Některé poznatky z charakterizace nano železa. Marek Šváb Tereza Nováková Martina Müllerová Jan Šubrt Karel Závěta Eva Gregorová
|
|
- Sabina Pešková
- před 9 lety
- Počet zobrazení:
Transkript
1 Některé poznatky z charakterizace nano železa Marek Šváb Tereza Nováková Martina Müllerová Jan Šubrt Karel Závěta Eva Gregorová
2 Nanotechnologie 60. a 70. léta 20. st.: období miniaturizace 90. léta 20. st.: Současnost: Richard Feynman: Tam dole je spousta místa. (prorok nanotechnologie) rozvoj mikrosystémového a genetického inženýrství první uhlíkové nanotrubičky využití nanotechnologií v mnoha oborech (medicína, strojírenství, letectví, dekontaminační technologie atd.) vysoké investice do vývoje nanotechnologií Molekuly, ionty, roztoky Nanomateriály Makrosvět 1 nm 100 nm 1 cm
3 Nanoželezo Hlavní deklarované výhody nanoželeza velký měrný povrch vysoká reaktivita silné redukční schopnosti schopnost migrovat porézním prostředím Skutečnost Fe Fe 50 nm Fe + H 2 O Fe (ox.) + H 2
4 Žádaný/skutečný stav Žádaný stav Skutečný stav 100 nm 5 μm
5 Charakterizace nanoželeza Proč charakterizovat nanoželezo? v čase proměnné vlastnosti lepší vzájemná porovnatelnost laboratorních a praktických výsledků není vše nano, co se tak tváří Co lze charakterizací zjistit? skutečné rozměry nanočástic a jejich aglomerátů jaký podíl tvoří Fe(0) a jaký podíl oxidy Fe proměnlivost vlastností nanoželeza v čase
6 Metody charakterizace nanoželeza Rentgenová difrakce analýza tuhých látek jen pro látky s krystalovou strukturou velikost základních krystalů kvantitativní informace o složení vzorku Laserová difrakce Elektronová mikroskopie měření rozptylu laserového paprsku procházejícího měrnou celou obsahující vodnou suspenzi měřeného vzorku velikost shluků částic nepohyblivý svazek elektronů a detekce elektronů prošlých vzorkem na fluorescenčním stínítku, resp. kameře zvětšení až krát a rozlišení až 0,1 nm rozměry a tvar, chemické složení a struktura pozorovaných částic
7 Metody charakterizace nanoželeza Mössbauerova spektroskopie jaderná spektrální metoda relativní zastoupení různých valenčních stavů železa měření časově náročné (1 vzorek několik hodin až dní) Jednoduché laboratorní metody: Titrace oxidačně-redukční titrace (např. manganometrie) obsah Fe (0) problém se stabilizátory v suspenzi Sedimentační křivky rychlost sedimentace tuhých částic v roztoku prvotní posouzení zkoumaného materiálu
8 Nanoželezo japonské firmy TODA Popis produktu vodná suspenze nanoželeza určená k dekontaminačním účelům uváděná velikost nanočástic: ~ 70 nm stabilizace nanočástic přídavkem 2-4 % polymerní látky (polymaleinová kyselina) minimální trvanlivost: 3 měsíce Složení produktu Složka Průměrný obsah (%) Elementární železo (Fe) 11 Magnetit (Fe3O4) 6 Polymaleinová kyselina 3 Voda 80
9 Charakterizace nanoželeza firmy TODA Rentgenová difrakce velikost nanočástic: ~ 50 nm zjištěny 2 formy železa: Fe(0) a Fe 3 O 4 (magnetit) zahrnuje pouze krystalickou část vzorku nebere v úvahu aglomeráty, měří jednotlivé krystaly
10 Geometric Mean Diameter µm Mean Squre Deviation µm Quadratic , Square nanoželezo, Mean Diameter 240 (Ing. Nováková) 4.58 µm Average Deviation µm Harmonic Mean Diameter 1.3 µm Coefficiant of Variation % Statistical Measuring Modes... Range 0.1 [µm] [µm] Pump 70 [%] Skewness Resolution 159 Channels ( mm Mode / 38 mm ) µm Curtosis Absorption Median [%] Ultrasonic Offµm Span Measurement Duration Mean/Median [Scans] Ratio Uniformity 1.38 Regularization / Modell Laserová difrakce Specific Surface Area Mie Theorie Density Form Factor Charakterizace nanoželeza firmy TODA cm2/cm3 Iron 1. g/cc Refractive Index n = g/cc Absorption Coefficient a = Water (20 C) Refractive Index n = měří velikost aglomerátů Mean Values... D43 = µm D42 = µm D41 = 4.28 µm D40 = 1.87 µm D32 = 6.67 µm D31 = 1.47 µm D30 =.69 µm D21 =.32 µm D20 =.22 µm D10 = 8.19 µm Statistical Means... Arithmetic Mean Diameter µm Variance µm2 Geometric Mean Diameter µm Mean Squre Deviation µm Quadratic Square Mean Diameter µm Average Deviation µm Harmonic Mean Diameter µm Coefficiant of Variation % Statistical Modes... Skewness -.12 Mode µm Curtosis Median µm Span 1.37 Mean/Median Ratio.981 Uniformity.38 Specific Surface Area Density Form Factor cm2/cm3 1. g/cc 1. g/cc S ultrazvukem medián velikostí částic (prostřední hodnota): 1,5 μm (1500 nm) modus (nejčetnější hodnota): 1,1 μm (1100 nm) menších než 1 μm (1000 nm): 29 % Bez ultrazvuku medián velikostí částic: 37 μm ( nm) modus: 44,5 μm ( nm) menších než 1 μm (1000 nm): 3,4 %
11 Charakterizace nanoželeza firmy TODA Elektronová mikroskopie Rastrovací elektronový mikroskop Transmisivní elektronový mikroskop shluky velikosti jednotek μm základní částice velikosti kolem 100 nm patrná tvorba shluků
12 Výroba nanoželeza Borohydridová metoda jednoduchá metoda přípravy nanoželeza redukce Fe 3+ nebo Fe 2+ iontů borohydridem sodným dle reakce: 2Fe BH H 2 O = 2Fe + 6B(OH) H 2 k roztoku Fe 3+ /Fe 2+ je postupně po kapkách přidáván roztok NaBH 4 NaBH 4 je přidáván v molárním přebytku (~ 10násobný) forma vzniklého nanoželeza závisí na řadě faktorů (např. koncentrace roztoků, intenzita míchání, kinetika reakce atd.) u čerstvého nanoželeza lze předpokládat vyšší reaktivitu cena borohydridu může přesáhnout cenu komerčního nanoželeza u vyrobeného nanoželeza (0,01M FeCl 3 + 0,1M NaBH 4 ) byl laserovou difrakcí změřen medián ~ 2,5 μm a modus ~ 2,8 μm vhodná stabilizace by mohla částečně omezit tvorbu aglomerátů a sedimentaci nanoželeza
13 Závěr aplikace nanoželeza může být efektivní na lokalitách ve většině případů dochází ke zlepšení situace z podrobnější znalosti vlastností materiálu lze odhadnout jeho chování při aplikaci in-situ další výzkum by měl být zaměřen zejména na vhodnou metodu stabilizace nanoželeza, na potlačení shlukování částic
14 Děkuji za pozornost
Metody charakterizace
Metody y strukturní analýzy Metody charakterizace nanomateriálů I Význam strukturní analýzy pro studium vlastností materiálů Experimentáln lní metody využívan vané v materiálov lovém m inženýrstv enýrství:
VíceElektronová mikroskopie SEM, TEM, AFM
Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první
VíceProč elektronový mikroskop?
Elektronová mikroskopie Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop,, 1 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první komerční
VíceZáklady Mössbauerovy spektroskopie. Libor Machala
Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických
VíceKoloidní zlato. Tradiční rekvizita alchymistů v minulosti sofistikovaný (nano)nástroj budoucnosti?
Koloidní zlato Tradiční rekvizita alchymistů v minulosti sofistikovaný (nano)nástroj budoucnosti? Dominika Jurdová Gymnázium Velké Meziříčí, D.Jurdova@seznam.cz Tereza Bautkinová Gymnázium Botičská, tereza.bautkinova@gybot.cz
VíceSTANOVENÍ TVARU A DISTRIBUCE VELIKOSTI ČÁSTIC MODELOVÝCH TYPŮ NANOMATERIÁLŮ. Edita BRETŠNAJDROVÁ a, Ladislav SVOBODA a Jiří ZELENKA b
STANOVENÍ TVARU A DISTRIBUCE VELIKOSTI ČÁSTIC MODELOVÝCH TYPŮ NANOMATERIÁLŮ Edita BRETŠNAJDROVÁ a, Ladislav SVOBODA a Jiří ZELENKA b a UNIVERZITA PARDUBICE, Fakulta chemicko-technologická, Katedra anorganické
VíceVybrané spektroskopické metody
Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky
Vícenano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL
Inovace a rozvoj studia nanomateriálů na TUL nano.tul.cz Tyto materiály byly vytvořeny v rámci projektu ESF OP VK: Inovace a rozvoj studia nanomateriálů na Technické univerzitě v Liberci Zdravotní rizika
VíceKoloidní zlato: tradiční rekvizita alchymistů v minulosti - sofistikovaný (nano)nástroj budoucnosti?
Koloidní zlato: tradiční rekvizita alchymistů v minulosti - sofistikovaný (nano)nástroj budoucnosti? Vedoucí projektu: Ing. Filip Novotný, Ing. Filip Havel K. Hes - Gymnázium, Praha 6, Nad Alejí 1952 K.
VíceOptické spektroskopie 1 LS 2014/15
Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)
Více10/21/2013. K. Záruba. Chování a vlastnosti nanočástic ovlivňuje. velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita
Chování a vlastnosti nanočástic ovlivňuje velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita K. Záruba Optická mikroskopie Elektronová mikroskopie (SEM, TEM) Fotoelektronová
VíceMETODY ANALÝZY POVRCHŮ
METODY ANALÝZY POVRCHŮ (c) - 2017 Povrch vzorku 3 definice IUPAC: Povrch: vnější část vzorku o nedefinované hloubce (Užívaný při diskuzích o vnějších oblastech vzorku). Fyzikální povrch: nejsvrchnější
VíceAnalýza magnetických mikročástic mikroskopií atomárních sil
Analýza magnetických mikročástic mikroskopií atomárních sil Zapletalová 1 H., Tvrdíková 2 J., Kolářová 1 H. 1 Ústav lékařské biofyziky, LF UP Olomouc 2 Ústav chemie potravin a biotechnologií, CHF VUT Brno
VíceKlasifikace oxidů železa, strukturní formy. Tepelný rozklad jako metoda přípravy nanočástic. Příklady přípravy nanočástic oxidů železa
Obsah přednášky Klasifikace oxidů železa, strukturní formy Nanomateriály na bázi oxidů železa Tepelný rozklad jako metoda přípravy nanočástic Příklady přípravy nanočástic oxidů železa Polymorfní přeměny
VícePokročilé cvičení z fyzikální chemie KFC/POK2 Vibrační spektroskopie
Pokročilé cvičení z fyzikální chemie KFC/POK2 Vibrační spektroskopie Vibrace molekul mohou být měřeny buď pomocí absorpce infračerveného záření, nebo pomocí neelastického rozptylu záření, tzn. Ramanova
VíceÚvod do spektrálních metod pro analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz
VíceDifrakce elektronů v krystalech a zobrazení atomů
Difrakce elektronů v krystalech a zobrazení atomů Ondřej Ticháček, PORG, ondrejtichacek@gmail.com Eva Korytiaková, Gymnázium Nové Zámky, korpal@pobox.sk Abstrakt: Jak vypadá vnitřek hmoty? Lze spatřit
VícePotenciál vyuţití ferrátů v sanačních technologiích
Potenciál vyuţití ferrátů v sanačních technologiích Technická univerzita Liberec Fakulta mechatroniky, informatiky a mezioborových studií Pavel Hrabák, Miroslav Černík, Eva Kakosová, Lucie Křiklavová Motivace
VíceAplikace nano-sorbentů pro stabilizaci Pb a Zn v kontaminované půdě
Aplikace nano-sorbentů pro stabilizaci Pb a Zn v kontaminované půdě Martina Vítková, Z. Michálková, L. Trakal, M. Komárek Katedra geoenvironmentálních věd, Fakulta životního prostředí, Česká zemědělská
VíceUhlíkové struktury vázající ionty těžkých kovů
Uhlíkové struktury vázající ionty těžkých kovů 7. června/june 2013 9:30 h 17:30 h Laboratoř metalomiky a nanotechnologií, Mendelova univerzita v Brně a Středoevropský technologický institut Budova D, Zemědělská
VíceRenáta Kenšová. Název: Školitel: Datum: 24. 10. 2014
Název: Školitel: Sledování distribuce zinečnatých iontů v kuřecím zárodku za využití moderních technik Monitoring the distribution of zinc ions in chicken embryo using modern techniques Renáta Kenšová
VíceDIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ
DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ T. Jeřábková Gymnázium, Brno, Vídeňská 47 ter.jer@seznam.cz V. Košař Gymnázium, Brno, Vídeňská 47 vlastik9a@atlas.cz G. Malenová Gymnázium Třebíč malena.vy@quick.cz
VíceMETODY FARMACEUTICKÉ TECHNOLOGIE ČL 2009, D PharmDr. Zdenka Šklubalová, Ph.D
METODY FARMACEUTICKÉ TECHNOLOGIE ČL 2009, D 2010 PharmDr. Zdenka Šklubalová, Ph.D. 10.6.2010 ZMĚNY D 2010 (harmonizace beze změn v textu) 2.9.1 Zkouška rozpadavosti tablet a tobolek 2.9.3 Zkouška disoluce
VíceTechniky prvkové povrchové analýzy elemental analysis
Techniky prvkové povrchové analýzy elemental analysis (Foto)elektronová spektroskopie (pro chemickou analýzu) ESCA, XPS X-ray photoelectron spectroscopy (XPS) Any technique in which the sample is bombarded
VícePovrchově modifikované nanočástice železa pro dechloraci organických kontaminantů
Povrchově modifikované nanočástice železa pro dechloraci organických kontaminantů Ing. Bc. Štěpánka Klímková Školitel: Doc. Dr. Ing. Miroslav Černík, CSc. využití Fe0 pro dekontaminaci vlastnosti nanočástic
VíceKarta předmětu prezenční studium
Karta předmětu prezenční studium Název předmětu: Číslo předmětu: 545-0250 Garantující institut: Garant předmětu: Ekonomická statistika Institut ekonomiky a systémů řízení RNDr. Radmila Sousedíková, Ph.D.
VíceTřídění látek. Chemie 1.KŠPA
Třídění látek Chemie 1.KŠPA Systém (soustava) Vymezím si kus prostoru, látky v něm obsažené nazýváme systém soustava okolí svět Stěny soustavy Soustava může být: Izolovaná = stěny nedovolí výměnu částic
VíceDifrakce elektronů v krystalech, zobrazení atomů
Difrakce elektronů v krystalech, zobrazení atomů T. Sýkora 1, M. Lanč 2, J. Krist 3 1 Gymnázium Českolipská, Českolipská 373, 190 00 Praha 9, tomas.sykora@email.cz 2 Gymnázium Otokara Březiny a SOŠ Telč,
VíceOdhad zdrojů atmosférického aerosolu v městském obvodu Ostrava-Radvanice a Bartovice v zimě 2012
Odhad zdrojů atmosférického aerosolu v městském obvodu Ostrava-Radvanice a Bartovice v zimě 212 CENATOX, GAČR P53/12/G147 P. Pokorná 1, J. Hovorka 1, Jan Bendl 1, Alexandra Baranová 1, Martin Braniš 1
Více, ČVUT v Praze Připravil: Ing. Zdeněk Patočka Letecké laserové skenování a jeho využití v inventarizaci lesa
22. 10. 2015, ČVUT v Praze Připravil: Ing. Zdeněk Patočka Letecké laserové skenování a jeho využití v inventarizaci lesa Ing. Zdeněk Patočka Ústav hospodářské úpravy lesů a aplikované geoinformatiky, LDF
VíceLaboratorní práce č. 4
Jméno Body Laboratorní práce č. 4 Úloha 1: Chelatometrické stanovení celkové tvrdosti vody Uveďte spotřeby odměrného roztoku Chelatonu 3 a jejich aritmetický průměr. Titrace # 1 2 3 Průměr Spotřeba / ml
VíceKOLONOVÉ EXPERIMENTY POROVNÁNÍ REAKTIVNOSTI NÁPLNĚ PRB PŘI REDUKCI CLU
KOLONOVÉ EXPERIMENTY POROVNÁNÍ REAKTIVNOSTI NÁPLNĚ PRB PŘI REDUKCI CLU Cíle experimentu 1. Návrh kolonových experimentů 2. Průběh redukce ClU za pomoci železných špon 3. Rychlost reakce, možné vlivy na
Více3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).
PŘEDMĚTY KE STÁTNÍM ZÁVĚREČNÝM ZKOUŠKÁM V BAKALÁŘSKÉM STUDIU SP: CHEMIE A TECHNOLOGIE MATERIÁLŮ SO: MATERIÁLOVÉ INŽENÝRSTVÍ POVINNÝ PŘEDMĚT: NAUKA O MATERIÁLECH Ing. Alena Macháčková, CSc. 1. Souvislost
VíceINTERAKCE NULMOCNÉHO NANOŽELEZA SE SÍRANY. Pavla Filipská, Josef Zeman, Miroslav Černík. Ústav geologických věd Masarykova Univerzita
INTERAKCE NULMOCNÉHO NANOŽELEZA SE SÍRANY Pavla Filipská, Josef Zeman, Miroslav Černík Ústav geologických věd Masarykova Univerzita NANOČÁSTICE NULMOCNÉHO ŽELEZA mohou být používány k čištění důlních vod,
VíceTECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření školní zadání Skupina: 51 Vypracovaly: Pavlína Horná, Nikola Loumová, Petra Mikešová,
VíceRentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm
Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.
VíceDISKUSE VHODNOSTI KOMBINOVANÉHO POUŢITÍ VYBRANÝCH IN-SITU SANAČNÍCH METOD PŘI ŘEŠENÍ KOTAMINACE PODZEMNÍCH VOD. Autorský kolektiv
DISKUSE VHODNOSTI KOMBINOVANÉHO POUŢITÍ VYBRANÝCH IN-SITU SANAČNÍCH METOD PŘI ŘEŠENÍ KOTAMINACE PODZEMNÍCH VOD. Autorský kolektiv Petr Kvapil, AQUATEST a.s. Lenka Lacinová, Technická univerzita v Liberci
VíceZŠ ÚnO, Bratří Čapků 1332
Animovaná chemie Top-Hit Analytická chemie Analýza anorganických látek Důkaz aniontů Důkaz kationtů Důkaz kyslíku Důkaz vody Gravimetrická analýza Hmotnostní spektroskopie Chemická analýza Nukleární magnetická
VíceGymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Chemie (CHE) Obecná chemie, anorganická chemie 2. ročník a sexta 2 hodiny týdně Školní tabule, interaktivní tabule, tyčinkové a kalotové modely molekul, zpětný
VíceMODELOVÁNÍ MIGRAČNÍCH SCHOPNOSTÍ ŽELEZNÝCH NANOČÁSTIC A OVĚŘENÍ MODELU PŘI PILOTNÍ APLIKACI
Technická univerzita v Liberci MODELOVÁNÍ MIGRAČNÍCH SCHOPNOSTÍ ŽELEZNÝCH NANOČÁSTIC A OVĚŘENÍ MODELU PŘI PILOTNÍ APLIKACI J. Nosek, M. Černík, P. Kvapil Cíle Návrh a verifikace modelu migrace nanofe jednoduše
VíceNanokrystalické tenké filmy oxidu železitého pro solární štěpení vody
Nanokrystalické tenké filmy oxidu železitého pro solární štěpení vody J. Frydrych, L. Machala, M. Mašláň, J. Pechoušek, M. Heřmánek, I. Medřík, R. Procházka, D. Jančík, R. Zbořil, J. Tuček, J. Filip a
VíceChemie a fyzika pevných látek p2
Chemie a fyzika pevných látek p2 difrakce rtg. záření na pevných látkch, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl
VíceSanace kontaminovaného území Plzeň Libušín kombinací několika sanačních metod
Sanace kontaminovaného území Plzeň Libušín kombinací několika sanačních metod Jana Kolářová 1, Petr Kvapil 2, Vít Holeček 2 1) DEKONTA a.s., Volutová 2523, 158 00 Praha 5 2) AQUATEST a.s., Geologická 4,
VíceOPTIMALIZACE METODY ANODICKÉ ROZPOUŠTĚCÍ VOLTAMETRIE PRO ANALÝZU BIOLOGICKÝCH VZORKŮ S OBSAHEM RTUTI
Středoškolská technika 212 Setkání a prezentace prací středoškolských studentů na ČVUT OPTIMALIZACE METODY ANODICKÉ ROZPOUŠTĚCÍ VOLTAMETRIE PRO ANALÝZU BIOLOGICKÝCH VZORKŮ S OBSAHEM RTUTI Eliška Marková
Více13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
VíceZERO VALENT NANOIRON PRE-TREATMENT WITHIN IN-SITU CHEMICAL REDUCTION PŘEDÚPRAVA ELEMENTÁRNÍHO NANOŽELEZA V RÁMCI TECHNIKY IN SITU CHEMICKÉ REDUKCE
ZERO VALENT NANOIRON PRE-TREATMENT WITHIN IN-SITU CHEMICAL REDUCTION PŘEDÚPRAVA ELEMENTÁRNÍHO NANOŽELEZA V RÁMCI TECHNIKY IN SITU CHEMICKÉ REDUKCE Lenka Hokrová Honetschlägerová, Petr Beneš, Martin Kubal
VíceObsah přednášky. princip heterogenní fotokatalýzy
Fotokatalýza na oxidu titaničitém a její uplatnění při ochraně životního prostředí Obsah přednášky Olomouc, 24. února 2010 princip heterogenní fotokatalýzy vývoj fotoaktivity nanočástic oxidu titaničitého
VíceTechniky mikroskopie povrchů
Techniky mikroskopie povrchů Elektronové mikroskopie Urychlené elektrony - šíření ve vakuu, ovlivnění dráhy elektrostatickým nebo elektromagnetickým polem Nepřímé pozorování elektronového paprsku TEM transmisní
VíceGEOCHEMICKÁ REAKTIVNÍ BARIÉRA PERSPEKTIVNÍ PRVEK IN - SITU SANAČNÍCH TECHNOLOGIÍ
GEOCHEMICKÁ REAKTIVNÍ BARIÉRA PERSPEKTIVNÍ PRVEK IN - SITU SANAČNÍCH TECHNOLOGIÍ Jaroslav HRABAL MEGA a.s. monitorovací vrt injektážní vrt reakční zóna Geochemická bariera zóna s odlišnými fyzikálně-chemickými
VíceChemie povrchů verze 2013
Chemie povrchů verze 2013 Definice povrchu složitá, protože v nanoměřítku (na úrovni velikosti atomů) je elektronový obal atomů difúzní většinou definován fyzikální adsorpcí nereaktivních plynů Vlastnosti
VíceTepelné rozklady železo obsahujících sloučenin pohledem Mössbauerovy spektroskopie
Tepelné rozklady železo obsahujících sloučenin pohledem Mössbauerovy spektroskopie Libor Machala E-mail: libor.machala@upol.cz 21.10.2011 Workshop v rámci projektu Pokročilé vzdělávání ve výzkumu a aplikacích
VíceSPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE)
SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE) Elektromagnetické vlnění SVĚTLO Charakterizace záření Vlnová délka - (λ) : jednotky: m (obvykle nm) λ Souvisí s povahou fotonu Charakterizace záření
VíceOptická mikroskopie a spektroskopie nanoobjektů. Nanoindentace. Pavel Matějka
Optická mikroskopie a spektroskopie nanoobjektů Nanoindentace Pavel Matějka Optická mikroskopie a spektroskopie nanoobjektů 1. Optická mikroskopie blízkého pole 1. Princip metody 2. Instrumentace 2. Optická
VíceMetody analýzy povrchu
Metody analýzy povrchu Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. 2 Povrch pevné látky: Poslední monoatomární vrstva + absorbovaná monovrstva Ovlivňuje fyzikální vlastnosti (ukončení
VíceGymnázium a Střední odborná škola, Rokycany, Mládežníků 1115
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: CZ.1.07/1.5.00/34.0410 Číslo šablony: 19 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek:
VíceMAGNETICKÉ NANOČÁSTICE
MAGNETICKÉ NANOČÁSTICE Jana Chomoucká Investice do rozvoje vzdělávání Obsah Úvod Vlastnosti MNPs Využití MNPs Metody přípravy MNPs na bázi oxidů železa Co je to nanotechologie? Obor zabývající se tvorbou
VíceKrystalografie a strukturní analýza
Krystalografie a strukturní analýza O čem to dneska bude (a nebo také nebude): trocha historie aneb jak to všechno začalo... jak a čím pozorovat strukturu látek difrakce - tak trochu jiný mikroskop rozptyl
VíceVlastnosti nanoželezné suspenze modifikované řepkovým olejem
Vlastnosti nanoželezné suspenze modifikované řepkovým olejem Štěpánka Klímková Technická univerzita v Liberci nanofe 0 (nzvi) Fe 2 O 3.nH 2 O nanorozměry => specifické vlastnosti CS-Fe 0 RNIP_10E NANOFER
VícePOUŽITÍ PROPUSTNÉ REAKTIVNÍ BARIÉRY Z NULMOCNÉHO ŽELEZA V SANACI CHLOROVANÝCH ETYLENŮ A JEJÍ VLIV NA BAKTERIÁLNÍ OSÍDLENÍ PODZEMNÍ VODY
POUŽITÍ PROPUSTNÉ REAKTIVNÍ BARIÉRY Z NULMOCNÉHO ŽELEZA V SANACI CHLOROVANÝCH ETYLENŮ A JEJÍ VLIV NA BAKTERIÁLNÍ OSÍDLENÍ PODZEMNÍ VODY Mgr. Marie Czinnerová Technická univerzita v Liberci Ústav pro nanomateriály,
VíceGymnázium Jiřího Ortena, Kutná Hora
Předmět: Seminář chemie (SCH) Náplň: Obecná chemie, anorganická chemie, chemické výpočty, základy analytické chemie Třída: 3. ročník a septima Počet hodin: 2 hodiny týdně Pomůcky: Vybavení odborné učebny,
VíceÚvod k biochemickému praktiku. Pavel Jirásek
Úvod k biochemickému praktiku Pavel Jirásek Úvodní informace 4 praktika B1 B2 B3 B4 4 týdny 8 pracovních stolů rozdělení kruhu do 8 pracovních skupin (v každé 2-3 studenti) Co s sebou na praktika plášť
VíceCharakterizace koloidních disperzí. Pavel Matějka
Charakterizace koloidních disperzí Pavel Matějka Charakterizace koloidních disperzí 1. Úvod koloidní disperze 2. Spektroskopie kvazielastického rozptylu 1. Princip metody 2. Instrumentace 3. Příklady použití
VíceElektronová mikroskopie II
Elektronová mikroskopie II Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Transmisní elektronová mikroskopie TEM Informace zprostředkována prošlými e - (TE, DE) Umožň žňuje studium vnitřní
VíceRadiační odstraňování vybraných kontaminantů z podzemních a odpadních vod
Radiační odstraňování vybraných kontaminantů z podzemních a odpadních vod Václav Čuba, Viliam Múčka, Milan Pospíšil, Rostislav Silber ČVUT v Praze Centrum pro radiochemii a radiační chemii Fakulta jaderná
VíceSADA VY_32_INOVACE_CH2
SADA VY_32_INOVACE_CH2 Přehled anotačních tabulek k dvaceti výukovým materiálům vytvořených Ing. Zbyňkem Pyšem. Kontakt na tvůrce těchto DUM: pys@szesro.cz Výpočet empirického vzorce Název vzdělávacího
VíceEmise vyvolaná působením fotonů nebo částic
Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová
VíceUčební osnovy Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemický kroužek ročník 6.-9.
Učební osnovy Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemický kroužek ročník 6.-9. Školní rok 0/03, 03/04 Kapitola Téma (Učivo) Znalosti a dovednosti (výstup) Počet hodin pro kapitolu Úvod
VíceMetody analýzy povrchu
Metody analýzy povrchu Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Povrch pevné látky: Poslední monoatomární vrstva + absorbovaná monovrstva Ovlivňuje fyzikální vlastnosti (ukončení
VíceLABORATORNÍ PŘÍSTROJE A POSTUPY
LABORATORNÍ PŘÍSTROJE A POSTUPY Chem. Listy 92, 912-916 (1998) STANOVENÍ DISTRIBUCE VELIKOSTI ČÁSTIC OXIDU TITANIČITÉHO JAN BALCÁREK a, ADOLF GOEBEL a, ZDENĚK ŠMEJKAL b a LADISLAV DUBÁNEK b rychlé získání
Víceenergetického využití odpadů, odstraňování produktů energetického využití odpadů, hodnocení dopadů těchto technologií na prostředí.
Příjemce projektu: Partner projektu: Místo realizace: Ředitel výzkumného institutu: Celkové způsobilé výdaje projektu: Dotace poskytnutá EU: Dotace ze státního rozpočtu ČR: VŠB Technická univerzita Ostrava
VíceNanomateriály - nanotechnologie
Nanomateriály - nanotechnologie RNDr. Milada Vomastková, CSc. 14.4.2014 Úvod Evropský komisař pro Vědu a výzkum Janez Potocnik řekl: Nanotechnologie je oblast, která má vysoce nadějné vyhlídky pro změnu
VícePevné lékové formy. Vlastnosti pevných látek. Charakterizace pevných látek ke zlepšení vlastností je vhodné využít materiálové inženýrství
Pevné lékové formy Vlastnosti pevných látek stabilita Vlastnosti léčiva rozpustnost krystalinita ke zlepšení vlastností je vhodné využít materiálové inženýrství Charakterizace pevných látek difraktometrie
VíceNáboj a hmotnost elektronu
1911 určení náboje elektronu q pomocí mlžné komory q = 1.602 177 10 19 C Náboj a hmotnost elektronu Elektrický náboj je kvantován Každý náboj je celistvým násobkem elementárního náboje (elektronu) z hodnoty
VíceElektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření
Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou
VíceZákladní chemické výpočty I
Základní chemické výpočty I Tomáš Kučera tomas.kucera@lfmotol.cuni.cz Ústav lékařské chemie a klinické biochemie 2. lékařská fakulta, Univerzita Karlova v Praze a Fakultní nemocnice v Motole 2017 Relativní
VíceGENEROVÁNÍ TĚKAVÝCH SLOUČENIN V AAS
GENEROVÁNÍ TĚKAVÝCH SLOUČENIN V AAS Pro generování těkavých sloučenin se používá: generování těkavých hydridů: As, Se, Bi, Ge, Sn, Te, In, generování málo těkavých hydridů: In, Tl, Cd, Zn, metoda studených
VíceNanočástice, nanotechnologie a nanoprodukty a jejich vazba na BOZP
Nanočástice, nanotechnologie a nanoprodukty a jejich vazba na BOZP Karel Klouda Lenka Frišhansová Josef Senčík Výzkumný ústav bezpečnosti práce, v.v.i. (VÚBP, v.v.i.) Oddělení prevence rizik a ergonomie
VíceVIBRAČNÍ SPEKTROMETRIE
VIBRAČNÍ SPEKTROMETRIE (c) -2012 RAMANOVA SPEKTROMETRIE 1 PRINCIP METODY Měří se rozptýlené záření, které vzniká interakcí monochromatického záření z viditelné oblasti s molekulami vzorku za současné změny
VíceMETODY BEZ VÝMĚNY ENERGIE MEZI ZÁŘENÍM A VZORKEM
METODY BEZ VÝMĚNY ENERGIE MEZI ZÁŘENÍM A VZORKEM REFRAKTOMETRIE POLARIMETRIE SPEKTROMETRIE VYUŽÍVAJÍCÍ ROZPTYL MĚŘENÍ VELIKOSTI ČÁSTIC (c) -2012 REFRAKTOMETRIE Metoda založená na měření indexu lomu látek
VíceTRANSMISNÍ ELEKTRONOVÁ MIKROSKOPIE
TRANSMISNÍ ELEKTRONOVÁ MIKROSKOPIE Klára Šafářová Centrum pro výzkum nanomateriálů, UP Olomouc 4.12.2009 Workshop: Mikroskopické techniky SEM a TEM Obsah konstrukce transmisního elektronového mikroskopu
VíceBezpečnostní inženýrství. - Detektory požárů a senzory plynů -
Bezpečnostní inženýrství - Detektory požárů a senzory plynů - Úvod 2 Včasná detekce požáru nebo úniku nebezpečných látek = důležitá součást bezpečnostního systému Základní požadavky včasná detekce omezení
VíceElektronová mikroskopie a RTG spektroskopie. Pavel Matějka
Elektronová mikroskopie a RTG spektroskopie Pavel Matějka Elektronová mikroskopie a RTG spektroskopie 1. Elektronová mikroskopie 1. TEM transmisní elektronová mikroskopie 2. STEM řádkovací transmisní elektronová
VíceVÝPO C TY. Tomáš Kuc era & Karel Kotaška
ZÁKLADNÍ CHEMICKÉ VÝPO C TY I Tomáš Kuc era & Karel Kotaška tomas.kucera@lfmotol.cuni.cz Ústav lékar ské chemie a klinické biochemie 2. lékar ská fakulta, Univerzita Karlova v Praze a Fakultní nemocnice
VíceMikroskopie rastrující sondy
Mikroskopie rastrující sondy Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Metody mikroskopie rastrující sondy SPM (scanning( probe Microscopy) Metody mikroskopie rastrující sondy soubor
VícePOSLEDNÍ ZKUŠENOSTI A PERSPEKTIVY DALŠÍHO POUŽITÍ ELEMENTÁRNÍHO NANOŽELEZA - APLIKACE PŘI SANACI PODZEMNÍCH VOD
POSLEDNÍ ZKUŠENOSTI A PERSPEKTIVY DALŠÍHO POUŽITÍ ELEMENTÁRNÍHO NANOŽELEZA - APLIKACE PŘI SANACI PODZEMNÍCH VOD RECENT EXPERIENCES AND FUTURE PERSPECTIVES OF nanozvi - APPLICATIONS FOR GROUNDWATER REMEDIATION
VíceChemické výpočty. výpočty ze sloučenin
Cheické výpočty výpočty ze sloučenin Cheické výpočty látkové nožství n, 1 ol obsahuje stejný počet stavebních částic, kolik je atoů ve 1 g uhlíku 1 C počet částic v 1 olu stanovuje Avogadrova konstanta
VíceElektronová mikroanalýz Instrumentace. Metody charakterizace nanomateriálů II
Elektronová mikroanalýz ýza 1 Instrumentace Metody charakterizace nanomateriálů II RNDr. Věra V Vodičkov ková,, PhD. Elektronová mikroanalýza relativně nedestruktivní rentgenová spektroskopická metoda
VíceMODIFIKACE VLASTNOSTÍ PÁLENÉHO VÁPNA. IVA DOLEŽALOVÁ VÁPENKA VITOŠOV s.r.o.
MODIFIKACE VLASTNOSTÍ PÁLENÉHO VÁPNA IVA DOLEŽALOVÁ VÁPENKA VITOŠOV s.r.o. Cíl práce První a druhá etapa : ověření vztahu mezi fyzikálními a chemickými vlastnostmi vápence a následně kvalitou vápna, charakterizovanou
Více2. Určete frakční objem dendritických částic v eutektické slitině Mg-Cu-Zn. Použijte specializované programové vybavení pro obrazovou analýzu.
1 Pracovní úkoly 1. Změřte střední velikost zrna připraveného výbrusu polykrystalického vzorku. K vyhodnocení snímku ze skenovacího elektronového mikroskopu použijte kruhovou metodu. 2. Určete frakční
VíceZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat
VíceMetody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření
Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá
VíceFotonické nanostruktury (alias nanofotonika)
Základy nanotechnologií KEF/ZANAN Fotonické nanostruktury (alias nanofotonika) Jan Soubusta 27.10. 2017 Obsah 1. ÚVOD 2. POHLED DO MIKROSVĚTA 3. OD ELEKTRONIKY K FOTONICE 4. FYZIKA PRO NANOFOTONIKU 5.
VíceCHO cvičení, FSv, ČVUT v Praze
2. Chemické rovnice Chemická rovnice je schématický zápis chemického děje (reakce), který nás informuje o reaktantech (výchozích látkách), produktech, dále o stechiometrii reakce tzn. o vzájemném poměru
VíceVyužití oxidů Fe a Mn pro stabilizaci As v kontaminované půdě. Ing. Zuzana Michálková, doc. RNDr. Michael Komárek, Ph.D.
Využití oxidů Fe a Mn pro stabilizaci As v kontaminované půdě Ing. Zuzana Michálková, doc. RNDr. Michael Komárek, Ph.D. Oxidy Fe a Mn N Oxidy Fe a Mn 1 µm 1 µm 1 µm Nanomaghemit Nanomagnetit Amorfní oxid
VíceJiøí Vlèek ZÁKLADY STØEDOŠKOLSKÉ CHEMIE obecná chemie anorganická chemie organická chemie Obsah 1. Obecná chemie... 1 2. Anorganická chemie... 29 3. Organická chemie... 48 4. Laboratorní cvièení... 69
VíceInovativní výrobky a environmentální technologie (reg. č. CZ.1.05/3.1.00/ ) ENVITECH
Inovativní výrobky a environmentální technologie (reg. č. CZ.1.05/3.1.00/14.0306) ENVITECH Zpráva o řešení IA 01 Využití přírodních organicko-anorganických plniv v polymerních systémech Vedoucí aktivity:
VíceC Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289
OBSAH Předmluva 5 1 Popis mikroskopu 13 1.1 Transmisní elektronový mikroskop 13 1.2 Rastrovací transmisní elektronový mikroskop 14 1.3 Vakuový systém 15 1.3.1 Rotační vývěvy 16 1.3.2 Difúzni vývěva 17
VíceInovativní výrobky a environmentální technologie (reg. č. CZ.1.05/3.1.00/ ) ENVITECH
Inovativní výrobky a environmentální technologie (reg. č. CZ.1.05/3.1.00/14.0306) ENVITECH Zpráva o řešení IA 05 Optimalizace užitných vlastností procesních kapalin s využitím nanostruktur Vedoucí aktivity:
VíceÚstav výrobního inženýrství NABÍDKA SPOLUPRÁCE. Univerzita Tomáše Bati ve Zlíně, Fakulta technologická
Univerzita Tomáše Bati ve Zlíně Fakulta technologická Ústav výrobního inženýrství NABÍDKA SPOLUPRÁCE Univerzita Tomáše Bati ve Zlíně, Fakulta technologická www.uvi.ft.utb.cz Oblasti spolupráce a služeb
Více