Základy práce s osciloskopem
|
|
- Alois Kopecký
- před 8 lety
- Počet zobrazení:
Transkript
1 Základy práce s osciloskopem 1 Cíle měření Cílem toho měření je seznámit se s generátorem funkcí a naučit se pracovat s osciloskopem. Pracovní úkoly 1. Zobrazení časového průběhu signálu pomocí osciloskopu. Měření napětí a periody. 2. Sestavení a proměření jednocestného usměrňovacího můstku 2 Pomůcky 3 Základní pojmy a vztahy: 3.1 Generátor funkcí (a) (b) Obrázek 1: a)generátor funkcí a b) schema ovládacích prvků. 1
2 Jak již název napovídá, generátor funkcí slouží k vytváření periodických elektrických signálů. Většina generátorů je schopna vytvářet minimálně tři typy signálu tzv. sinusový, pilový a obdélníkový. Ovládací prvky na obr. 1b nastavují frekvenci (3-hrubé nastavení, 5-jemné nastavení), amplitudu (9) a typ signálu (4,7). Generátor je také schopen měnit symetrii generované amplitudy a frekvence (6),tj. např. u pilovité funkce mohou být měněny úhly na vrcholech průběhu. Dále je možné nastavit tzv. offset, který umožňuje měnit střední hodnotu napět ového průběhu, tj. k základnímu periodickému signálu přičte konstantní člen (8). Generátor na obr. 1a a 1b má několik konektorů typu BNC (11,12,13). Zde často dochází k chybnému zapojení. Zatímco (11) a (13) jsou výstupy generovaného signálu, konektor (12) je vstup signálu nízkého napětí, které umožňuje externě řídit frekvenci generátoru. Konektor (11) je výstup generovaného signálu požadovaného tvaru podle nastavení (4). Konektor (13) je pak výstup TTL logiky. To znamená, že bez ohledu na nastavení tvaru signálu (4)vždy generuje pouze obdélníkový tvar o amplitudě 5V. Připojení na výstup (13) namísto (11) tak může být matoucí. Bližší informace o námi používaném generátoru lze nalézt na:. 3.2 Analogový osciloskop Základní funkcí osciloskopu je sledování průběhu rychle se měnících elektrických signálů. Principiální schéma analogového osciloskopu je na obr. 2. Tvoří jej obrazová elektronka s elektronovou tryskou, dva páry vychylovacích destiček a stínítko. Elektrony jsou urychlovány směrem ke stínítku a procházejí dvěma páry vychylovacích destiček. Zde jsou vychylovány z přímého směru podle přiloženého napětí na destičkách vlivem elektrického pole bud v horizontálním aneb o ve vertikálním směru. Obrázek 2: Princip fungování analogového osciloskopu. Elektrony se na stínítku obrazovky vysvítí a jejich výchylka od středu je složením výchylky ve směru x díky napětí U x na vstupu X a výchylky ve směru y díky napětí U y na vstupu Y. Tabulka na obr. 3 znázorňuje několik základních pozic bodu na obrazovce podle přiloženého napětí. Nová možnost osciloskopu se ukáže tehdy, přivedeme-li na vstup X tzv. pilové napětí. Tabulka na obr. 4 dokumentuje takovouto situaci pro tři frekvence pilového napětí. Vidíme, že takovýmto způsobem se bude paprsek ve směru X opakovaně posunovat konstantní rychlostí. Díky tomu lze sledovat průběh resp. rozmítat napětí na vstupu Y. Tato funkce je tak významná, že osciloskopy mají uvnitř zabudován zdroj pilového napětí s proměnnou frekvencí (tzv. časovou základnu). Takto funguje tak zvaný t-y mód resp. čas-y mód. Analogový osciloskop, v našem případě Voltcraft AO-610, je základní jednokanálový osciloskop, který však obsahuje všechny základní prvky, které jsou pro měření s osciloskopem důležité: obrazovku, Y-vstup, vertikální zesilovač, řízení frekvence časové základny, spouštění vykreslování ( trigger ), externí časovou základnu. Z předchozího popisu vyplývá, že osciloskop může pracovat ve dvou základních módech: 2
3 Obrázek 3: Základní pozice bodu na obrazovce osciloskopu podle průběhu napětí na vstupu U x a U y. X-Y mód: Sledujeme bod na obrazovce, jehož pohyb ve vertikálním směru je řízen velikostí napětí na vstupu Y (číslo 18 na obrázku 2) a horizontální pohyb je řízen napětím na vstupu X (číslo 13 na obrázku 2). Pozorujeme tedy aktuální situaci koncového bodu vektoru (U x (t),u y (t)) v grafu s osami U x a U y. t-y mód (resp. čas-y mód): Sledujeme bod na obrazovce, jehož pohyb ve vertikálním směru je řízen napětím na vstupu Y, zatímco horizontální pohyb je řízen vnitřně tak, aby se bod opakovaně v pravidelných intervalech pohyboval zleva doprava (tzv. časová základna). Tímto se na obrazovce objeví časová závislost napětí U y (t) v grafu s osami t, U y. Ustálený obrázek vidíme ale jen tehdy, pokud jde o rychlé periodické děje vhodně sesynchronizované s časovou základnou. K synchronizaci signálu a časové základny slouží spouštěč vykreslování (anglicky trigger, číslo 9 na obrázku 5b).. 3
4 Obrázek 4: Časové rozmítaní napětí U y pomocí pilového průběhu napětí U x. (a) (b) Obrázek 5: a) Osciloskop Voltcraft AO-610 a b) schema ovládacích prvků. 4 Postup měření Úkol 1. - Nastaveni osciloskopu Odpojte jakékoliv kabely od vstupů 18 a 13. Zapněte osciloskop. Pokud je třeba, může nyní, nebo kdykoliv jindy upravit intenzitu a zaostření stopy na stínítku 4
5 pomocí regulátoru 3 a 4. Nastavte stopu na intenzitu dostačující pro dané světelné podmínky. Zbytečně nevypalujte obrazovku. Ujistěte se, že osciloskop je ve vhodném nastavení, tj. přepínače jsou v polohách: 11 AUTO zobrazí vodorovnou linii pro nulovou hodnotu napětí spouštění vyčítání na náběžné (stoupající) hraně signálu (vysvětlíme později) 17 DC zobrazuje hodnoty signálu bez odečtení nízkofrekvenční složky (také vyzkoušíme později) 12 INT. pro rozmítání osy X budeme používat vnitřní časovač, který se ovládá tlačítky 6,7 a 8. 8 a 16 maximum do polohy CAL Nastavte horizontální časovou základnu: Pomocí knoflíku 6 nastavte časovou základnu (osa X) na 2ms/dílek. Knoflík 8 by měl být v pozici CAL. Nastavení vertikální škály: Pomocí knoflíku 14 nastavte rozlišení osy Y na 5V/dílek. Knoflík 8 by měl být v pozici CAL. Přepněte 17 na GND. Tím přivedete signál na úrovni země, tj. nulový potenciál. Pomocí knoflíku 15 nastavte linku vertikálně na střed obrazovky do zákrytu s osou X. Pomocí knoflíku 7 ji vycentrujte vodorovně. Pokud ani nyní neuvidíte světlou linku na středu obrazovky, požádejte o pomoc asistenta. Pozor! Přepněte 17 zpět na DC pro následující měření. Úkol 2. - Zobrazení průběhu signálu Zapněte generátor funkcí a připojte jej pomocí BNC kabelu ke vstupu osy Y (18). Generátor nastavte: Zvolte sinusovou vlnu. Zvolte základní frekvenci 1kHz Nalad te libovolnou frekvenci v této oblasti pomocí knoflíku FINE (5 na obr.1b). Nastavte výchozí napětí na přibližně 3V pomocí knoflíku 9 (knoflík bude přibližně v polovině rozsahu). Nastavte konstantní složku výstupního napětí na 0 pomocí knoflíku 8. To provedete jeho zatlačením. Pomocí knoflíku 6 TIME/DIV nastavte časovou základnu tak, abyste na obrazovce viděli něco mezi jedním a dvěma cykly. Nyní vyzkoušíme funkci spouštěče zobrazování (9), který slouží ke stabilizaci (angl. triggering ) vykreslování. Nastavte knoflík LEVEL (9) do maximální polohy. Postupně otočte knoflík 9 zpět, až dojte ke stabilizaci obrazu. Otáčejte dál a pozorujte počátek křivky na levé straně. Přepněte přepínač 10 na -. V čem je rozdíl při nastavení 10 na + nebo -? Nyní odečtením z obrazovky osciloskopu změřte frekvenci signálu: Velikost jednoho cyklu v počtu dílku (knoflík 6):
6 Čas na jeden dílek stupnice: Perioda: Frekvence: Nyní vyzkoušíme rozdíl mezi DC a AC vazbou na vstupu nastavitelnou pomocí přepínače 17. DC je z anglického direct current stejnosměrný proud a AC a alternating current střídavý proud. Jak si ukážeme, nastavení AC umožňuje od signálu odečíst stejnosměrnou složku napětí a zobrazovat pouze tu část, která se mění v čase. Proved te následující: Na generátoru funkcí tahem aktivujte knoflík OFFSET měňte jeho nastavení Co se stalo? Přepněte přepínač 17 na AC. Jaká je nyní střední velikost měřeného signálu? Jak se změní při manipulaci s ovladačem OFFSET (knoflíku 8) na generátoru? Nastavte zpět konstantní složku signálu na 0 - zatlačte knoflíku 8. Úkol 3. - Stavba rektifikačního můstku Odpojte generátor od osciloskopu. Postavte jednocestný usměrňovací můstek dle obrázku. Pro hezký vizuální efekt použijte červenou(!) LED diodu. Proč je LED dioda jinak ale nevhodná pro reálnou aplikaci? Jak velký odpor použijete? Ukažte asistentovi postavený obvod, tak aby bylo jasné, že je správně zapojen. Nastavte osciloskop na DC. Připojte generátor signálu, nastavte maximální napětí signálu a začněte měřit. Nakreslete výsledný signál: Zkuste snížit frekvenci zdroje na úroveň jednotek Hz. Co se stane? Zkuste měnit nastavení OFFSET na generátoru. Bonusové: 6
7 Změřte rozdíl maximální napětí usměrněného signálu. Proč není stejně velký jako rozdíl napětí na zdroji? Postupně zvyšujte frekvenci signálu z generátoru (o celé řády pomocí hrubého nastavení). Co pozorujete? S jakou vlastností diod to souvisí? 7
b) Vypočtěte frekvenci f pro všechny měřené signály použitím vztahu
1. Měření napětí a frekvence elektrických signálů osciloskopem Cíl úlohy: Naučit se manipulaci s osciloskopem a používat jej pro měření napětí a frekvence střídavých elektrických signálů. Dvoukanálový
MĚŘENÍ NAPĚTÍ A PROUDŮ VE STEJNOSMĚRNÝCH OBVODECH.
MĚŘENÍ NAPĚTÍ A PROUDŮ VE STEJNOSMĚRNÝCH OBVODECH. 1. Měření napětí ručkovým voltmetrem. 1.1 Nastavte pomocí ovládacích prvků na ss zdroji napětí 10 V. 1.2 Přepněte voltmetr na rozsah 120 V a připojte
1-kanálový osciloskop 10 MHz 610/2 Obj. č.:
1-kanálový osciloskop 10 MHz 610/2 Obj. č.: 12 24 13 1. Úvod Vážený zákazníku, děkujeme Vám za Vaši důvěru a za nákup 1-kanálového osciloskopu 10 MHz 610/2. Tento návod k obsluze je součástí výrobku. Obsahuje
HC-EGC-3235A. Návod k použití
HC-EGC-3235A Návod k použití Obsah Sekce 1 Bezpečnost... str.1. Sekce 2 Úvod... str.2. Sekce 3 Specifikace... str.3. Sekce 4 Začátek... str.9. Čelní panel... str.9. Zadní panel... str.12. Příprava... str.13
Číslicové multimetry. základním blokem je stejnosměrný číslicový voltmetr
Měření IV Číslicové multimetry základním blokem je stejnosměrný číslicový voltmetr Číslicové multimetry VD vstupní dělič a Z zesilovač slouží ke změně rozsahů a úpravu signálu ST/SS usměrňovač převodník
4. Měření rychlosti zvuku ve vzduchu. A) Kalibrace tónového generátoru
4. Měření rychlosti zvuku ve vzduchu Pomůcky: 1) Generátor normálové frekvence 2) Tónový generátor 3) Digitální osciloskop 4) Zesilovač 5) Trubice s reproduktorem a posuvným mikrofonem 6) Konektory A)
Hrajeme si s osciloskopem
Přírodní vědy a matematika na středních školách v Praze: aktivně, aktuálně a s aplikacemi Předmět: Modul: Téma semináře: Fyzika Střídavé proudy http://www.aaa-science.cz/ Blok 1: Hrajeme si s osciloskopem
Zobrazování usměrněného napětí - jednocestné usměrnění
Zobrazování usměrněného napětí - jednocestné usměrnění Na obr. 5.3 je schéma jednocestného usměrňovače s diodou D a zatěžovacím rezistorem R = 100 Ω, zapojeným v sérii s proměnným rezistorem (potenciometrickým
1 Zadání. 2 Teoretický úvod. 7. Využití laboratorních přístrojů v elektrotechnické praxi
1 7. Využití laboratorních přístrojů v elektrotechnické praxi 1 Zadání Zapojte pracoviště podle pokynů v pracovním postupu. Seznamte se s ovládáním přístrojů na pracovišti a postupně realizujte jednotlivé
Měření kmitočtu a tvaru signálů pomocí osciloskopu
Měření kmitočtu a tvaru signálů pomocí osciloskopu Osciloskop nebo také řidčeji oscilograf zobrazuje na stínítku obrazovky nebo LC displeji průběhy připojených elektrických signálů. Speciální konfigurace
Obrázek 1 schéma zapojení měřícího přípravku. Obrázek 2 realizace přípravku
Laboratorní měření Seznam použitých přístrojů 1. 2. 3. 4. 5. 6. Laboratorní zdroj DIAMETRAL, model P230R51D Generátor funkcí Protek B803 Číslicový multimetr Agilent, 34401A Číslicový multimetr UT70A Analogový
ČVUT FEL. Obrázek 1 schéma zapojení měřícího přípravku. Obrázek 2 realizace přípravku
Laboratorní měření 2 Seznam použitých přístrojů 1. Laboratorní zdroj stejnosměrného napětí Vývojové laboratoře Poděbrady 2. Generátor funkcí Instek GFG-8210 3. Číslicový multimetr Agilent, 34401A 4. Digitální
Měření pilového a sinusového průběhu pomocí digitálního osciloskopu
Měření pilového a sinusového průběhu pomocí digitálního osciloskopu Úkol : 1. Změřte za pomoci digitálního osciloskopu průběh pilového signálu a zaznamenejte do protokolu : - čas t, po který trvá sestupná
Základy elektrického měření Milan Kulhánek
Základy elektrického měření Milan Kulhánek Obsah 1. Základní elektrotechnické veličiny...3 2. Metody elektrického měření...4 3. Chyby při měření...5 4. Citlivost měřících přístrojů...6 5. Měřící přístroje...7
HC-6504/6506. Čtyřstopý osciloskop 40/60MHz
HC-6504/6506 Čtyřstopý osciloskop 40/60MHz 1. Úvod Děkujeme, že jste zakoupil tento osciloskop. Aby vám dlouho sloužil ke spokojenosti, prostudujte před prvním použitím pečlivě tento návod. Po prostudování
1. Navrhněte a prakticky realizujte pomocí odporových a kapacitních dekáda derivační obvod se zadanou časovou konstantu: τ 2 = 320µs
1 Zadání 1. Navrhněte a prakticky realizujte pomocí odporových a kapacitních dekáda integrační obvod se zadanou časovou konstantu: τ 1 = 62µs derivační obvod se zadanou časovou konstantu: τ 2 = 320µs Možnosti
Virtuální a reálná elektronická měření: Virtuální realita nebo Reálná virtualita?
PEDAGOGICKÁ FAKULTA ZČU V PLZNI KATEDRA TECHNICKÉ VÝCHOVY Virtuální a reálná elektronická měření: Virtuální realita nebo Reálná virtualita? Pavel Benajtr 17. dubna 2010 Obsah 1 Úvod... 1 2 Reálná elektronická
Jednokanálový osciloskop Volcraft do 10 Mhz. Obj.č.:
1 NÁVOD K OBSLUZE Jednokanálový osciloskop Volcraft 610-2 do 10 Mhz Obj.č.: 120 632 Jednokanálový osciloskop Volcraft 610-2 pracuje až do frekvence 0-10 Mhz měřeného signálu, umožňuje zobrazení stejnosměrných
2. Bezpečnostní předpisy
1. Vhodná oblast použití Vhodná oblast použití dvoukanálového oscilo-skopu Voltcraft 630 zahrnuje: Měření a zobrazení měřených signálů galva-nicky oddělených na sítě, v rozsahu DC až 30 MHz při vstupním
Obrázek 2: Experimentální zařízení pro E-I. [1] Dřevěná základna [11] Plastové kolíčky [2] Laser s podstavcem a držákem [12] Kulaté černé nálepky [3]
Stránka 1 ze 6 Difrakce na šroubovici (Celkový počet bodů: 10) Úvod Rentgenový difrakční obrázek DNA (obr. 1) pořízený v laboratoři Rosalindy Franklinové, známý jako Fotka 51 se stal základem pro objev
Střední průmyslová škola elektrotechnická a informačních technologií Brno
Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.7/1.5./34.521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:
Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr
Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,
Analogové měřicí přístroje
Měření 3-4 Analogové měřicí přístroje do 60. let jediné měřicí přístroje pro měření proudů a napětí princip měřená veličina působí silou nebo momentem síly na pohyblivou část přístroje proti této síle
Harmonický ustálený stav pokyny k měření Laboratorní cvičení č. 1
Harmonický ustálený stav pokyny k měření Laboratorní cvičení č. Zadání. Naučte se pracovat s generátorem signálů Agilent 3320A, osciloskopem Keysight a střídavým voltmetrem Agilent 34405A. 2. Zobrazte
Obvod střídavého proudu s kapacitou
Obvod střídavého proudu s kapacitou Na obrázku můžete vidět zapojení obvodu střídavého proudu s kapacitou. Pomocí programů Nové přístroje 2012 a Dvoukanálový osciloskop pro SB Audigy 2012 proveďte daná
2 kanálový osciloskop MOS-620CH. HADEX spol. s r.o., Kosmova 11, 702 00 Ostrava-Přívoz R203 R203
16 1 2 kanálový osciloskop MOS-620CH HADEX spol. s r.o., Kosmova 11, 702 00 Ostrava-Přívoz 2-kanálový osciloskop NÁVOD K POUŽITÍ 2 15 5.2 Čištění K čištění osciloskopu používejte měkkou tkaninu navlhčenou
Uživatelská příručka
MATRIX Napájecí zdroje DC MPS-3002L-3, MPS-3003L-3, MPS-3005L-3 Uživatelská příručka Výrobce je držitelem certifikátu ISO-9002 Obsah Kapitola Strana 1. ÚVOD... 1 2. SPECIFIKACE... 2 2.1 Všeobecná... 2
KZPE semestrální projekt Zadání č. 1
Zadání č. 1 Navrhněte schéma zdroje napětí pro vstupní napětí 230V AC, který bude disponovat výstupními větvemi s napětím ±12V a 5V, kde každá větev musí být schopna dodat maximální proud 1A. Zdroj je
Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka
Tel-10 Suma proudů v uzlu (1. Kirchhofův zákon) Posuvným ovladačem ohmické hodnoty rezistoru se mění proud v uzlu, suma platí pro každou hodnotu rezistoru. Tel-20 Suma napětí podél smyčky (2. Kirchhofův
A4950 Stroboskop kapesní průvodce
A4950 Stroboskop kapesní průvodce A4950 Stroboskop A4950 je ruční LED stroboskop s širokým uplatněním v oblasti údržby strojů. Stroboskop dokáže zdánlivě zastavit rotační nebo obecně periodický (vratný)
MĚŘENÍ JALOVÉHO VÝKONU
MĚŘENÍ JALOVÉHO VÝKONU &1. Které elektrické stroje jsou spotřebiči jalového výkonu a na co ho potřebují? &2. Nakreslete fázorový diagram RL zátěže připojené na zdroj střídavého napětí. &2.1 Z fázorového
1.1 Usměrňovací dioda
1.1 Usměrňovací dioda 1.1.1 Úkol: 1. Změřte VA charakteristiku usměrňovací diody a) pomocí osciloskopu b) pomocí soustavy RC 2000 2. Ověřte vlastnosti jednocestného usměrňovače a) bez filtračního kondenzátoru
Obrazovkový monitor. Antonín Daněk. semestrální práce předmětu Elektrotechnika pro informatiky. Téma č. 7: princip, blokově základní obvody
Obrazovkový monitor semestrální práce předmětu Elektrotechnika pro informatiky Antonín Daněk Téma č. 7: princip, blokově základní obvody Základní princip proud elektronů Jedná se o vakuovou elektronku.
Návod k obsluze MPS-1. Monitor PLC signálu
Návod k obsluze MPS-1 Monitor PLC signálu UPOZORNĚNÍ Zařízení tvoří ucelenou sestavu. Pouze tato sestava je bezpečná z hlediska úrazu elektrickým proudem. Proto nepoužívejte jiné napájecí zdroje, ani nepřipojujte
6. MĚŘENÍ SÍLY A KROUTICÍHO MOMENTU
6. MĚŘENÍ SÍLY A KROUTICÍHO MOMENTU 6.1. Úkol měření 6.1.1. Měření krouticího momentu a úhlu natočení a) Změřte krouticí moment M k a úhel natočení ocelové tyče kruhového průřezu (ČSN 10340). Měření proveďte
13 Fázové posuvy střídavých proudů vzhledem k napětí
13 Fázové posuvy střídavých proudů vzhledem k napětí Proměřovaný obvod je schématicky znázorněn na obrázku 1. Napájecí napětí je do obvodu dodáváno z generátoru harmonického napětí (grafem harmonických
Pro upřesnění, Voltcraft je obchodní značka pro měřicí, napájecí a nabíjecí techniku z vlastního vývoje společnosti Conrad Electronic.
2-kanálový digitální paměťový USB osciloskop. Tento přístroj DSO 2090 má zvlášť hardware a zvlášť software, který se instaluje do počítače. Díky tomuto spojení s PC přes USB, dostaneme plnohodnotný paměťový
Teorie elektronických
Teorie elektronických obvodů (MTEO) Laboratorní úloha číslo 1 návod k měření Zpětná vazba a kompenzace Změřte modulovou kmitočtovou charakteristiku invertujícího zesilovače v zapojení s operačním zesilovačem
Popis přístroje AFG3000
Popis přístroje AFG3000 EXT REF INPUT. Jedná se o vstupní BNC konektor pro připojení externí reference. Pokud chcete synchronizovat více AFG generátorů nebo synchronizovat s jinými přístroji. EXT REF OUTPUT.
Měření času, periody, šíře impulsu a frekvence osciloskopem
http://www.coptkm.cz/ Měření času, periody, šíře impulsu a frekvence osciloskopem Měření času S měřením času, neboli se stanovením doby, která uběhne při zobrazení určité části průběhu, při kontrole časové
Technická měření v bezpečnostním inženýrství. Elektrická měření proud, napětí, odpor
Technická měření v bezpečnostním inženýrství Čís. úlohy: 6 Název úlohy: Elektrická měření proud, napětí, odpor Úkol měření a) Změřte v propustném i závěrném směru voltampérovou charakteristiku - křemíkové
2 Teoretický úvod Základní princip harmonické analýzy Podmínky harmonické analýzy signálů Obdelník Trojúhelník...
Obsah 1 Zadání 1 2 Teoretický úvod 1 2.1 Základní princip harmonické analýzy.................. 1 2.2 Podmínky harmonické analýzy signálů................. 1 3 Obecné matematické vyjádření 2 4 Konkrétní
Měření na nízkofrekvenčním zesilovači. Schéma zapojení:
Číslo úlohy: Název úlohy: Jméno a příjmení: Třída/Skupina: / Měřeno dne: Měření na nízkofrekvenčním zesilovači Spolupracovali ve skupině Zadání úlohy: Na zadaném Nf zesilovači proveďte následující měření
AX-7020 Příručka uživatele
AX-7020 Příručka uživatele 1. Přehled Tento přístroj je analogový multimetr s vysokou přesností. Jeho bezpečnostní vlastnosti se výrazně zlepšily. Dosahují standardu CAT III 600 V. Má 21 rozsahů a může
4B Analýza neharmonických signálů
4B Analýza neharmonických signálů Cíl úlohy Úloha má doplnit teoretické znalosti získané v předmětu BEL1, zejména demonstrovat souvislost mezi časovým průběhem signálu a jeho spektrem. Ukázat možnost výpočtu
NÁVOD K OBSLUZE. Obj.č.: 12 09 80 / 12 12 02/ 12 12 89
NÁVOD K OBSLUZE Obj.č.: 12 09 80 / 12 12 02/ 12 12 89 Příruční osciloskop HPS10 (PersonalScope) není jen grafický multimetr, ale kompletní přenosný osciloskop s cenou lepšího multimetru. Má vysokou citlivost
Obvod střídavého proudu s indukčností
Obvod střídavého proudu s indukčností Na obrázku můžete vidět zapojení obvodu střídavého proudu s indukčností. Pomocí programů Nové přístroje 2012 a Dvoukanálový osciloskop pro SB Audigy 2012 proveďte
Měření vlastností optických vláken a WDM přenos
Obecný úvod Měření vlastností optických vláken a WDM přenos Úloha se věnuje měření optických vláken, jejich vlastností a rušivých jevů souvisejících s vzájemným nedokonalým navázáním v konektorech. Je
SIGNÁLNÍ GENERÁTORY DDS2, DDS7 A DDS20 - PROVOZNÍ MANUÁL
SIGNÁLNÍ GENERÁTORY DDS2, DDS7 A DDS20 - PROVOZNÍ MANUÁL Signální generátory DDS slouží k vytváření napěťových signálů s definovaným průběhem (harmonický, trojúhelníkový a obdélníkový), s nastavitelnou
Digitální multimetr VICTOR VC203 návod k použití
Digitální multimetr VICTOR VC203 návod k použití Všeobecné informace Kapesní číslicový multimetr VC 203 je přístroj který se používá pro měření DCV, ACV, DCA, odporu, diod a testu vodivosti. Multimetr
SYMETRICKÉ ČTYŘPÓLY JAKO FILTRY
SYMETRICKÉ ČTYŘPÓLY JAKO FILTRY V této úloze budou řešeny symetrické čtyřpóly jako frekvenční filtry. Bude představena jejich funkce na praktickém příkladu reproduktorů. Teoretický základ Pod pojmem čtyřpól
Kalibrační pracoviště
! Popis systému Systém jakosti Adash s.r.o., Ostrava, Česká republika, tel.: +420 596 232 670, fax: +420 596 232 671, email: info@adash.cz Další technické a kontaktní informace najdete na www.adash.net,
VYNALEZU K AUTORSKÉMU OSVĚDČENÍ
ČESKOSLOVENSKA SOCIALISTICKÁ R E P U B L I K A (18) VYNALEZU K AUTORSKÉMU OSVĚDČENÍ (11) (51) Int. Cl. G 01 N 24/00 (BI) (22) Přihlášeno 21 01 82 [21) (PV 419-82) (40) Zveřejněno 15 09 B3 ÚRAD PRO VVNAlEZY
NTIS-VP1/1: Laboratorní napájecí zdroj programovatelný
NTIS-VP1/1: Laboratorní napájecí zdroj programovatelný stejnosměrný zdroj s regulací výstupního napětí a proudu s programovatelnými funkcemi 3 nezávislé výstupní kanály výstupní rozsah napětí u všech kanálů:
Střední odborné učiliště Domažlice, škola Stod, Plzeňská 322, 33301 Stod
Střední odborné učiliště Domažlice, škola Stod, Plzeňská 322, 33301 Stod Registrační číslo projektu : Číslo DUM : CZ.1.07./1.5.00/34.0639 VY_32_INOVACE_04.15 Tématická oblast : Inovace a zkvalitnění výuky
- Stabilizátory se Zenerovou diodou - Integrované stabilizátory
1.2 Stabilizátory 1.2.1 Úkol: 1. Změřte VA charakteristiku Zenerovy diody 2. Změřte zatěžovací charakteristiku stabilizátoru se Zenerovou diodou 3. Změřte převodní charakteristiku stabilizátoru se Zenerovou
Skripta. Školní rok : 2005/ ELEKTRICKÁ MĚŘENÍ skripta 4 OSCILOSKOPY
INTEGROVANÁ STŘEDNÍ ŠKOLA Jméno žáka: CENTRUM ODBORNÉ PŘÍPRAVY 757 01 Valašské Meziříčí, Palackého49 Třída: Skripta Školní rok : 2005/ 2006 Modul: ELEKTRICKÁ MĚŘENÍ skripta 4 OSCILOSKOPY Obor: 26-46-L/001
Elektronický Přepínač 1x KVM, 8xPC/16xPC
Elektronický Přepínač 1x KVM, 8xPC/16xPC 8portů MPC8701 - Katalogové číslo: 14.99.3220 16portů MPC16501 - Katalogové číslo: 14.99.3221 VLASTNOSTI - Ovládání 8/16 PC pomocí jedné konzole (PS/2 klávesnice,
Úloha IV. Osciloskopy
Úloha IV. Osciloskopy 1. Měření napětí a fekvence elektických signálů osciloskopem Naučit se manipulaci s osciloskopem a používat jej po měření napětí a fekvence střídavých elektických signálů. Potřeby
Elektrický obvod Ohmův zákon, výsledný odpor rezistorů:
Elektrický obvod Ohmův zákon, výsledný odpor rezistorů: Jméno a příjmení Informace: 1. Otevřete obvod nazvaný Rezistory (Obvody > Basic > Rezistors). 2. Snižte velikost napětí na 0 V (klikněte pravým tlačítkem
Mikropočítačová vstupně/výstupní jednotka pro řízení tepelných modelů. Zdeněk Oborný
Mikropočítačová vstupně/výstupní jednotka pro řízení tepelných modelů Zdeněk Oborný Freescale 2013 1. Obecné vlastnosti Cílem bylo vytvořit zařízení, které by sloužilo jako modernizovaná náhrada stávající
2 in 1 Měřič Satelitního Signálu Multimetr Provozní Manuál
2 in 1 Měřič Satelitního Signálu Multimetr Provozní Manuál Před uvedením měřicího přístroje do provozu, si velmi pečlivě přečtěte tento provozní manuál Obsah Strana 1. Úvod.. 4 2. Vlastnosti.. 4 3. Bezpečnost...
1. Univerzální watchdog WDT-U2
1. Univerzální watchdog WDT-U2 Parametry: vstupní svorkovnice - napájení 9-16V DC nebo 7-12V AC externí galvanicky oddělený ovládací vstup napěťový od 2V nebo beznapěťový výstupní svorkovnice - kontakty
E-II. Difrakce způsobená povrchovými vlnami na vodě
Strana 1 z 6 Difrakce způsobená povrchovými vlnami na vodě Úvod Vznik a šíření vln na povrchu kapaliny jsou důležité a dobře prozkoumané jevy. U těchto vln je vratná síla působící na kmitající tekutinu
LabVIEW. Tvorba programů. Laboratory Virtual Instrument Engineering Workbench
LabVIEW Laboratory Virtual Instrument Engineering Workbench Tvorba programů www.ni.com Spuštění LabVIEW Start» Programy» National Instruments LabVIEW Průvodní obrazovka: Umožňuje vytvoření: Nového prázdného
Technická měření v bezpečnostním inženýrství. Elektrická měření proud, napětí, odpor
Technická měření v bezpečnostním inženýrství Čís. úlohy: 6 Název úlohy: Elektrická měření proud, napětí, odpor Úkol měření a) Změřte v propustném i závěrném směru voltampérovou charakteristiku - křemíkové
Dvoukanálový osciloskop Voltcraft 632-2
NÁVOD K OBSLUZE Verze 04/02 Dvoukanálový osciloskop Voltcraft 632-2 Obj. č.: 12 08 22 Profesionální dvoukanálový osciloskop pro použití v servisech, laboratořích, pro vyučování i hobby. Na pravoúhlé značkové
AKUSTICKÉ VLNĚNÍ PRVKŮ (SAMOHLÁSEK)
AKUSTICKÉ VLNĚNÍ OSCILOGRAFICKÁ ANALÝZA AKUSTICKÝCH PRVKŮ (SAMOHLÁSEK) Potřeby: osciloskop, mikrofon, zesilovač, generátor střídavého napětí, konektory a propojovací vodiče, ladička Postup měření: Elektroakustický
ZDROJE MĚŘÍCÍHO SIGNÁLU MĚŘÍCÍ GENERÁTORY
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ZDROJE MĚŘÍCÍHO SIGNÁLU MĚŘÍCÍ
Přípravek pro demonstraci řízení pohonu MAXON prostřednictvím
Přípravek pro demonstraci řízení pohonu MAXON prostřednictvím karty Humusoft MF624. (Jan Babjak) Popis přípravku Pro potřeby výuky na katedře robototechniky byl vyvinut přípravek umožňující řízení pohonu
VY_52_INOVACE_2NOV38. Autor: Mgr. Jakub Novák. Datum: Ročník: 8. a 9.
VY_52_INOVACE_2NOV38 Autor: Mgr. Jakub Novák Datum: 19. 9. 2012 Ročník: 8. a 9. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Elektromagnetické a světelné děje Téma: Využití
Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně. Přístroje
Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně Rozmanitost signálů v komunikační technice způsobuje, že rozdělení měřicích metod není jednoduché a jednoznačné.
PC USB osciloskop a generátor VELLEMAN PCSU200
PC USB osciloskop a generátor VELLEMAN PCSU200 Přední strana Zadní strana Pro více informací o tomto výrobku se podívejte na www.velleman.eu Vítejte v softwaru PC-LAB200 Jednotka PCSU200 je kompletní miniaturní
FREKVENČNÍ CHARAKTERISTIKA INTEGRAČNÍHO A DERIVAČNÍHO ČLENU RC
FREKVENČNÍ CHARAKTERISTIKA INTEGRAČNÍHO A DERIVAČNÍHO ČLENU RC Při zpracovávání střídavých elektrických signálů je nutno zajistit oddělení sledovaného (užitečného) signálu od nežádoucích rušivých signálů.
Schmittův klopný obvod
Schmittův klopný obvod Použité zdroje: Antošová, A., Davídek, V.: Číslicová technika, KOPP, České Budějovice 2007 Malina, V.: Digitální technika, KOOP, České Budějovice 1996 http://pcbheaven.com/wikipages/the_schmitt_trigger
Unipolární tranzistor aplikace
Unipolární tranzistor aplikace Návod k praktickému cvičení z předmětu A4B34EM 1 Cíl měření Účelem tohoto měření je seznámení se s funkcí a aplikacemi unipolárních tranzistorů. Během tohoto měření si prakticky
1 Zadání. 2 Teoretický úvod. 4. Generátory obdélníkového signálu a MKO
1 4. Generátory obdélníkového signálu a MKO 1 Zadání 1. Sestavte generátor s derivačními články a hradly NAND s uvedenými hodnotami rezistorů a kapacitorů. Zobrazte časové průběhy v důležitých uzlech.
T-DIDACTIC. Motorová skupina Funkční generátor Modul Simatic S7-200 Modul Simatic S7-300 Třífázová soustava
Popis produktu Systém T-DIDACTIC představuje vysoce sofistikovaný systém pro výuku elektroniky, automatizace, číslicové a měřící techniky, popř. dalších elektrotechnických oborů na středních a vysokých
Praktikum II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF K Praktikum II Elektřina a magnetismus Úloha č. V Název: Měření osciloskopem Pracoval: Matyáš Řehák stud.sk.: 13 dne: 1.1.28 Odevzdal dne:...
Návod k použití PROFESIONÁLNÍ DIGITÁLNÍ TESTER. Popis Symboly Popis.... Prověření spojitosti
Návod k použití PROFESIONÁLNÍ DIGITÁLNÍ TESTER Mod. VE 8020 Čtěte pozorně všechny instrukce!!! Rozměry Popis testeru Tabulka symbolů Symbo ly Popis Symboly Popis DC V případě stejnosměrných... Test diody
VAROVÁNÍ Abyste zamezili úrazu elektrickým proudem, zranění nebo poškození přístroje, před použitím si prosím pečlivě přečtěte návod k použití.
VAROVÁNÍ Abyste zamezili úrazu elektrickým proudem, zranění nebo poškození přístroje, před použitím si prosím pečlivě přečtěte návod k použití. 1. BEZPEČNOSTNÍ PRAVIDLA 1-1. Před použitím zkontrolujte
Neřízené usměrňovače reálné vlastnosti
Počítačové cvičení BNEZ 1 Neřízené usměrňovače reálné vlastnosti Úkol 1: Úkol 2: Úkol 3: Úkol 4: Úkol 5: Pomocí programu OrCAD Capture zobrazte voltampérovou charakteristiku diody 1N4007 pro rozsah napětí
Příslušenství AGU 2.500. Pro řízení systému vytápění s nízkou teplotou. Kondenzační kotle model LUNA HT. Návod na použití pro INSTALATÉRY OBSAH
Příslušenství AGU 2.500 Pro řízení systému vytápění s nízkou teplotou Kondenzační kotle model LUNA HT Návod na použití pro INSTALATÉRY OBSAH Str. Popis příslušenství SIEMENS model AGU 2.500 3 Instalace
Osciloskop Osciloskop.doc Ing. M. Martinec, V. Provazník Vytvořeno dne: 13.1.2014
Osciloskopy Osciloskop je měřicí přístroj, který slouží ke grafickému zobrazení el. signálu v závislosti na čase a určení jeho velikosti. Dělí se na analogové osciloskopy a osciloskopy s číslicovou pamětí
A8B32IES Úvod do elektronických systémů
A8B3IES Úvod do elektronických systémů..04 Ukázka činnosti elektronického systému DC/DC měniče a optické komunikační cesty Aplikace tranzistoru MOSFET jako spínače Princip DC/DC měniče zvyšujícího napětí
DIGITÁLNÍ ELEKTRONICKÉ MULTIMETRY TRMS
Návod k obsluze DIGITÁLNÍ ELEKTRONICKÉ MULTIMETRY TRMS Čtěte pozorně všechny instrukce Měřicí přístroje řady EV3M jsou digitální elektronické multimetry trms určené k zobrazování základních elektrických
Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora
Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_EM_2.11_měření rekvence a áze Střední odborná škola a Střední odborné učiliště,
DIGITÁLNÍ KAPESNÍ MULTIMETR AX-MS811 NÁVOD K OBSLUZE
DIGITÁLNÍ KAPESNÍ MULTIMETR AX-MS811 NÁVOD K OBSLUZE Bezpečnost Mezinárodní bezpečnostní symboly Tento symbol použitý ve vztahu k jinému symbolu nebo zdířce znamená, že se máte seznámit s příslušnou částí
Pro více informací navštivte náš web www.velleman.eu
UŽIVATELSKÝ MANUÁL Obsah Záruka a Bezpečnostní Informace. 3 Postup použití 3 Specifikace a Vlastnosti. 4 Prohlídka Předního Panelu. 5 Nabíjení baterie.. 5 Použití osciloskopu 5 Zkrácené menu a Rozšířené
Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora
Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ CZ.1.07/1.5.00/34.0394 VY_3_INOVACE_EM_.0_měření kmitočtové charakteristiky zesilovače Střední odborná škola a Střední
- + C 2 A B V 1 V 2 - U cc
RIEDL 4.EB 10 1/6 1. ZADÁNÍ a) Změřte frekvenční charakteristiku operačního zesilovače v invertujícím zapojení pro růžné hodnoty zpětné vazby (1, 10, 100, 1000kΩ). Vstupní napětí volte tak, aby nedošlo
AX-DG1000AF. UPOZORNĚNÍ popisuje podmínky nebo činnosti, které mohou způsobit zranění a smrt.
AX-DG1000AF 1. Návod k použití Před použitím zařízení si přečtěte celý návod k použití. Při používání zařízení uchovávejte návod v blízkosti zařízení, aby było možné jej použit v případě potřeby. Při přemísťování
1.Zadání 2.POPIS MĚŘENÉHO PŘEDMĚTU 3.TEORETICKÝ ROZBOR
RIEDL 4.EB 11 1/8 1.Zadání a) Změřte převodní charakteristiku optočlenu WK16321 U 2 =f(i f ) b) Ověřte přesnost obdélníkových impulzů o kmitočtu 100Hz a 10kHz při proudu vysílače 0,3I fmax a 0,9I fmax
Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů
Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů Návod na laboratorní úlohu Měření plynem indukovaných změn voltampérových charakteristik chemických vodivostních senzorů 1. Úvod
Multisim součástky a měřící přístroje 2. díl
Multisim součástky a měřící přístroje 2. díl Součástky Multisim používá dva druhy součástek: součástky reálné, součástky virtuální. Reálné součástky odpovídají těm, které můžeme zakoupit v obchodě - mají
Úvod k učiteli praktických cvičení.
1 Úvod k učiteli praktických cvičení. LabTutor je softwarový balík vytvořený výhradně pro laboratorní výuku a je užíván společně s přístrojem ADInstruments PowerLab. Program kontroluje vzorkování, digitalizaci
popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu
9. Čidla napětí a proudu Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu Výklad
OSCILOSKOPY. Základní vlastnosti osciloskopů
OSCILOSKOPY Základní vlastnosti osciloskopů režimy y t pozorování časových průběhů, měření v časové oblasti x y napětí přivedené k vertikálnímu vstupu je funkcí napětí přivedeného k horizontálnímu vstupu
Akustooptický modulátor s postupnou a stojatou akustickou vlnou
Úloha č. 8 pro laserová praktika (ZPLT) KFE, FJFI, ČVUT, Praha v. 2017/2018 Akustooptický modulátor s postupnou a stojatou akustickou vlnou Akustooptické modulátory (AOM), někdy též nazývané Braggovské
Osciloskopy, základní vlastnosti a jejich použití v laboratorních měřeních SPŠD Masná 18, Praha 1
Osciloskopy, základní vlastnosti a jejich použití v laboratorních měřeních SPŠD Masná 18, Praha 1 Úvod Ing. L. Harwot, CSc. Osciloskop zobrazuje na stínítku obrazovky (CRT) nebo LC displeji v časové (amplituda/čas)