TECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání
|
|
- Miroslav Kraus
- před 6 lety
- Počet zobrazení:
Transkript
1 TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření školní zadání Skupina: 51 Vypracovaly: Pavlína Horná, Nikola Loumová, Petra Mikešová, Michaela Slavíková Obor: Podniková ekonomika Datum odevzdání:
2 Obsah Úvod Charakterizujte úroveň a variabilitu krajů, ve kterých je model Fiesta registrován Charakteristiky úrovně krajů, ve kterých je model Fiesta registrován Velikost souboru Aritmetický průměr Medián Modus Dolní a horní kvartil Charakteristika variability krajů, ve kterých je model Fiesta registrován Variační rozpětí Kvartilové rozpětí Kvartilová odchylka Rozptyl Směrodatná odchylka... 9 Testujte hypotézu, že skutečná spotřeba naftového motoru Fordu Kuga je 5,5l na 100km. Předpokládejme, že spotřeba automobilu se řídí normálním rozdělením Charakterizujte celkový počet návštěv v servisu (autorizované i neautorizované servisy dohromady). Otestujte hypotézu, že tato veličina má Poissonovo rozdělení. Uveďte bodový odhad parametru lambda Závěr... 1
3 Úvod Pro semestrální práci z předmětu Statistický rozbor dat z dotazníkového šetření jsme obdržely data o modelech automobilů Ford (Fiesta, Kuga, Focus, Modeo, B-Max). Mimo to jsme také obdržely základní informace, jako jsou například, rok výroby automobilu, cena, výkon, spotřeba, druh paliva či návštěva autorizovaného či neautorizovaného servisu v jednotlivých krajích. Naším prvním úkolem bylo charakterizovat úroveň a variabilitu krajů, ve kterých je jeden z modelů Ford, konkrétně Ford Fiesta, registrován. Pomocí statistických charakteristik jsme tyto statistiky vypočítaly. Druhým stěžejním úkolem je testování hypotézy, zda je skutečná spotřeba naftového motoru Ford Kuga 5,5l na 100km, za předpokladu, že se spotřeba automobilu řídí normálním rozdělením. Poslední úkol obsahuje charakteristiku celkového počtu návštěv v servisu, a to jak autorizovaného, tak i neautorizovaného servisu dohromady. Cílem tohoto úkolu bylo otestovat hypotézu, zda má veličina Poissonovo rozdělení a určit bodový odhad parametru lambda. V následující části práce jsou jednotlivé postupy výpočtu konkrétně vysvětleny a vypočteny. 3
4 1 Charakterizujte úroveň a variabilitu krajů, ve kterých je model Fiesta registrován. Tato kapitola je věnována základním statistickým charakteristikám. Zkoumanou proměnnou je registrace modelu Ford Fiesta v jednotlivých krajích. V následujících podkapitolách vyjádříme charakteristiky úrovně a variability modelu Ford Fiesta v jednotlivých krajích, ve kterých je registrován. 1.1 Charakteristiky úrovně krajů, ve kterých je model Fiesta registrován K základním statistickým charakteristikám úrovně lze zařadit průměr (aritmetický, geometrický, kvadratický a harmonický), modus a kvantily. V našem případě má smysl výpočet pouze průměru aritmetického. Dále zjistíme medián, modus a kvartily. Tabulka č.1: základní charakteristiky o registraci modelu Ford Fiesta v jednotlivých krajích Velikost souboru 14 krajů Aritmetický průměr 9,36 Modus kraj E a S Medián 8,5 Dolní kvartil Horní kvartil J Z Zdroj: vlastní zpracování Velikost souboru Ze zadaného souboru dat jsme zjistily, že se skládá ze 14 krajů a 131 automobilů značky Ford Aritmetický průměr Pro výpočet aritmetického průměru jsme zvolily aritmetický průměr prostý. Vzorec: x = 1 n x i=1 x i, kde x i jsou jednotlivé hodnoty znaku a n je počet hodnot znaku. Dosazení do vzorce: x = = 9, Model Ford Fiesta je v průměru v jednom kraji registrován 9,36 krát. 4
5 Tabulka č.: pomocná tabulka pro výpočet aritmetického průměru n = kraje x i = počet aut v kraji A 6 B 1 C 11 E 15 H 6 J 8 K 7 L 5 M 6 P 9 S 15 T 8 U 11 Z Zdroj: vlastní zpracování Medián Medián vyjadřuje prostřední hodnou řady pozorování uspořádané podle velikosti (při lichém počtu pozorování), při sudém počtu pozorování je to aritmetický průměr dvou prostředních hodnot; polovina všech pozorování je menší než medián a polovina je větší. Medián není citlivý na extrémní hodnoty. 5
6 Tabulka č.3: pomocná tabulka pro výpočet mediánu n = kraje x i = počet aut v kraji L 5 A 6 H 6 M 6 K 7 J 8 T 8 P 9 C 11 U 11 B 1 Z 1 E 15 S 15 Zdroj: vlastní zpracování Velikost našeho souboru je 14, jedná se o sudé číslo, v tomto případě vypočteme aritmetický průměr dvou prostředních hodnot. Jedná se o vztah: (T(8)+P(9))/=(8+9)/=8,5. Dle tabulky výše můžeme říci, že medián je 8,5. Tedy v krajích L, A, H, M, K, J, T je počet registrovaných aut 8,5 nebo nižší. A v krajích P, C, U, B, Z, E, S je počet registrovaných aut větší než 8, Modus Modus neboli varianta s největší četností, nám v tomto případě říká, že automobil Ford, model Fiesta, je nejvíce registrován v kraji E a S. Četnost v těchto krajích je ve výši 15 registrovaných aut tohoto modelu. 6
7 Obrázek č.1: četnosti automobilu Ford, značka Fiesta Zdroj: vlastní zpracování Dolní a horní kvartil Kvartily rozdělují statistický soubor na několik stejných částí. Dolní kvartil značíme zkratkou x 5 a jeho hodnota je kraj J. Horní kvartil značíme zkratkou x 75 a jeho hodnota je kraj Z. Obrázek č.: Tabulka rozdělení četností Zdroj: Statgraphics, vlastní zpracování 1. Charakteristika variability krajů, ve kterých je model Fiesta registrován Charakteristiky variability udávají rozptýlení hodnot kolem zvoleného středu, obvykle kolem některé ze středních hodnot. 7
8 1..1 Variační rozpětí Variační rozpětí vyjadřuje míru variability souboru. Vzorec: R = x max x min Dosazení do vzorce: R = 15 5 = 10 Variační rozpětí automobilu Ford Fiesta v jednotlivých krajích je Kvartilové rozpětí Kvantilové rozpětí udává šířku intervalu, ve kterém leží 50% hodnot uspořádaného souboru. Vzorec: R q = x 0,75 x 0,5 Dosazení do vzorce: R q = 1 8 = 4 Kvartilové rozpětí automobilu Ford Fiesta je v jednotlivých krajích Kvartilová odchylka Vzorec: Q = R q Dosazení do vzorce: Q = 4 = Kvartilová odchylka automobilu Ford Fiesta je v jednotlivých krajích Rozptyl Je charakterizován jako průměrná kvadratická odchylka měření od aritmetického průměru. Vzorec: S x = x i n 1 ( x i ) n (n 1) Dosazení do vzorce: (131) 14 (14 1) Rozptyl automobilů Ford Fiesta v jednotlivých krajích je 11,. Tabulka č.4: pomocná tabulka pro výpočet rozptylu n = kraje x i = počet aut v kraji x i A 6 36 B C E 15 5 = 105,4615 (17161) = 105, ,91 = 11,
9 H 6 36 J 8 64 K 7 49 L 5 5 M 6 36 P 9 81 S 15 5 T 8 64 U Z Zdroj: vlastní zpracování 1..5 Směrodatná odchylka Udává, jak se v průměru liší jednotlivé hodnoty znaku od aritmetického průměru v obou směrech. Vzorec: S x = + S x Dosazení do vzorce: S x = + 11, = 3,3466 Směrodatná odchylka automobilu Ford Fiesta v jednotlivých krajích je 3,
10 Testujte hypotézu, že skutečná spotřeba naftového motoru Fordu Kuga je 5,5l na 100km. Předpokládejme, že spotřeba automobilu se řídí normálním rozdělením Tato kapitola se zabývá testováním hypotézy, zda skutečná spotřeba naftového motoru Fordu Kuga je 5,5 l na 100 km. Jedná se o číselnou kardinální proměnnou. Rozsah souboru je 17. Nejprve si určíme hypotézy H 0 a H 1. Testování bude provedeno na hladině významnosti α=0,05. Dále si stanovíme testové kritérium a kritický obor. 1) H 0 : µ = 5,5 (Nulová hypotéza předpokládá spotřebu 5,5 l na 100 km u vozidla Ford Kuga.) H 1: µ 5,5 (Alternativní hypotéza předpokládá, že se spotřeba nerovná 5,5l na 100 km u vozidla Ford Kuga.) ) Volba testového kritéria: U = x μ 0 σ N(0;1) n Ze zadaných dat byl spočítán v programu Statgraphics rozptyl, tedy je možné využít výše zmíněné testovací kritérium. U=,5667 3) Stanovení kritického oboru: W {u; u uα a u u α 1 } Konkrétní řešení: Hodnoty byly zadány do programu Statgraphics, kde byla zjištěna data k dalšímu testování hypotézy. Jednalo se o průměr a směrodatnou odchylku. Tabulka č.5: Rozsah souboru, průměr a směrodatná odchylka Rozsah souboru 17 Průměr 5,84118 Standardní směrodatná odchylka 0,54899 Zdroj: Statgraphics, vlastní zpracování 4) Hodnota P-Value = 0, P Value < α H o zamítáme a H 1 přijímáme. 5) Na hladině významnosti 5% jsme zamítly hypotézu o tom, že předpokládaná spotřeba Fordu Kuga je 5,5l na 100km. 10
11 3 Charakterizujte celkový počet návštěv v servisu (autorizované i neautorizované servisy dohromady). Otestujte hypotézu, že tato veličina má Poissonovo rozdělení. Uveďte bodový odhad parametru lambda. Tento úkol budeme řešit pomocí neúplně specifikovaného modelu, a to především proto, že neznáme parametr π. Tabulka č.6: Poissonovo rozdělení Poisson Chi-Square 4,0506 D.f. 5 P-Value 0, Zdroj: Statgraphics, vlastní zpracování Následně si určíme hypotézy, testové kritérium, kritický obor a vyhodnotíme výsledky. 1) H 0 : Počet návštěv v servisu se řídí Poissonovým rozdělením H 1 : non H 0 (počet návštěv v servisu se neřídí Poissonovým rozdělením) k ) G = (n i n i ) i=1 ~ℵ (k 1) n i 3) W {G; G ℵ 1 α (k 1)} W {G; G 9, } 4) G = 4,0506, P-value = 0, ) G W H 0 zamítám a H 1 přijímám Na hladině významnosti 5% jsme zamítly hypotézu H 0 o tom, že návštěvy servisu mají Poissonovo rozdělení. Odhad parametru lambda jsme provedly tak, že jsme sečetly návštěvy v autorizovaných a neautorizovaných servisech, čísla jsme následně zadaly do Statgraphics a zjistily průměr, který se v tomto případě rovná lambdě. Lambda = 4,44141 Tabulka č.7: Summary statistics Count 56 Average 4,44141 Standard deviation,05905 Coeff. of variation 46,3603% Range 11,0 Stnd. skewness,1037 Stnd. kurtosis -0,16713 Zdroj: Statgraphics, vlastní zpracování 11
12 Závěr Cílem seminární práce bylo na základě obdržených dat vypočítat tři zadané úkoly. Data se týkala automobilu Ford, a to sice modelů Fiesta, Kuga, Focus, Modeo a B-Max. Součástí zadání byly i informace o roku výroby automobilu, ceně, výkonu, spotřebě, druhu paliva a návštěvách autorizovaného a neautorizovaného servisu v jednotlivých krajích. V prvním úkolu jsme měly charakterizovat úroveň a variabilitu krajů, ve kterých je model Ford Fiesta registrován. Z charakteristik úrovně jsme vypočítaly aritmetický průměr, medián, modus, dolní a horní kvartil. Z charakteristik variability byly použity a zpracovány variační a kvartilová rozpětí, rozptyl a kvartilová a směrodatná odchylka. Ve druhém úkolu jsme testovaly hypotézu skutečné spotřeby naftového motoru automobilu Ford, modelu Kuga. Podařilo se nám zjistit, že předpokládaná spotřeba Fordu Kuga není 5,5l na 100km. Ve třetím úkolu jsme ověřovaly hypotézu, zda se veličina řídí Poissonovým rozdělením a odhadovaly jsme parametr lambda. Zkoumanou veličinou byl počet návštěv v autorizovaných a neautorizovaných servisech. Podařilo se nám zjistit, že tato veličina nemá Poissonovo rozdělení. Také jsme zjistily, že parametr lambda má hodnotu 4,44. V závěru bychom chtěly dodat, že pro nás byla tato práce velkým přínosem. 1
TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta ANALÝZA VÝSLEDKŮ DOTAZNÍKOVÉHO ŠETŘENÍ (FAKULTNÍ DOTAZNÍK) semestrální práce z předmětu STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÉHO ŠETŘENÍ Jan Kubiš, Kateřina
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření Počet stran: 10 Datum odevzdání: 13. 5. 2016 Pavel Kubát Obsah Úvod... 3 1 Charakterizujte
TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA
TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA Semestrální práce Semestrální práce z předmětu Statistický rozbor dat z dotazníkového šetření Vypracoval: Bonaconzová, Bryknarová, Milkovičová, Škrdlová
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÉHO ŠETŘENÍ Vypracovaly: Renata Němcová, Andrea Zuzánková, Lenka Vítová, Michaela Ťukalová, Kristýna
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÉHO ŠETŘENÍ ANALÝZA VÝSLEDKŮ DOTAZNÍKOVÉHO ŠETŘENÍ (FAKULTNÍ DOTAZNÍK) Datum odevzdání: 13.05.2016
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce z předmětu Statistický rozbor dat z dotazníkového šetření Jméno: Lucie Krechlerová, Karel Kozma, René Dubský, David Drobík Ročník: 2015/2016
Technická univerzita v Liberci
Technická univerzita v Liberci Ekonomická fakulta Analýza výsledků z dotazníkového šetření Jména studentů: Adam Pavlíček Michal Karlas Tomáš Vávra Anna Votavová Ročník: 2015/2016 Datum odevzdání: 13/05/2016
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÉHO ŠETŘENÍ ANALÝZA VÝSLEDKŮ VYUŢITÍ PROJEKTOVÉHO ŘÍZENÍ V ESN Příjmení a jméno: Hrdá Sabina, Kovalčíková
TECHNICKÁ UNIVERZITA V LIBERCI. Statistický rozbor dat z dotazníkového šetření
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření Analýza výsledků dotazníkového šetření - fakultní dotazník Vypracovaly: Klára Habrová,
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.
Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího
Testování hypotéz. 4. přednáška 6. 3. 2010
Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo
Testy. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:
Úloha č. 1 - Kvantily a typická hodnota (bodově tříděná data): Určete typickou hodnotu, 40% a 80% kvantil. Tabulka hodnot: Varianta Četnost 0 4 1 14 2 17 3 37 4 20 5 14 6 7 7 11 8 20 Typická hodnota je
Číselné charakteristiky
. Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch
ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY
zhanel@fsps.muni.cz ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY METODY DESKRIPTIVNÍ STATISTIKY 1. URČENÍ TYPU ŠKÁLY (nominální, ordinální, metrické) a) nominální + ordinální neparametrické stat. metody b) metrické
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,
Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 27. listopadu 2017 Typy statistických znaků (proměnných) Typy proměnných: Kvalitativní proměnná (kategoriální, slovní,... ) Kvantitativní proměnná (numerická,
Základy popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
Základy popisné statistiky Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi, výhodami, nevýhodami a vlastní sadou využitelných statistických metod -od binárních
Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
Statistika pro geografy
Statistika pro geografy 2. Popisná statistika Mgr. David Fiedor 23. února 2015 Osnova 1 2 3 Pojmy - Bodové rozdělení četností Absolutní četnost Absolutní četností hodnoty x j znaku x rozumíme počet statistických
Statistika. cílem je zjednodušit nějaká data tak, abychom se v nich lépe vyznali důsledkem je ztráta informací!
Statistika aneb známe tři druhy lži: úmyslná neúmyslná statistika Statistika je metoda, jak vyjádřit nejistá data s přesností na setinu procenta. den..00..00 3..00..00..00..00..00..00..00..00..00..00 3..00..00..00..00..00..00..00
Základy popisné statistiky
Základy popisné statistiky Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 26 Obsah 1 Základy statistického zpracování dat 2
Příklad: Test nezávislosti kategoriálních znaků
Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a
MATEMATIKA III V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 8 Statistický soubor s jedním argumentem Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka Vysoká škola
Průzkumová analýza dat
Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
Testování statistických hypotéz
Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2
12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy
Výrobní produkce divizí Ice Cream Polo ha planet Rozložený výsečový 3D graf Bublinový graf Ice Cream 1 15% Ice Cream 2 12% Ice Cream 3 18% Ice Cream 4 20% Statistika 40 30 20 Ice Cream 6 19% Ice Cream
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
Popisná statistika kvantitativní veličiny
StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali
Základní statistické metody v rizikovém inženýrství
Základní statistické metody v rizikovém inženýrství Petr Misák Ústav stavebního zkušebnictví Fakulta stavební, VUT v Brně misak.p@fce.vutbr.cz Základní pojmy Jev souhrn skutečností zobrazujících ucelenou
4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
Aproximace binomického rozdělení normálním
Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
3. Základní statistické charakteristiky. KGG/STG Zimní semestr Základní statistické charakteristiky 1
3. charakteristiky charakteristiky 1 charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme charakteristiky 2 charakteristiky Dva hlavní
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
Číselné charakteristiky a jejich výpočet
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky
Základní statistické charakteristiky
Základní statistické charakteristiky Základní statistické charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme Základní statistické
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
5 Parametrické testy hypotéz
5 Parametrické testy hypotéz 5.1 Pojem parametrického testu (Skripta str. 95-96) Na základě výběru srovnáváme dvě tvrzení o hodnotě určitého parametru θ rozdělení f(x, θ). První tvrzení (které většinou
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení
STATISTICKÉ CHARAKTERISTIKY
STATISTICKÉ CHARAKTERISTIKY 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
Statistika I (KMI/PSTAT)
Statistika I (KMI/PSTAT) Cvičení druhé aneb Kvantily, distribuční funkce Statistika I (KMI/PSTAT) 1 / 1 Co se dnes naučíme Po absolvování této hodiny byste měli být schopni: rozumět pojmu modus (modální
Cvičící Kuba Kubina Kubinčák Body u závěrečného testu
1. Příklad U 12 studentů jsme sledovali počet dosažených bodů na závěrečném testu (od 0 do 60). Vždy 4 z těchto studentů chodili k jednomu ze 3 cvičících panu Kubovi, panu Kubinovi, nebo panu Kubinčákovi.
Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení?
Otázky k měření centrální tendence 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? 2. Určete průměr, medián a modus u prvních čtyř rozložení (sad dat): a.
Pearsonůvχ 2 test dobré shody. Ing. Michal Dorda, Ph.D.
Ing. Michal Dorda, Ph.D. Př. : Ve vjezdové skupině kolejí byly sledovány počty přijíždějících vlaků za hodinu. Za 5 dní (tedy 360 hodin) přijelo celkem 87 vlaků. Výsledky sledování jsou uvedeny v tabulce.
PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 1
PRAVDĚPODOBNOST A STATISTIKA Neparametrické testy hypotéz čast 1 Neparametrické testy hypotéz - úvod Neparametrické testy statistických hypotéz se používají v případech, kdy neznáme rozdělení pozorované
Praktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Popisná statistika. Statistika pro sociology
Popisná statistika Jitka Kühnová Statistika pro sociology 24. září 2014 Jitka Kühnová (GSTAT) Popisná statistika 24. září 2014 1 / 31 Outline 1 Základní pojmy 2 Typy statistických dat 3 Výběrové charakteristiky
(motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination.
Neparametricke testy (motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination. Andrew Lang) 1. Příklad V následující tabulce jsou
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
TEHNICKA UNIVERZITA V LIBERCI. Ekonomická fakulta
TEHNICKA UNIVERZITA V LIBERCI Ekonomická fakulta Statistický rozbor dat z dotazníkového šetření Analýza dotazníkového šetření pro společnost Nobilis Tilia 2015/2016 Veronika Krejčíková (vedoucí) 2. semestr
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum I. ÚVOD vv této přednášce budeme hovořit o jednovýběrových a dvouvýběrových testech týkajících se střední hodnoty
Testování statistických hypotéz. Obecný postup
poznámky k MIII, Tomečková I., poslední aktualizace 9. listopadu 016 9 Testování statistických hypotéz Obecný postup (I) Vyslovení hypotézy O datech vyslovíme doměnku, kterou chceme ověřit statistickým
Popisná statistika. úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy
Popisná statistika úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy Úvod užívá se k popisu základních vlastností dat poskytuje jednoduché shrnutí hodnot proměnných
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Př. : Stanovte jednotlivé četnosti a číselné charakteristiky zadaného statistického souboru a nakreslete krabicový graf:, 8, 7, 43, 9, 47, 4, 34, 34, 4, 35. Statistický soubor seřadíme vzestupně podle
Stručný úvod do testování statistických hypotéz
Stručný úvod do testování statistických hypotéz 1. Formulujeme hypotézu (předpokládáme, že pozorovaný jev je pouze náhodný). 2. Zvolíme hladinu významnosti testu a, tj. riziko, s nímž jsme ochotni se smířit.
Neparametrické metody
Neparametrické metody Dosud jsme se zabývali statistickými metodami, které zahrnovaly předpoklady o rozdělení dat. Zpravidla jsme předpokládali normální rozdělení. Např. Grubbsův test odlehlých hodnot
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Testy hypotéz na základě více než 2 výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testy hypotéz na základě více než 2 výběrů Na analýzu rozptylu lze pohlížet v podstatě
Bodové a intervalové odhady parametrů v regresním modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e
11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.
11 cvičení z PSI 12-16 prosince 2016 111 (Test dobré shody - geometrické rozdělení Realizací náhodné veličiny X jsme dostali následující četnosti výsledků: hodnota 0 1 2 3 4 5 6 pozorovaná četnost 29 15
Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D.
Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít
Návrh a vyhodnocení experimentu
Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav
Co je to statistika? Úvod statistické myšlení. Základy statistického hodnocení výsledků zkoušek. Petr Misák
Základy statistického hodnocení výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Co je to statistika? Statistika je jako bikiny. Odhalí téměř vše, ale to nejdůležitější nám zůstane skryto. (autor neznámý)
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní
SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY
SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo
12. cvičení z PSI prosince (Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem)
cvičení z PSI 0-4 prosince 06 Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem) Z realizací náhodných veličin X a Y s normálním rozdělením) jsme z výběrů daného rozsahu obdrželi
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
23. Matematická statistika
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti
Deskriptivní statistické metody II. Míry polohy Míry variability
Deskriptivní statistické metody II. Míry polohy Míry variability Jana Vránová, 3.lékařská fakulta UK, Praha Náhodný výběr všechny prvky výběru {x i }, i = 1, 2,, n, se chápou jako náhodné veličiny, které
Testování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
Testování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test
Testování hypotéz 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz proces, kterým rozhodujeme, zda přijmeme nebo zamítneme nulovou hypotézu
Sever Jih Západ Plechovka Točené Sever Jih Západ Součty Plechovka Točené Součty
Neparametrické testy (motto: Hypotézy jsou lešením, které se staví před budovu a pak se strhává, je-li budova postavena. Jsou nutné pro vědeckou práci, avšak skutečný vědec nepokládá hypotézy za předmětnou
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
Analýza rozptylu. Ekonometrie. Jiří Neubauer. Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel
Analýza rozptylu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO Brno) Analýza rozptylu 1 / 30 Analýza
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
Příklady na testy hypotéz o parametrech normálního rozdělení
Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
mezi studenty. Dále bychom rádi posoudili, zda dobrý výsledek v prvním testu bývá doprovázen dobrým výsledkem i v druhém testu.
Popisná statistika Slovní popis problému Naším cílem v této úloze bude stručně a přehledně charakterizovat rozsáhlý soubor dat - v našem případě počty bodů z prvního a druhého zápočtového testu z matematiky.
Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času
Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek
Testy statistických hypotéz
Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem
Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2
Semestrální projekt do předmětu Statistika Vypracoval: Adam Mlejnek 2-36 Oponenti: Patrik Novotný 2-36 Jakub Nováček 2-36 Úvod Pro vypracování projektu do předmětu statistika jsem si zvolil průzkum kvality