika, Informatika) Tematický celek: Optika Ročník:
5.2.10 Oko. Př. 1: Urči minimální optickou mohutnost lidského oka. Předpoklady: 5207, 5208
5.2.0 Oko Předpoklady: 5207, 5208 Pedagogická poznámka: Obsah této hodiny se asi nedá stihnout za 45 minut, ale je možné přetahovat v další hodině, která na tuto plynule navazuje. Cílem hodiny není nahrazovat
S v ě telné jevy. Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla
S v ě telné jevy Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla Světelný zdroj - těleso v kterém světlo vzniká a vysílá je do okolí
Seminární práce Lidské oko Fyzika
Střední škola informačních technologií, s.r.o. Seminární práce Lidské oko Fyzika Dávid Ivan EPS 2 čtvrtek, 26. února 2009 Obsah 1.0 Anatomie lidského oka 1.1 Složení oka 2.0 Vady oka 2.1 Krátkozrakost
Oko - stavba oka a vady
Oko - stavba oka a vady Masarykova ZŠ a MŠ Velká Bystřice projekt č. CZ.1.07/1.4.00/21.1920 Název projektu: Učení pro život Č. DUMu: VY_32_INOVACE_31_18 Tématický celek: Člověk Autor: Renata Kramplová
Název: Měření osvětlení luxmetrem, porovnání s hygienickými normami
Název: Měření osvětlení luxmetrem, porovnání s hygienickými normami Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Člověk a svět
Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje
Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného
SOUSTAVA SMYSLOVÁ Informace o okolním světě a o vlastním těle dostáváme prostřednictvím smyslových buněk Smyslové buňky tvoří základ čidel Čidla jsou
SOUSTAVA SMYSLOVÁ Informace o okolním světě a o vlastním těle dostáváme prostřednictvím smyslových buněk Smyslové buňky tvoří základ čidel Čidla jsou vybavena vždy pro příjem a zpracování určitého podnětu
Základní vyšetření zraku
Základní vyšetření zraku Až 80 % informací z okolí přijímáme pomocí zraku. Lidské oko je přibližně kulového tvaru o velikosti 24 mm. Elektromagnetické vlny o vlnové délce 400 až 800 nm, které se odrazily
Geometrická optika. Optické přístroje a soustavy. převážně jsou založeny na vzájemné interakci světelného pole s látkou nebo s jiným fyzikálním polem
Optické přístroje a soustav Geometrická optika převážně jsou založen na vzájemné interakci světelného pole s látkou nebo s jiným fzikálním polem Důsledkem této t to interakce je: změna fzikáln lních vlastností
Název: Čočková rovnice
Název: Čočková rovnice Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Optika Ročník: 5. (3.
Rozdělení přístroje zobrazovací
Optické přístroje úvod Rozdělení přístroje zobrazovací obraz zdánlivý subjektivní přístroje lupa mikroskop dalekohled obraz skutečný objektivní přístroje fotoaparát projekční přístroje přístroje laboratorní
Digitální fotografie. Mgr. Milana Soukupová Gymnázium Česká Třebová
Digitální fotografie Mgr. Milana Soukupová Gymnázium Česká Třebová Téma sady didaktických materiálů Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu Téma didaktického materiálu
Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami
Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika)
Název: Měření magnetického pole solenoidu
Název: Měření magnetického pole solenoidu Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Biologie) Tematický celek: Elektřina
SMYSLOVÁ ÚSTROJÍ. obr. č. 1
SMYSLOVÁ ÚSTROJÍ obr. č. 1 SMYSLOVÁ ÚSTROJÍ 5 smyslů: zrak sluch čich chuť hmat 1. ZRAK orgán = oko oční koule uložena v očnici vnímání viditelného záření, světla o vlnové délce 390-790 nm 1. ZRAK ochranné
Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku V tomto článku uvádíme shrnutí poznatků učiva II. ročníku
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1 Ing. Jakub Ulmann Zobrazování optickými soustavami 1. Optické
OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda
OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Základní poznatky Zdroje světla světlo vzniká různými procesy (Slunce, žárovka, svíčka, Měsíc) Bodový zdroj Plošný zdroj Základní poznatky Optická prostředí
Anotace: Materiál je určen k výuce přírodopisu v 8. ročníku ZŠ. Seznamuje žáky se základními pojmy a informacemi o stavbě a funkci smyslové soustavy.
Anotace: Materiál je určen k výuce přírodopisu v 8. ročníku ZŠ. Seznamuje žáky se základními pojmy a informacemi o stavbě a funkci smyslové soustavy. Materiál je plně funkční pouze s použitím internetu.
Fyzika_7_zápis_7.notebook April 28, 2015
OPTICKÉ PŘÍSTROJE 1) Optické přístroje se využívají zejména k pozorování: velmi malých těles velmi vzdálených těles 2) Optické přístroje dělíme na: a) subjektivní: obraz je zaznamenáván okem např. lupa,
III/ 2 Inovace a zkvalitnění výuky prostřednictvím ICT
Metodický list k didaktickému materiálu Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu Autor Jazyk Téma sady didaktických materiálů Téma didaktického materiálu Vyučovací
Digitální fotoaparáty vycházejí z principu klasického fotoaparátu na kinofilm. Hlavní rozdíl je ve snímacím prvku. U klasického fotoaparátu světlo
Digitální fotoaparáty vycházejí z principu klasického fotoaparátu na kinofilm. Hlavní rozdíl je ve snímacím prvku. U klasického fotoaparátu světlo dopadá na světlocitlivý film. Světlocitlivý film je proužek
M I K R O S K O P I E
Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066
Optika OPTIKA. June 04, 2012. VY_32_INOVACE_113.notebook
Optika Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267
25. Zobrazování optickými soustavami
25. Zobrazování optickými soustavami Zobrazování zrcadli a čočkami. Lidské oko. Optické přístroje. Při optickém zobrazování nemusíme uvažovat vlnové vlastnosti světla a stačí považovat světlo za svazek
Výukový materiál. zpracovaný v rámci projektu
Výukový materiál zpracovaný v rámci projektu Základní škola Sokolov,Běžecká 2055 pracoviště Boženy Němcové 1784 Název a číslo projektu: Moderní škola, CZ.1.07/1.4.00/21.3331 Šablona: III/2 Inovace a zkvalitnění
Jan Koupil. Zkoumáme vlastní oko (podle Adolfa Cortela)
Jan Koupil Zkoumáme vlastní oko (podle Adolfa Cortela) Heuréka Náchod 2005 Co plave v oku? Do kartičky vyrobíme velmi malý otvor a pozorujeme jasnou plochu (plátno, obloha). Při troše štěstí vidíme provázky
Optika. Zápisy do sešitu
Optika Zápisy do sešitu Světelné zdroje. Šíření světla. 1/3 Světelné zdroje - bodové - plošné Optická prostředí - průhledné (sklo, vzduch) - průsvitné (matné sklo) - neprůsvitné (nešíří se světlo) - čirá
Professional Reflection-Oriented Focus on Inquiry-based Learning and Education through Science
PROFILES IBSE Výukové materiály Žákovský modul Vytvořeno pracovním týmem PROFILES, Masarykova univerzita, Česká Republika Můžeme plně věřit svým očím? Žákovské aktivity Předměty: Přírodověda, Přírodopis,
2.1.6 Jak vidíme. Předpoklady: Pomůcky: sady čoček, další čočky, zdroje rovnoběžných paprsků, svíčka
2.1.6 Jak vidíme Předpoklady: 020105 Pomůcky: sady čoček, další čočky, zdroje rovnoběžných paprsků, svíčka Pedagogická poznámka: V ideálním případě by se látka probírala dvě vyučovací hodiny v první by
Název: Konstrukce vektoru rychlosti
Název: Konstrukce vektoru rychlosti Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Mechanika kinematika
F - Lom světla a optické přístroje
F - Lom světla a optické přístroje Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl
Název: Měření síly a její vývoj při běžných činnostech
Název: Měření síly a její vývoj při běžných činnostech Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Biologie) Tematický
Jméno: Michal Hegr Datum: 15.11. 2011. Oko
Jméno: Michal Hegr Datum: 15.11. 2011 Referát na téma: Oko Oko Oko je smyslový orgán reagující na světlo (fotoreceptor), tedy zajišťující zrak. V průběhu vývoje živočichů došlo k výraznému rozvoji od světločivných
Optika - AZ kvíz. Pravidla
Optika - AZ kvíz Pravidla Ke hře připravíme karty s texty otázka tvoří jednu stranu, odpověď pak druhou stranu karty (pro opakované používání doporučuji zalaminovat), hrací kostku a figurky pro každého
Základy digitální fotografie
Základy digitální fotografie Lekce 2 PROJEKT financovaný z Operačního programu Vzdělávání pro konkurenceschopnost ZVYŠOVÁNÍ IT GRAMOTNOSTI ZAMĚSTNANCŮ VYBRANÝCH FAKULT MU Registrační číslo: CZ.1.07/2.2.00/15.0224
Optika nauka o světle
Optika nauka o světle 50_Světelný zdroj, šíření světla... 2 51_Stín, fáze Měsíce... 3 52_Zatmění Měsíce, zatmění Slunce... 3 53_Odraz světla... 4 54_Zobrazení předmětu rovinným zrcadlem... 4 55_Zobrazení
Název: Tranzistorový zesilovač praktické zapojení, měření zesílení
Název: Tranzistorový zesilovač praktické zapojení, měření zesílení Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika Tematický celek:
Lupa a mikroskop příručka pro učitele
Obecné informace Lupa a mikroskop příručka pro učitele Pro vysvětlení chodu světelných paprsků lupou a mikroskopem je nutno navázat na znalosti o zrcadlech a čočkách. Hodinová dotace: 1 vyučovací hodina
Tiskové techniky. 11. Kontrola kvality tisku. Vytvořila: Hana Světlíková Vytvořeno dne: Tiskové techniky.
11. Kontrola kvality tisku www.isspolygr.cz Vytvořila: Hana Světlíková Vytvořeno dne: 5. 2. 2013 Strana: 1/10 Škola Ročník 4. ročník (SOŠ, SOU) Název projektu Interaktivní metody zdokonalující proces edukace
IAM SMART F7.notebook. March 01, : : : :23 FYZIKÁLNÍ VELIČINY A JEJICH JEDNOTKY. tuna metr
FYZIKÁLNÍ VELIČINY A JEJICH JEDNOTKY Sada interaktivních materiálů pro 7. ročník Fyzika CZ.1.07/1.1.16/02.0079 plocha čas délka hmotnost objem teplota Interaktivní materiály slouží k procvičování, upevňování
Ing. Jakub Ulmann. Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami II Ing. Jakub Ulmann Zobrazování optickými soustavami 1. Optické
F. Pluháček. František Pluháček Katedra optiky PřF UP v Olomouci
František Pluháček Katedra optiky PřF UP v Olomouci Obsah přednášky Optický systém lidského oka Zraková ostrost Dioptrické vady oka a jejich korekce Další vady optické soustavy oka Akomodace a vetchozrakost
GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci.
Znáš pojmy A. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Tenká spojka při zobrazování stačí k popisu zavést pouze ohniskovou vzdálenost a její střed. Znaménková
Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
Zrak II. - Slepá skvrna, zrakové iluze a klamy
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Pracovní list č. 18 Zrak II. - Slepá skvrna, zrakové
Název: Měření vlnové délky světla pomocí interference a difrakce
Název: Měření vlnové délky světla pomocí interference a difrakce Autor: Doc. RNDr. Milan Rojko, CSc. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: fyzika, matematika
Digitální fotografie. Mgr. Milana Soukupová Gymnázium Česká Třebová
Digitální fotografie Mgr. Milana Soukupová Gymnázium Česká Třebová Téma sady didaktických materiálů Digitální fotografie I. Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu
Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA
Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA OPTIKA ZÁKLADNÍ POJMY Optika a její dělení Světlo jako elektromagnetické vlnění Šíření světla Odraz a lom světla Disperze (rozklad) světla OPTIKA
Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm.
1. Podstata světla Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. Vznik elektromagnetických vln (záření): 1. při pohybu elektricky nabitých částic s nenulovým zrychlením
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 6: Geometrická optika Datum měření: 8. 4. 2016 Doba vypracovávání: 10 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: V přípravě
OPTIKA Optické přístroje TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
OPTIKA Optické přístroje TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. ) Oko Oko je optická soustava, kterou tvoří: rohovka, komorová voda, čočka a sklivec.
Ing. Jakub Ulmann. Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 3 Ing. Jakub Ulmann Digitální fotoaparát Jak digitální fotoaparáty
Jednou z nejstarších partií fyziky je nauka o světle tj. optika. Existovaly dva názory na fyzikální podstatu světla:
Optika Jednou z nejstarších partií fyziky je nauka o světle tj. optika. Existovaly dva názory na fyzikální podstatu světla: Světlo je proud částic (I. Newton, 1704). Ale tento částicový model nebyl schopen
SMYSLOVÁ SOUSTAVA OKO
Ict4-PRV-5 SMYSLOVÁ SOUSTAVA OKO Vypracovala: Mgr. Petra Přikrylová DOPLŇ VĚTY : Podněty z okolního prostředí vnímáme prostřednictvím #####################...##.. SMYSLOVÝCH ORGÁNŮ Ty jsou sídlem 5 smyslů:
Odraz světla na rozhraní dvou optických prostředí
Odraz světla na rozhraní dvou optických prostředí Může kulová nádoba naplněná vodou sloužit jako optická čočka? Exponát demonstruje zaostření světla procházejícího skrz vodní kulovou čočku. Pohyblivý světelný
2. Optika II. 2.1. Zobrazování dutým zrcadlem
2. Optika II Popis stavebnice: jedná se o žákovskou verzi předcházející stavebnice, umístěné v lehce přenosném dřevěném kufříku. Experimenty, které jsou uspořádány v příručce, jsou určeny především pro
Aplikovaná optika I: příklady k procvičení celku Geometrická optika. Jana Jurmanová
Aplikovaná optika I: příklady k procvičení celku Geometrická optika Jana Jurmanová Geometrická optika Následující úlohy řešte graficky či výpočtem. 1. Předmět vysoký 1cm je umístěn 30cm od spojky, která
7. Světelné jevy a jejich využití
7. Světelné jevy a jejich využití - zápis výkladu - 41. až 43. hodina - B) Optické vlastnosti oka Oko = spojná optická soustava s měnitelnou ohniskovou vzdáleností zjednodušené schéma oka z biologického
Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů
Optické soustav a optická zobrazení Přímé vidění - paprsek od zobrazovaného předmětu dopadne přímo do oka Optická soustava - soustava optických prostředí a jejich rozhraní, která mění chod paprsků Optické
Paprsky světla létají úžasnou rychlostí. Když dorazí do našich očí, donesou
SVĚTLO Paprsky světla létají úžasnou rychlostí. Když dorazí do našich očí, donesou nám mnoho informací o věcech kolem nás. Vlastnosti světla mohou být ukázány na celé řadě zajímavých pokusů. Uvidíš svíčku?
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má
Název: Měření nabíjecí a vybíjecí křivky kondenzátoru v RC obvodu, určení časové konstanty a její závislosti na odporu
Název: Měření nabíjecí a vybíjecí křivky kondenzátoru v RC obvodu, určení časové konstanty a její závislosti na odporu Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy
5.2.12 Dalekohledy. y τ τ F 1 F 2. f 2. f 1. Předpoklady: 5211
5.2.12 Dalekohledy Předpoklady: 5211 Pedagogická poznámka: Pokud necháte studenty oba čočkové dalekohledy sestavit v lavicích nepodaří se Vám hodinu stihnout za 45 minut. Dalekohledy: už z názvu poznáme,
Světlo 1) Světlo patří mezi elektromagnetické vlnění (jako rádiový signál, Tv signál) elmg. vlnění = elmg. záření
OPTIKA = část fyziky, která se zabývá světlem Studuje zejména: vznik světla vlastnosti světla šíření světla opt. přístroje (opt. soustavami) Otto Wichterle (gelové kontaktní čočky) Světlo 1) Světlo patří
Název: Studium záření
Název: Studium záření Autor: RNDr. Jaromír Kekule, PhD. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: fyzika, biologie (ochrana života a zdraví) Ročník: 5. (3.
Středoškolská technika Jednoduchý projektor
Středoškolská technika 2018 Setkání a prezentace prací středoškolských studentů na ČVUT Jednoduchý projektor Klára Brzosková Gymnázium Josefa Božka Frýdecká 689/30, Český Těšín 1 Anotace V mé práci SOČ
Inovace a zkvalitnění výuky prostřednictvím ICT Technické vybavení Digitální fotoaparáty Ing. Jakab Barnabáš
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Anotace: Inovace a zkvalitnění výuky prostřednictvím ICT Technické vybavení Digitální fotoaparáty
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012 Číslo DUM: VY_32_INOVACE_20_FY_C Ročník: II. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:
Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -
Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické
Název: Měření příkonu spotřebičů, výpočet účinnosti, hledání energetických úspor v domácnosti
Název: Měření příkonu spotřebičů výpočet účinnosti hledání energetických úspor v domácnosti Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy škola hl. města Prahy Předmět (mezipředmětové vztahy)
3. OPTICKÉ ZOBRAZENÍ
FYZIKA PRO IV. ROČNÍK GYMNÁZIA - OPTIKA 3. OPTICKÉ ZOBRAZENÍ Mgr. Monika Bouchalová Gymnázium, Havířov-Město, Komenského 2, p.o. Tento digitální učební materiál (DUM) vznikl na základě řešení projektu
Název: Ověření kalorimetrické rovnice, tepelná výměna
Název: Ověření kalorimetrické rovnice, tepelná výměna Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek:
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Šablona III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
III/ 2 Inovace a zkvalitnění výuky prostřednictvím ICT
Metodický list k didaktickému materiálu Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu Autor Jazyk Téma sady didaktických materiálů Téma didaktického materiálu Vyučovací
Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát
Michal Veselý, 00 Základní části fotografického aparátu tedy jsou: tělo přístroje objektiv Pochopení funkce běžných objektivů usnadní zjednodušená představa, že objektiv jako celek se chová stejně jako
Název: Polovodiče zkoumání závislosti odporu termistoru a fotorezistoru na vnějších podmínkách
Název: Polovodiče zkoumání závislosti odporu termistoru a fotorezistoru na vnějších podmínkách Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové
Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu
Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce
Gullstrandovo schématické oko
Gullstrandovo schématické oko Alvar Gullstrand Narodil se ve Švédsku v roce 1862. Otec byl proslulým lékařem. Studoval lékařství v Uppsale, Vídni a Stockholmu. Svůj výzkum zaměřil na dioptriku, tj. na
Digitální fotografie. Mgr. Milana Soukupová Gymnázium Česká Třebová
Digitální fotografie Mgr. Milana Soukupová Gymnázium Česká Třebová Téma sady didaktických materiálů Digitální fotografie I. Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu
Optické přístroje. Oko
Optické přístroje Oko Oko je orgán živočichů reagující na světlo. Obratlovci a hlavonožci mají jednoduché oči, členovci, kteří mají menší rozměry a jednoduché oko by trpělo difrakčními jevy, mají složené
Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Optické vlastnosti oka Číslo DUM: III/2/FY/2/3/17 Vzdělávací předmět: Fyzika Tematická oblast:
Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Optické vlastnosti oka Číslo DUM: III/2/FY/2/3/17 Vzdělávací předmět: Fyzika Tematická oblast: Optika Autor: Ing. Markéta Střelcová Anotace: Žák se seznámí
Název: Studium kmitů hudebních nástrojů, barva zvuku
Název: Studium kmitů hudebních nástrojů, barva zvuku Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Hudební výchova) Tematický
5. PRINCIP PROJEKCE OBRAZU
5. PRINCIP PROJEKCE OBRAZU Ať už se jedná o kreslené obrázky či fotografie, jde o to, jak je dostat na velké projekční plátno. Je jasné, že k tomuto účelu potřebujeme obrázky zachycené na průhledném materiálu,
Očekávaný výstup Žák rozvíjí čtenářskou gramotnost. Žák vyhledá informaci v přiměřeně náročném textu. Speciální vzdělávací Žádné
Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Hana Brázdilová Datum 5. 4. 2014 Ročník 7. Vzdělávací oblast Jazyk a jazyková komunikace Vzdělávací obor Český jazyk a
Bodový zdroj světla A vytvoří svazek rozbíhajících se paprsků, které necháme projít optickou soustavou.
Optické zobrazení Optické zobrazení je proces, kterým optické soustavy vytvářejí obrazy reálných předmětů. Tyto soustavy mění chod světelných paprsků. Obsahují zrcadla, čočky, odrazné hranoly aj. Princip
Název: Studium tření a jeho vliv na běžné aktivity
Název: Studium tření a jeho vliv na běžné aktivity Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Člověk a svět práce) Tematický
OKO VY_52_INOVACE_12. Ročník: 8. Vzdělávací oblast.: Člověk a příroda Vzdělávací obor: Přírodopis
VY_52_INOVACE_12 OKO Ročník: 8. Vzdělávací oblast.: Člověk a příroda Vzdělávací obor: Přírodopis Základní škola a Mateřská škola Nikolčice, příspěvková organizace Petr Chalupný VY_52_INOVACE_12 Anotace
Mikroskop ECLIPSE E200 STUDENTSKÝ NÁVOD K POUŽITÍ. určeno pro studenty ČZU v Praze
Mikroskop ECLIPSE E200 STUDENTSKÝ NÁVOD K POUŽITÍ určeno pro studenty ČZU v Praze Mikroskop Nikon Eclipse E200 Světelný mikroskop značky Nikon (Eclipse E200) používaný v botanické cvičebně zvětšuje při
3. SVĚTELNÉ JEVY. Světelné zdroje. Rychlost světla.
3. SVĚTELNÉ JEVY. Světelné zdroje. Rychlost světla. Pokud máme zdravý zrak, vidíme kolem sebe různé předměty, ze kterých do našeho oka přichází světlo. Předměty můžou být samy zdrojem světla (hvězdy, oheň,
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
OPTICKÉ ZOBRAZOVÁNÍ. Zrcdl prcují n principu odrzu světl druhy: rovinná kulová relexní plochy: ) rovinná zrcdl I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í obyčejné kovová vrstv npřená n sklo
2.1.18 Optické přístroje
2.1.18 Optické přístroje Předpoklad: 020117 Pomůck: kompletní optické souprav I kdž máme zdravé oči (správné brýle) a skvěle zaostřeno, neuvidíme všechno. Př. 1: Co děláš, kdž si chceš prohlédnout malé,
FYZIKA, OPTIKA, OPTICKÁ ZOBRAZENÍ
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jarmila Vyškovská MGV_F_SS_1S3_D10_Z _OPT_Opticke_pristroje_- lupa_mikroskop_pl Člověk a příroda Fyzika Optika
EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663
EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:
2.1.7 Zrcadlo I. Předpoklady: Pomůcky: zrcadla, laser, rozprašovač, bílý a černý papír, velký úhloměr
2.1.7 Zrcadlo I ředpoklady: 020106 omůcky: zrcadla, laser, rozprašovač, bílý a černý papír, velký úhloměr edagogická poznámka: K pokusům používám obyčejné velké, které si beru z pánských záchodů, aby bylo
Zákon lomu světla (Snellův zákon) lze matematicky vyjádřit vztahem: , n2. opticky řidšího do prostředí opticky hustšího, láme se ke kolmici.
26. Optické zobrazování lomem a odrazem, jeho využití v optických přístrojích Světlo je elektromagnetické vlnění, které můžeme vnímat zrakem. Rozsah jeho vlnových délek je 390 nm 760 nm. Prostředí, kterým
Zákon odrazu. Úhel odrazu je roven úhlu dopadu, přičemž odražené paprsky zůstávají v rovině dopadu.
1. ZÁKON ODRAZU SVĚTLA, ODRAZ SVĚTLA, ZOBRAZENÍ ZRCADLY, Dívejme se skleněnou deskou, za kterou je tmavší pozadí. Vidíme v ní vlastní obličej a současně vidíme předměty za deskou. Obojí však slaběji než
To, co je ve fotografii nad veškerou techniku, je schopnost všímat si. Elliott Erwitt
To, co je ve fotografii nad veškerou techniku, je schopnost všímat si. Elliott Erwitt FOTOGRAFUJEME PRO RADOST Nakonec jsem si našel vlastní naprosto jednoduchý recept na kreativitu: zůstaňte sami sebou.
ZOBRAZOVÁNÍ ZRCADLY. Mgr. Jan Ptáčník - GJVJ - Septima - Optika
ZOBRAZOVÁNÍ ZRCADLY Mgr. Jan Ptáčník - GJVJ - Septima - Optika Úvod Vytváření obrazů na základě zákonů optiky je častým jevem kolem nás Základní principy Základní principy Zobrazování optickými přístroji