RESEARCH INTO THE USE OF BIODEGRADABLE WASTE
|
|
- Ilona Tomanová
- před 9 lety
- Počet zobrazení:
Transkript
1 RESEARCH INTO THE USE OF BIODEGRADABLE WASTE Mrkvica M. Department of Applied and Landscape Ecology, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, Brno, Czech Republic ABSTRACT A topic of biodegradable wastes is becomming very discussed in this time. The reason is changes in legislation EU, which indicates direction of the end of biological waste storage to a dump in last years. At waste treatment there are more possibilities of utilisation of biodegradable wastes. Decision depends on many factors. The most important are financial possibilities of a waste author and a type of biodegradable waste. After the most suitable technology determination it is necessary to apply the right process and keep to the terms. Correctly biodegradable waste utilize can be found in effective combination of two or more different technologies. Key words: biodegradable waste, waste, composting, biogas, biogas plant, biomass combustion 402
2 ÚVOD ZÁKLADNÍ POJMY TÝKAJÍCÍ SE BIOLOGICKY ROZLOŽITELNÝCH ODPADŮ Téma biologicky rozložitelných odpadů se stává v poslední době značně diskutovatelným. Je to zejména díky nově vydané legislativě EU která v posledních letech udává směr konce ukládání odpadů biologického charakteru na skládku. Biologicky rozložitelný odpad (BRO) Biologicky rozložitelné odpady se označují zkratkou BRO a 33a zákona o odpadech BRO definuje jako jakýkoli odpad, který podléhá aerobnímu nebo anaerobnímu rozkladu. Biologicky rozložitelný komunální odpad (BRKO) Biologicky rozložitelný odpad, který je obsažen v komunálním odpadu. Mezi tyto odpady patří separovaný odpad z domácností a zahrad, dále odpady z veřejné zeleně, z tržišť a odpady z kuchyní a stravoven. (1) Kompostování Aerobní proces, při němž se činností mikro a makro organismů za přístupu vzduchu přeměňuje využitelný bioodpad na stabilizovaný výstup kompost. Anaerobní digesce Řízený a kontrolovatelný mikrobiální mezofilní nebo termofilní rozklad organických látek bez přístupu vzduchu v zařízení bioplynové stanice za vzniku bioplynu, digestátu nebo rekultivačního digestátu. Vytříděný kuchyňský odpad z kuchyní, jídelen a stravoven Odpad pouze rostlinného charakteru (například zbytky zeleniny a ovoce), který nepřišel do kontaktu se surovinami živočišného původu (například se syrovým masem, syrovými produkty rybolovu, syrovými vejci nebo syrovým mlékem). (2) MATERIÁL A METODIKA MOŽNOSTI ZPRACOVÁNÍ BIOLOGICKY ROZLOŽITELNÝCH ODPADŮ Při zpracování bioodpadu se nabízí několik možností více či méně efektivního využití. Rozhodnutí závisí na mnoha faktorech. Nejdůležitější jsou finanční možnosti původce odpadu a druh bioodpadu. Správné využití bioodpadu se může mnohdy nacházet v efektivní kombinaci dvou nebo více různých technologií. 1) Energetické využití spalováním Tato možnost v sobě skrývá zcela jistě mnoho výhod. Vytápění objektů biomasou zažívá v poslední době silný rozvoj. Při použití moderních kotlů se spalováním dřevoplynu lze tuto technologii 403
3 považovat za ekologickou, při využití peletek lze dokonce hovořit o plně automatickém provozu. V neposlední řadě je to jedna z nejlevnějších možností vytápění. Přes tyto nesporné výhody je technologie spalování biomasy ovlivněna mnoha negativními faktory. Je to především výběr vhodného typu biomasy. Omezuje se na materiály s vysokým obsahem sušiny a nízkým obsahem škodlivin (například síry). Přímé spalování je vhodné u materiálů s obsahem sušiny od 70 do 100 %. Spalováním však vznikají jednak skleníkové plyny ( CO 2, NO X), jednak popel, jenž vyžaduje další likvidaci. (3) Z hlediska energetického využití jde v podmínkách České republiky většinou o dřevo (či jeho odpad), slámu a jiné zemědělské zbytky a exkrementy užitkových zvířat, či o energeticky využitelný komunální odpad nebo plynné produkty odpadající při provozu čistíren odpadních vod. V zásadě existují dva typy základních procesů: - suché procesy - mokré procesy Nejčastěji přicházejí v úvahu přímé spalovací procesy vlastní primární biomasy (např. spalování dřeva), nebo spalování produktů mokrých nebo suchých procesů (bioplyn, dřevoplyn). Může se jednat o širokou škálu konkrétních zařízení, jako jsou např.: kotle na přímé spalování biomasy (v jakékoliv formě) na výrobu teplé nebo horké vody kotle na výrobu páry v eventuelní kombinaci s parní turbínou zplyňovací zařízení v kombinaci s kotlem nebo kogenerační jednotkou (spalovací motor nebo turbina) kogenerační jednotka (spalovací motor nebo turbina) na využití bioplynu a podobně, vč. různých kombinací.(3) 2) Kompostování Kompostování je technologií nabízející zpracování odpadní biomasy nejjednodušší a nejlevnější cestou. K jejím hlavním nevýhodám patří absence jakéhokoliv přímého energetického zhodnocení. Základy kompostování Hlavní podmínky pro urychlení celého procesu lze shrnout do následujících bodů: volba správného surovinového složení zakládky kompostu výběr vstupních surovin, příprava surovin do zakládek kompostu, 404
4 sledováním procesních podmínek měření fyzikálně-chemických vlastností (teplota, vlhkost, stupeň provzdušnění apod.) využívání zařízení zajišťujících vhodné procesní podmínky provzdušňování a promíchávání kompostu překopávání, úprava vlhkosti kompostu, přikrývání kompostu kompostovací plachtou (mikroklima v hromadě). Při dodržování uvedených podmínek lze předpokládat, že se doba zrání kompostu při živelném průběhu (neřízeného procesu), která je 3 6 měsíců a o jejíž délce rozhoduje zejména surovinová skladba, homogenita surovin v hromadě a např. i roční období, výrazně urychlí. Kompostovací proces (řízený), kdy je každý zásah přesně načasován a má své opodstatnění, proběhne za dobu 6-8 týdnů. Surovinová skladba zakládky kompostu Jedním ze základních předpokladů pro správný průběh kompostování je vhodný výběr surovin do zakládky kompostu. Optimální surovinovou skladbu ovlivňuje celá řada faktorů, přičemž největší význam má správný poměr uhlíku a dusíku (poměr C:N) a počáteční vlhkost. Poměr C:N u čerstvě založeného kompostu by se měl pohybovat v rozmezí (20-40) : 1 v lepším případě (30-35) : 1. Spolu s hodnotou poměru C:N je třeba zaručit počáteční vlhkost v rozmezí %. Příprava vstupních surovin Aby bylo možné kompost založit podle receptury optimální surovinové skladby, musí být zpracovávány suroviny, které budou splňovat alespoň základní požadavky pro kompostování. Proto musí být věnována pozornost přípravě zakládaných surovin, případně i jejich vhodnému uskladnění před samotným založením do kompostovaných hromad. Příprava zahrnuje procesy, které vedou k dosažení optimální velikosti částic, rovnováhy živin a obsahu vlhkosti vstupních surovin v rozmezí 50 až 60 % pro podporu mikrobiální aktivity. Zejména dřevní biomasa, zakládaná do kompostovaných hromad, vyžaduje pro snadnější promíchání a homogenizaci kompostovaných surovin rozmělnění či rozdrcení (jemnou desintegraci). Sledování procesních podmínek Zabezpečení optimálních podmínek pro existenci a činnost mikroorganismů je základní podmínkou pro správný průběh kompostovacího procesu a dosažení požadované kvality výsledného produktu. 405
5 Optimální podmínky pro mikroorganismy lze zajistit monitorováním určitých fyzikálních, chemických a mikrobiologických vlastností zpracovávaných surovin a řízením celého procesu. Aerobní mikroorganismy potřebují pro svoji činnost kromě živin i dostatek vlhkosti a vzdušného kyslíku. Zakládka kompostu proto musí splňovat předpoklady pro možnost výměny plynů mezi kompostovanými surovinami a okolím. Musí být porézní a kyprá, nesmí být ani příliš suchá, ani příliš převlhčená. Na vlhkost zakládky má vliv i složení a struktura kompostovaných surovin, zejména jejích pórovitost. (4) Vliv teploty: Po založení kompostu dochází v krátkém čase k vzestupu teplot uvnitř zakládky, což signalizuje vhodné podmínky pro rozvoj mikroorganismů. Rozklad materiálu se rozděluje do tří fází: 1. Fáze rozkladu 2. Fáze přeměny 3. Fáze výstavby (syntézy) ad 1) Fáze rozkladu Tato fáze trvá asi tři až čtyři týdny, teplota stoupá podle výchozího materiálu na 50 až 70 C. Je to činnost milionů bakterií a hub, které rozkládají lehce rozložitelné sloučeniny, jako jsou např. cukry, bílkoviny a škrob. Konečným produktem jsou malé "stavební kameny" - např. dusičnany, oxid uhličitý, čpavek, aminokyseliny a polysacharidy. Živiny, které jsou vázány v organické hmotě, se tak uvolňují a zčásti přecházejí až do původní minerální formy. Tento proces se proto nazývá také jako "mineralizace". ad 2) Fáze přeměny Trvá od čtvrtého až do osmého respektive desátého týdne. Teplota začíná opět klesat, mineralizované živiny jsou jako základní kameny zabudovány do "humusového komplexu". Kompost získává stejnoměrně hnědou barvu, drobtovitou strukturu. ad 3) Fáze syntézy (zralosti) Když je kompost ponechán ještě déle, získává stále více zemitou strukturu. "Živý humus" se přeměňuje na "trvalý humus", hnojařský účinek je slabší (živiny jsou pevněji vázány), účinnost humusu se však zvyšuje. Většina mikroorganismů v organickém materiálu je mezofilních (optimální teplota jejich rozvoje je C). Avšak až při vyšších teplotách začíná převažovat skupina termofilních aerobních mikroorganismů, které jsou pro správný průběh kompostování nezbytné. Optimální výše této teploty se pohybuje v rozmezí C. Tato teplota zaručuje likvidaci klíčivosti semen plevelů, patogenních mikroorganismů apod. 406
6 Poměr C:N Tento důležitý parametr určuje pravděpodobnou rychlost rozkladu organických zbytků. Optimální hodnota tohoto poměru se pohybuje (20-30):1 u zralého kompostu (vysoká stabilita). Při poměru menším než 15:1, bude rozklad rychlý, ale dusík se může ztrácet jako amoniak, protože množství dusíku převažuje metabolickou potřebu mikroorganismů. Hmoty s poměrem C:N nad 50:1 se rozkládají pomalu, prodlužuje se zrání kompostu. Pro čerstvě založený kompost složený z převážné části ze zbytkové biomasy je vhodný poměr C:N= (30-35):1. Vzhledem k tomu, že u travní biomasy se C:N pohybuje kolem hodnoty 20:1 je třeba materiálovou skladbu doplnit komponenty se širokým poměrem C:N (piliny, sláma). Vlhkost a provzdušňování S obsahem organické biomasy v kompostu zpravidla stoupá i pórovitost, a tím i požadavek na vyšší vlhkost. V průběhu zrání se snižuje pórovitost a klesá požadavek na vlhkost. Avšak vzhledem k tomu, že se v průběhu kompostování část vody odpařuje, je v některých případech nutno upravovat vlhkost v průběhu zrání přidáváním dalších tekutin. Hodnota ph Optimální hodnota ph u čerstvého kompostu se pohybuje v rozmezí 6-8, protože většina mikroorganismů vykazuje nejpříznivější rozvoj a aktivitu právě v tomto rozmezí. (5) Základní typy kompostování Domácí kompostování Nejjednodušší a nejlevnější zpracování bioodpadu. Odpad se zpracuje přímo u zdroje, není nutná žádná další manipulace. Zpracovatel pro svoji potřebu získává kvalitní hnojivo kompost. Pro sběr kuchyňského odpadu a odpadu z údržby domácí okrasné zeleně je vhodný uzavřený kompostér. V uzavřeném kompostéru je kompost chráněn a lze dosáhnout kvalitní hygienizace. Musí se však hlídat, aby byl materiál v kompostéru dostatečně vlhký a provzdušněný. Komunitní kompostování Uplatňuje se tam, kde je určitá komunita občanů, kteří nemají možnost domácího kompostování. Při vhodně zvolené poloze kompostoviště se jedná o jednoduchý a levný způsob zpracování bioodpadu. Větší kumulace odpadu může usnadnit, urychlit a zkvalitnit kompostovací proces. Komunální kompostování Zpracování bioodpadu řeší obec. Způsob zpracování je dán místními podmínkami, které mají rovněž vliv na systém sběru a svoz bioodpadů. Vznikají náklady spojené s manipulací a se zpracováním bioodpadu. Tyto náklady se většinou pokryjí úsporou, která vzniká odděleným zpracováním bioodpadu. Odpadají totiž vysoké poplatky za skládkování nebo spalování. Vzniká kompost, který se využívá například pro obnovu a údržbu veřejné zeleně. 407
7 Vermikompostování Při vermikompostování se využívá schopnosti žížal přeměňovat rostlinné zbytky na velmi kvalitní organické hnojivo - vermikompost. Tento způsob kompostování ocení lidé, kteří nemají vlastní zahradu, na které by mohli kompostovat. Vermikompostér lze umístit na balkón, na terasu, do garáže nebo do předsíně. Při dodržování správných zásad vermikompostování obsah kompostéru nezapachá. (1) Nejdůležitější přínosy kompostování jsou: efektivní využití odpadní biomasy, zabezpečení koloběhu uhlíku v přírodě, upevnění vazby dusíku, proces obnovy a zlepšení půdní úrodnosti, komerční využití odpadů, hygienizace prostředí V dnešní době nelze omezovat kompostování na technologii používanou výhradně v zemědělství. Tato technologie splňuje veškeré předpoklady pro její využití také v odpadovém hospodářství. (3) 3) Anaerobní fermentace Tato technologie nabízí jedinečnou možnost výroby bioplynu a kvalitního hnojiva zároveň. Pro zpracování bioplynu se nabízí mnoho možností, jako nejvýhodnější se ale ukazuje spalování v kogenerační jednotce ( současná výroba tepla a elektrické energie ). Technologie anaerobní fermentace ale naráží na několik problémů. Je technicky velmi náročná a tudíž ekonomicky nejistá (od reaktorů, dopravních zařízení až po zařízení na čištění bioplynu). Vhodné materiály jsou odpady z živočišné výroby, organické komunální odpady, organické odpady z potravinářské výroby a další s obsahem sušiny od 3 do 30 %. Vhodnou kombinací materiálů lze tyto meze rozšířit od 0 do 50 % sušiny. Základy anaerobní fermentace Anaerobní fermentace organických materiálů- metanizace - je souborem na sebe navazujících procesů, při nichž směsná kultura mikroorganismů postupně rozkládá biologicky rozložitelnou organickou hmotu bez přístupu vzduchu. Na tomto rozkladu se podílí několik základních skupin anaerobních mikroorganismů, kde produkt jedné skupiny se stává substrátem skupiny druhé a proto výpadek jedné ze skupin má za následek narušení celého systému. Konečnými produkty jsou vzniklá biomasa, plyny (CH 4, CO 2, H 2, N 2, H 2S) a nerozložitelný zbytek organické hmoty, který je z hlediska hygienického a senzorického stabilizován. 408
8 Proces je rozdělen na 4 fáze (stadia rozkladu): hydrolýza- přítomné anaerobní bakterie, ještě nikoli metanové bakterie, přeměňují makromolekulami rozpuštěné i nerozpuštěné organické látky (bílkoviny, polysacharidy, tuk, celulózu) pomocí extracelulámích hydrolytických enzymů, produkovaných fermentačními bakteriemi, na nízkomolekulární látky (monosacharidy, aminokyseliny, mastné kyseliny, voda) rozpustné ve vodě. acidogeneze- v této "kyselé" fázi jsou rozkládány produkty hydrolýzy na jednodušší organické látky (kyseliny, alkoholy, CO 2, H 2). Fermentací těchto látek se tvoří řada konečných redukovaných produktů, které jsou závislé na charakteru původního substrátu a podmínkách prostředí. Při nízkém parciálním tlaku vodíku jsou produkovány kyselina octová, CO 2 a H 2 při vyšším jsou tvořeny vyšší organické kyseliny, kys.mléčná, ethanol apod. acetogeneze- probíhá oxidace produktů acidogeneze na CO 2, H 2 a kyselinu octovou, která je také tvořena acetogenní respirací CO 2, H 2 homoacetogenními mikroorganismy. Účast těchto mikroorganismů produkujících vodík je nezbytná, poněvadž rozkládají kyselinu propionovou a ostatní organické kyseliny vyšší než octovou, alkoholy a některé aromatické sloučeniny. Jsou zde zastoupeny i minoritní skupiny organismů (sulfátreduktanty, nitrátreduktanty) produkující vedle kyseliny octové a vodíku také sulfan a dusík. metanogeneze- je poslední fází procesu obsahující metanogenní organismy, které rozkládají některé jednouhlíkaté látky (metanol, kyselina mravenčí, metylamin, CO 2, H 2, CO) a kyselinu octovou. Jsou nejdůležitější trofickou skupinou, mají specifické požadavky na substrát i životní podmínky a vedle acetogenů zpracovávajících kyselinu propionovou se často stávají limitujícím faktorem celého procesu. Podle specifiky substrátu je lze rozdělit na pouze hydrogenotrofní nebo pouze acetotrofní, Působením Acetotrofních metanogenních bakterií vzniká více než 2/3 CH 4 v bioplynu. Rozkládají kyselinu octovou na směs metanu a CO 2. Jsou schopny udržovat ph fermentačního média, protože odstraňují kyselinu octovou a produkují CO 2. Ve srovnání s druhou skupinou pomaleji rostou (generační doba několik dní). Hydrogenotrofní metanogenní bakterie produkují metan z CO 2 a H 2. Rostou poměrně rychle, jejich generační doba je cca 6 hodin. V anaerobním procesu působí jako samoregulátor. Odstraňují z procesu vodík, jehož koncentrace by měla být při dobré činnosti organismů minimální. Vodíkem jsou nejvíce ovlivňovány acetogenní bakterie rozkládající kyselinu propionovou a máselnou. Pro tyto organismy je přítomnost hydrogenotrofních organismů životně důležitá.(6) Faktory limitující anaerobní procesy a jejich technologický význam Anaerobní rozklad organických látek je ovlivňován řadou faktorů, které buď ovlivňují prostředí mikroorganismů, nebo hrají roli při návrhu reaktoru. 409
9 Vliv teploty: Ovlivňuje rychlost anaerobního rozkladu. V zásadě platí: čím vyšší je teplota, tím vzrůstá rychlost všech probíhajících procesů. Tvorba metanu probíhá v širokém rozmezí teplot (od 5 C do 95 C). V praxi však většina anaerobních reaktorů pracuje v oblastech mezofilních teplot tj. při C, a v menší míře v oblastech termofilních teplot tj C. Obecně můžeme říci, že čím je teplota vyšší, tím jsou bakterie citlivější na teplotní výkyvy, zejména jsou-li výkyvy krátkodobé a teplota klesne. Zatímco v mezofilní oblasti bakterie výkyvy teplot 2-3 C ještě zvládnou, tak v termofilní oblasti by výkyvy neměly být větší než 1 C. Pří přechodu na jinou teplotu je nutná dlouhodobá adaptace biomasy. Vliv ph: Hodnota ph je závažný limitující faktor procesu, který je důležitý pro růst metanogenních bakterií. Většinou je nutné udržovat hodnotu ph v neutrální oblasti mezi 6,5-7,5, pod ph 6 a nad ph 8 je činnost mikroorganismů silně inhibována. U kejdy a hnoje tento stav nastává většinou samovolně ve 2. fázi procesu vlivem tvorby amoniaku. Nejčastější příčinou výkyvu ph je pokles vlivem přetížení reaktoru, kdy je produkce kyselin rychlejšími mikroorganismy vyšší než jejich spotřeba a dochází k jejich akumulaci v systému. Proto je nutné řídit zatížení podle množství a složení mastných kyselin v médiu, aby nedošlo ke zhroucení procesu nebo udržovat dostatečnou neutralizační kapacitu přidáním alkalizačních činidel. Přítomnost nutrietů: Pro zpracování a provoz reaktorů je nutný správný poměr N a P k organickým látkám. Potřebný poměr živin se udává jako CHSK: N: P v rozmezí od 300 : 6,7 : 1 až 500 : 6,7 : 1. Vedle dusíku a fosforu je žádoucí přítomnost řady mikronutrientů - Na, K, Ca, Fe, S, Mg, Se, W. Poslední výzkumy ukazují, že některé stopové prvky (Ni,Co,Mo) zvyšují metanogenní aktivitu. Přítomnost toxických a inhibujících látek: Za toxické nebo inhibující považujeme látky, které nepříznivě ovlivňují biologický proces. Nejčastěji se setkáváme s inhibičními účinky amoniaku a nižších mastných kyselin, jejichž tvorba je závislá na ph procesu.(7) 4) Další možnosti Další možnosti zpracování odpadní biomasy jsou zplyňování, pyrolýza, alkoholové kvašení. Veškeré tyto technologie jsou velmi náročné na technické zázemí. Vznikají specifické produkty s jednoúčelovým využitím. Tyto technologie jsou vhodné pouze pro určité technicko-ekonomické podmínky, zejména při produkci velkého množství stále stejného materiálu (například v potravinářství).(3) 410
10 LITERATURA (1) (2) Metodický návod o podrobnostech nakládání s biologicky rozložitelnými odpady podle stávajících právních předpisů (3) (Ing. Jan Štykar) (4) Petr Plíva Ing., CSc., Mária Kollárová Ing. Ph.D. (5) KÁRA, Jaroslav, PASTOREK, Zdeněk, JELÍNEK, Antonín: Kompostování zbytkové biomasy. Biom.cz [online] [cit ]. Dostupné z WWW: < >. ISSN: (6) STRAKA F. a kol. autorů: Bioplyn, GAS s.r.o., Říčany 2003, ISBN (7) energie z biomasy III, seminář Brno 2004, Ing. Michal Žídek 411
KOMPOSTOVÁNÍ ZBYTKOVÉ BIOMASY
KOMPOSTOVÁNÍ ZBYTKOVÉ BIOMASY Základní údaje Kompostování zbytkové biomasy je z celospolečenského hlediska nejpřirozenější a ekologicky nejvhodnější forma přeměny a zhodnocení tohoto organického materiálu.
Kvalita kompostu. certifikace kompostáren. Zemědělská a ekologická regionální agentura
Kvalita kompostu certifikace kompostáren Zemědělská a ekologická regionální agentura www.zeraagency.eu Externí zdroje živin a organické hmoty odpady ODPAD ODPAD je každá movitá věc, které se osoba zbavuje
ANAEROBNÍ FERMENTACE
Vysoká škola chemicko technologická v Praze Ústav technologie vody a prostředí TEORETICKÉ ZÁKLADY ANAEROBNÍ FERMENTACE Prof.Ing. Michal Dohányos, CSc 1 Proč Anaerobní fermentace a BPS? Anaerobní fermentace
BIOLOGICKÁ ÚPRAVA ZEMĚDĚLSKÝCH ODPADŮ A STATKOVÝCH HNOJIV
BIOLOGICKÁ ÚPRAVA ZEMĚDĚLSKÝCH ODPADŮ A STATKOVÝCH HNOJIV VÍT MATĚJŮ, ENVISAN-GEM, a.s., Biotechnologická divize, Budova VÚPP, Radiová 7, 102 31 Praha 10 envisan@grbox.cz ZEMĚDĚLSKÉ ODPADY Pod pojmem zemědělské
(CH4, CO2, H2, N, 2, H2S)
VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE Ústav technologie vody a prostředí Anaerobní postupy úpravy odpadů Prof. Ing. Jana Zábranská,, CSc. Anaerobní fermentace organických materiálů je souborem procesů
Decentralizované kompostování
OKRUH III Správná kompostářská praxe Ing. Lucie Valentová, Ph.D. ZERA - Zemědělská a ekologická regionální agentura, o.s. Decentralizované kompostování Principem je : - zpracovat bioodpad v místě vzniku,
Proč jsme tu o projektu
Bioodpad na GVP Co vás čeká? Proč jsme tu o projektu O bioodpadu obecně Kompostování, jeho typy Bioodpad na GVP v číslech Systém sběru a kompostování bioodpadu na GVP Co jako bioodpad třídit a co ne Proč
Biologické čištění odpadních vod - anaerobní procesy
Biologické čištění odpadních vod - anaerobní procesy Martin Pivokonský 7. přednáška, kurz Znečišťování a ochrana vod Ústav pro životní prostředí PřF UK Ústav pro hydrodynamiku AV ČR, v. v. i. Tel.: 221
PRÁVNÍ PŘEDPISY PRO OBLAST BRO V ČR. Ing. Dagmar Sirotková
PRÁVNÍ PŘEDPISY PRO OBLAST BRO V ČR Ing. Dagmar Sirotková Pojem BRO biologicky rozložitelný odpad (314/2006 Sb.) jakýkoli odpad, který podléhá aerobnímu nebo anaerobnímu rozkladu biologicky rozložitelný
Půda a organická hmota. Praktické zkušenosti s používáním kompostů
Půda a organická hmota Praktické zkušenosti s používáním kompostů 26.1.2016 KOMPOST KOMPOST je organické hnojivo obsahující stabilizované organické látky a rostlinné živiny získaný řízeným biologickým
Biologické čištění odpadních vod - anaerobní procesy
Biologické čištění odpadních vod - anaerobní procesy Martin Pivokonský, Jana Načeradská 7. přednáška, kurz Znečišťování a ochrana vod Ústav pro životní prostředí PřF UK Ústav pro hydrodynamiku AV ČR, v.
EXKURZE V RÁMCI KONFERENCE BIOLOGICKY ROZLOŽITELNÉ ODPADY
EXKURZE V RÁMCI KONFERENCE BIOLOGICKY ROZLOŽITELNÉ ODPADY 21.9.2016 Komplexní zpracování biologicky rozložitelných odpadů v režimu bioplynové stanice a kompostárny Síť malých kompostáren v provozu zemědělské
Půdní úrodnost, výživa a hnojení
Půdní úrodnost, výživa a hnojení Faktory ovlivňující růst a vývoj rostlin Přírodní faktory ovlivňující růst a vývoj rostlin významně ovlivňují úspěch či neúspěch budoucí rostlinné produkce. Ovlivňují se
Složka Obsah v % Methan- CH % Oxid uhličitý CO % Vodík H % Sulfan H 2 S 0,1 1 % Dusík 1 3 % Metan CH 4 CO 2 H 2 H 2 S NH 3 N 2
BIOPLYN Bioplyn má největší a perspektivní význam ze všech plynných biopaliv. Předností všech metod na výrobu bioplynu je, že plní dvě nezastupitelné funkce: Zpracovávají organické odpady rostlinného původu
Využití pyrolýzy ke zpracování stabilizovaných čistírenských kalů
VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMICKÝCH PROCESŮ AV ČR Využití pyrolýzy ke zpracování stabilizovaných čistírenských kalů Michael Pohořelý Stabilizovaný vs. surový ČK Surový kal nebezpečný
Stabilizovaný vs. surový ČK
VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMICKÝCH PROCESŮ AV ČR Materiálové a energetické využití stabilizovaného čistírenského kalu výroba biocharu středněteplotní pomalou pyrolýzou Michael
LEGISLATIVNÍ PODKLADY PRO VERMIKOMPOSTOVÁNÍ
LEGISLATIVNÍ PODKLADY PRO VERMIKOMPOSTOVÁNÍ Aleš Hanč hanc@af.czu.cz Projekt NAZV QJ1530034 Legislativní podklady pro větší uplatnění kompostů, zejména vermikompostu, na zemědělskou půdu (2015-2018) Vermikompostování
Kuchyňské odpady z aspektu legislativních předpisů
Kuchyňské odpady z aspektu legislativních předpisů 16.2.2010 Bc. Jan Tomek Pozice kuchyňského odpadu BRO BRKO KUCHYŇSKÉ BIOODPADY VŽP Kuchyňské odpady Legislativa Evropské Unie Směrnice Rady (ES) č. 98/2008
AKCE: Přednáška Technologie výroby a zpracování bioplynu Stanislav Bureš. Datum: 27. 11. 2014
AKCE: Přednáška Technologie výroby a zpracování bioplynu Stanislav Bureš. Datum: 27. 11. 2014 Inovace studijních programů AF a ZF MENDELU směřující k vytvoření mezioborové integrace CZ.1.07/2.2.00/28.0302
SPALOVÁNÍ SPALOVÁNÍ. DRUHY ZPRACOVÁNÍ ODPADŮ - SPALOVÁNÍ - SKLÁDKOVÁNÍ - KOMPOSTOVÁNÍ Odpady potravinářské výroby SPALOVÁNÍ SPALOVÁNÍ
27.11.2017 DRUHY ZPRACOVÁNÍ ODPADŮ - - SKLÁDKOVÁNÍ - KOMPOSTOVÁNÍ Odpady potravinářské výroby Mgr. Kateřina Járová, Ph.D. v ČR pouze 3 spalovny KO: Brno + Praha + Liberec ZEVO = Zařízení pro energetické
1) Biologicky rozložitelné komunální odpady, pro které je obec povinna zajistit místa pro oddělené soustřeďování
ZPŮSOB SBĚRU BRKO V OBCÍCH DLE KONCOVÉHO ZPŮSOBU VYUŽITÍ Obec je povinna zajistit místa pro oddělené soustřeďování minimálně biologicky rozložitelných komunálních odpadů rostlinného původu, a to vždy s
RESEARCH OF ANAEROBIC FERMENTATION OF ORGANIC MATERIALS IN SMALL VOLUME BIOREACTORS
RESEARCH OF ANAEROBIC FERMENTATION OF ORGANIC MATERIALS IN SMALL VOLUME BIOREACTORS Trávníček P., Vítěz T., Dundálková P., Karafiát Z. Department of Agriculture, Food and Environmental Engineering, Faculty
Energetická centra recyklace bioodpadů ECR RAPOTÍN je projektem společnosti IS ENVIRONMENT SE 2014
Pomáháme planetě lépe dýchat Energetická centra recyklace bioodpadů ECR RAPOTÍN je projektem společnosti IS ENVIRONMENT SE 2014 Základní informace o projektu Naše společnost Fainstav, s.r.o., se investorsky
PROGRAM BIOPLYNOVÉ STANICE
PROGRAM BIOPLYNOVÉ STANICE Obsah 1 Co je a jak vzniká bioplyn...2 2 Varianty řešení...3 3 Kritéria pro výběr projektů...3 4 Přínosy...4 4.1. Přínosy energetické...4 4.2 Přínosy environmentální...4 4.3
BRO - PRÁVNÍ PŘEDPISY V ČR. Ing. Dagmar Sirotková
BRO - PRÁVNÍ PŘEDPISY V ČR Ing. Dagmar Sirotková Pojmy biologicky rozložitelný odpad (185/2001) biologicky rozložitelný materiál(482/2005) biologický odpad Směrnice ES č.98/2008 biologický odpad Zelená
Projekt odděleného sběru biologicky rozložitelného komunálního odpadu (BRKO) od občanů spádových obcí OÚ Miskovice
Projekt odděleného sběru biologicky rozložitelného komunálního odpadu (BRKO) od občanů spádových obcí OÚ Miskovice 1. Úvod V současné době je na celém světě dlouhodobě zaznamenáván výrazný úbytek organické
Problematika nakládání s bioodpady z pohledu měst a obcí
Problematika nakládání s bioodpady z pohledu měst a obcí Mgr. Pavel Drahovzal předseda Komise životního prostředí Předsednictva Svazu měst a obcí České republiky Ing. Bc. Barbora Fűrstová Oddělení legislativně-právní
Kompost versus skládka
Kompost versus skládka Eliminace velmi negativních efektů, které způsobuje ukládání bioodpadu na skládky Cenná surovina pro krajinu, životní prostředí Prostřednictvím kompostu navracíme živiny a organické
Ing. Dagmar Sirotková. VŽP odpad?
Ing. Dagmar Sirotková VŽP odpad? je VŢP odpad? Základní předpis nařízení EP a Rady (ES) č.1069/2009 Požadavky na nakládání, využití, zneškodnění Odpad- zejména odpady z kuchyní a stravoven Nakládání podle
KOMPOSTOVÁNÍ. Zpracovala: Kateřina Hladíková, referent technického oddělení MÚ Kutná Hora leden 2018
KOMPOSTOVÁNÍ Zpracovala: Kateřina Hladíková, referent technického oddělení MÚ Kutná Hora leden 2018 Kompostování Kompostování je způsob využití biologicky rozložitelných odpadů (dále jen bioodpad ), který
SSOS_ZE_3.03 Bioodpad
Číslo a název projektu Číslo a název šablony DUM číslo a název CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT SSOS_ZE_3.03
SMART CITY BRNO Inteligentní nakládání s bioodpady ve městě Brně
Inteligentní nakládání s bioodpady ve městě Brně 31. 3. 2016 RENARDS dotační, s.r.o.. www.renards.cz. 2 Zařízení na zpracování biologicky rozložitelných odpadů Fermentační stanice Fakta Funguje na bázi
PATRES Školící program. Bioplynové technologie
využití obnovitelných zdrojů energie v budovách Bioplynové technologie Ing. Jiří Klicpera CSc. Ing.Evžen Přibyl ENVIROS, s.r.o. 1 Motto "Já elektřinu ke svému životu nepotřebuji, televizi klidně mohu sledovat
Zpracování bioodpadu metodou suché anaerobní fermentace
Zpracování bioodpadu metodou suché anaerobní fermentace Anaerobní fermentace Výroba bioplynu v anaerobních podmínkách s jeho energetickým využitím Metoda známá v ČR již desítky let Možnosti zpracování
Nakládání s kaly z ČOV a jejich budoucí vývoj. Kristýna HUSÁKOVÁ odbor odpadů
Nakládání s kaly z ČOV a jejich budoucí vývoj Kristýna HUSÁKOVÁ odbor odpadů OBSAH Přehled legislativních předpisů EU a ČR Produkce kalů z ČOV Možnosti nakládání s kaly z ČOV v ČR - materiálové využití
RNDr. Miroslav Hůrka. Nakládání s bioodpady v legislativě a praxi
RNDr. Miroslav Hůrka Nakládání s bioodpady v legislativě a praxi Žďár nad Sázavou 2/2008 1 ÚVOD Zpracování biologicky rozložitelných odpadů (BRO) a minimalizace zdravotních rizik z produktu zpracování
29. 9. 2015. výstupydlepříl.č.6vyhl.č.341/2008 Sb. zákonč.156/1998sb.,ohnojivech. 4 skupiny, 3 třídy pouze mimo zemědělskou půdu
Ústřední kontrolní a zkušební ústav zemědělský výstupydlepříl.č.6vyhl.č.341/2008 Sb. 4 skupiny, 3 třídy pouze mimo zemědělskou půdu zákonč.156/1998sb.,ohnojivech 2 a) hnojivo látka způsobilá poskytnout
Anaerobní proces. Anaerobní rozklad organických látek. Bioplyn
Anaerobní proces Bez přístupu vzduchu C x H y O z + a H 2 O b CH 4 + c CO 2 + biomasa (S) H 2 S / S 2- (N) NH 3 / NH + 4 Počátky konec 19.stol. (septik, využívání bioplynu) Stabilizace kalů od poloviny
Anaerobní proces. Anaerobní rozklad organických látek. Bioplyn
Anaerobní proces Bez přístupu vzduchu C x H y O z + a H 2 O b CH 4 + c CO 2 + biomasa (S) H 2 S / S 2- (N) NH 3 / NH + 4 Počátky konec 19.stol. (septik, využívání bioplynu) Stabilizace kalů od poloviny
NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE. Ing. Stanislav HONUS
NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE Ing. Stanislav HONUS ORGANICKÝ MATERIÁL Spalování Chemické přeměny Chem. přeměny ve vodním prostředí Pyrolýza Zplyňování Chemické Biologické Teplo
ÚVOD 6 1. VÝZNAM KOMPOSTOVÁNÍ A HLAVNÍ CÍL STUDIE 7 2. LEGISLATIVA 10
Stránka 2 OBSAH ÚVOD 6 1. VÝZNAM KOMPOSTOVÁNÍ A HLAVNÍ CÍL STUDIE 7 1.1. Význam kompostování 7 1.2. Hlavní cíl studie 9 2. LEGISLATIVA 10 2.1. Základní pojmy ČR 10 2.2. Základní pojmy SR 14 2.3. Legislativa
Úvod... 4. Bioplynová stanice... 5. Provoz bioplynové stanice... 6. Produkty anaerobní digesce... 7. Bioplynová stanice Načeradec...
Obsah Úvod... 4 Bioplynová stanice... 5 Provoz bioplynové stanice... 6 Produkty anaerobní digesce... 7 Bioplynová stanice Načeradec... 8 Technické informace... 9 Složení plynu... 10 Postup krmení... 11
Představení studie pro Mze Management využití kompostu vyrobeného z bioodpadu na zemědělských plochách - slabě a silně ohrožených erozí
Inovace technologií při kompostování, využití kompostu a ochrana půdy Náměšť nad Oslavou 21. září 2018 Představení studie pro Mze Management využití kompostu vyrobeného z bioodpadu na zemědělských plochách
Biogeochemické cykly biogenních prvků
Technologie výroby bioplynu a biovodíku http://web.vscht.cz/pokornd/bp Biogeochemické cykly biogenních prvků Ing. Pokorná Dana, CSc. (č.dv.136, pokornd@vscht.cz) Prof.Ing.Jana Zábranská, CSc. (č.dv.115,
BIOGAS TRANSFORMATION OF LIQUID SUBSTRATES
BIOGAS TRANSFORMATION OF LIQUID SUBSTRATES Karafiát Z., Vítěz T. Department of Agriculture, Food and Environmental Engineering, Faculty of Agronomy, Mendel University of Agriculture and Forestry in Brno,
Ing. Dagmar Sirotková. Přístupy k hodnocení BRO
Ing. Dagmar Sirotková Přístupy k hodnocení BRO BRO BRO BRO BRO BRO BRO BRO BRO BRO BRO Pojmy Biologicky rozložitelný odpad jakýkoli odpad, který podléhá aerobnímu nebo anaerobnímu rozkladu Biologický odpad
KANALIZACE, BIOLOGICKÉ ČOV A VLASTNOSTI PRODUKOVANÝCH KALŮ MOTTO:
KANALIZACE, BIOLOGICKÉ ČOV A VLASTNOSTI PRODUKOVANÝCH KALŮ ING. JAN FOLLER, VODÁRENSKÁ AKCIOVÁ SPOLEČNOST, a. s. foller@vasgr.cz MOTTO: PŘIJME-LI ODBORNÁ ZEMĚDĚLSKÁ VEŘEJNOST FAKT, ŽE APLIKACE KALŮ Z BIOLOGICKÉHO
Hydrolytické a acidogenní mikroorganismy
Í Hydrolytické a acidogenní mikroorganismy - nejrychleji rostoucí a nejodolnější vůči změnám podmínek! - první dva kroky anaerobního rozkladu, hydrolýzu a acidogenesi - exoenzymy, které jsou uvolňovány
Obsah prezentace: a) Typy kompostáren b) Základní informace k jednotlivým typům kompostáren c) Vztah k vyhlášce č. 341/2008 Sb.
KOMPOSTOVÁNÍ Obsah prezentace: a) Typy kompostáren b) Základní informace k jednotlivým typům kompostáren c) Vztah k vyhlášce č. 341/2008 Sb. (vyhláška o podrobnostech nakládání s biologicky rozložitelnými
BioCNG pro města F AC T S HEET
F AC T S HEET BioCNG pro města Projekt s názvem BioCNG pro města představuje koncept, ve kterém jsou využity lokálně dostupné odpadní suroviny biologicky rozložitelné odpady a čistírenské kaly k výrobě
Nová legislativa nakládání s kaly. Jihlava Diskusní setkání ISNOV
Nová legislativa nakládání s kaly Jihlava 21.4.2017 Diskusní setkání ISNOV Definice kalu Dle 32 zákona č. 185/2001 Sb., o odpadech je kal definován jako: kal z čistíren odpadních vod zpracovávajících městské
KOMPOSTOVÁNÍ BIOMASY Z ÚDRŽBY VEŘEJNÉ ZELENĚ
KOMPOSTOVÁNÍ BIOMASY Z ÚDRŽBY VEŘEJNÉ ZELENĚ PROJEKT GREENGAIN SI KLADE ZA CÍL VYTVOŘIT V RÁMCI EU PLATFORMU, KTERÁ ZVÝŠÍ INFORMOVANOST O MOŽNOSTECH ENERGETICKÉHO VYUŽÍVÁNÍ BIOMASY, KTERÁ NENÍ PRIMÁRNĚ
Pouţití hydrolytických enzymů při produkci bioplynu z odpadů: Výsledky z praxe
Pouţití hydrolytických enzymů při produkci bioplynu z odpadů: Výsledky z praxe Ing. Jan Štambaský NovaEnergo Ing. Jan Štambaský, Na Horánku 673, CZ-384 11 Netolice, stambasky@novaenergo.cz Nakládání s
Využití biologicky rozložitelných odpadů
Využití biologicky rozložitelných odpadů Ing. Dagmar Sirotková, Ing. Dagmar Vološinová Výzkumný ústav vodohospodářský T.G. Masaryka, v. v. i. Definice Odpad movitá věc, které se člověk zbavuje nebo má
11. prosince 2009, Brno Připravil: Ing. Pavel Mach, DiS. Technika zpracování odpadů
11. prosince 2009, Brno Připravil: Ing. Pavel Mach, DiS. Technika zpracování odpadů Technika a technologie kompostování organických odpadů strana 2 Historie kompostování jedna z nejstarších recyklačních
Kompost v zemědělské praxi
Kompost v zemědělské praxi Seminář - Legislativa ( související právní předpisy odpady, hnojiva) - Vliv na půdu kvalita kompostu, základní agrotechnika, specifika pro využití kompostu v oblastech ochrany
Anaerobní membránové bioreaktory Mgr. Ing. Bc. Lukáš Dvořák, Ph.D.
Anaerobní membránové bioreaktory Mgr. Ing. Bc. Lukáš Dvořák, Ph.D. lukas.dvorak@tul.cz Obsah prezentace co je to anaerobní membránový bioreaktor princip technologie výhody a nevýhody technologická uspořádání
Kompost technologie a kvalita
Kompost technologie a kvalita Zpracování a využití bioodpadu nebo - efektivní systém snížení BRKO na skládce a udržitelné zpracování prevence, zpracování odpadu - propojení komunální sféry s podnikateli
Uplatnění kompostů při zavedení odděleného sběru bioodpadu Biologicky rozložitelné odpady září 2010, Brno
Uplatnění kompostů při zavedení odděleného sběru bioodpadu Biologicky rozložitelné odpady 22. - 24. září 2010, Brno Ing. Marek Světlík Ministerstvo zemědělství ČR Odbor environmentální a ekologického zemědělství
Bioplynová stanice. Úvod. Immobio-Energie s.r.o. Jiráskovo nám. 4 Tel.: 377 429 799 326 00 Plzeň Fax: 377 429 921 contact@immobio-energie.
Ing. Diana Sedláčková Mobil: 728 019 076 Bioplynová stanice Úvod Vznik bioplynu z organických látek i využití methanu k energetickým účelům je známo již dlouho. Bioplyn je směs methanu, oxidu uhličitého
Bioremediace půd a podzemních vod
Bioremediace půd a podzemních vod Jde o postupy (mikro)biologické dekontaminace půd a podzemních vod Jsou používány tam, kde nepostačuje přirozená atenuace: - polutanty jsou biologicky či jinak špatně
NAKLÁDÁNÍ S BIOODPADY V ČESKÉ REPUBLICE LEGISLATIVA A PODPORA VYUŽITÍ
NAKLÁDÁNÍ S BIOODPADY V ČESKÉ REPUBLICE LEGISLATIVA A PODPORA VYUŽITÍ Jaromír Manhart Odbor odpadů Ministerstvo životního prostředí Seminář Bioodpady a jejich využití, legislativa a praxe 19. března 2019
Sledování procesu kompostování metodou EIS Projekt - Nová technologie kompostování, projekt č. CZ /0.0/0.0/15_019/004646
Sledování procesu kompostování metodou EIS Projekt - Nová technologie kompostování, projekt č. CZ.01.1.02/0.0/0.0/15_019/004646 Za tým řešitelů doc. Ing. Jana Pařílková, CSc. 2 Kompostování Kompostování
Organickou hmotu tvoří obvykle (biomasa): ČZU/FAPPZ
BIOPLYN - bioplyn je směs plynů, z nichž hlavní jsou methan CH 4 a oxid uhličitý CO 2 dále (H 2, N 2, H 2 S), který vzniká při mikrobiálním rozkladu organické hmoty za nepřítomnosti kyslíku (anaerobní
BRO Předpisy EU. RNDr. Dragica Matulová, CSc. Výzkumný ústav vodohospodářský T. G. M., v.v.i. Centrum pro hospodaření s odpady
BRO Předpisy EU RNDr. Dragica Matulová, CSc. Výzkumný ústav vodohospodářský T. G. M., v.v.i. Centrum pro hospodaření s odpady Evropská Směrnice o bioodpadech první návrh směrnice o bioodpadu-2000 druhý
Anaerobní fermentace
Anaerobní fermentace Kapitola 1 strana 2 Cíle Cílem kapitoly je studenty seznámit s procesy, které jsou spjaty s produkcí bioplynu a také parametry, které mohou tento proces ovlivnit. Klíčová slova Metanogeneze,
Obsah Úvod 1. Proč kompostovat? 2. Základy procesu kompostování 3. Výchozí materiály ke kompostování 4. Místo ke kompostování 5. Speciální komposty
Obsah Úvod.............................................................. 7 1. Proč kompostovat?................................................ 9 1.1 Tvorba a význam humusu.....................................
Komposty na bázi vedlejších produktů výroby bioplynu a spalování biomasy
Komposty na bázi vedlejších produktů výroby bioplynu a spalování biomasy Composts Based on By-products of Biogas Production and Biomass Burning Plíva P. 1, Dubský M. 2, Sucharová J. 2, Holá M. 2, Pilný
Odborná škola výroby a služeb, Plzeň, Vejprnická 56, Plzeň. Číslo materiálu 19. Bc. Lenka Radová. Vytvořeno dne
Název školy Název projektu Číslo projektu Číslo šablony Odborná škola výroby a služeb, Plzeň, Vejprnická 56, 318 00 Plzeň Digitalizace výuky CZ.1.07/1.5.00/34.0977 VY_32_inovace_ZZV19 Číslo materiálu 19
Jaromír MANHART odbor odpadů
VIII. Mezinárodní konference - Biologicky rozložitelné odpady Aktuální stav a dlouhodobá koncepce MŽP nakládání s bioodpady v ČR Jaromír MANHART odbor odpadů Náměšť nad Oslavou 20. září 2012 Obsah přednášky
3. 2. 2015. Bioodpad v obci. Zpracování a využití bioodpadu Modelové příklady, Správná kompostářská praxe, Okompostu. Zpracování a využití BRKO
Zpracování a využití bioodpadu Modelové příklady, Správná kompostářská praxe, Okompostu Květuše Hejátková ZERA Zemědělská a ekologická regionální agentura, o.s. Bioodpad v obci Zpracování a využití BRKO
Technologické zlepšení výtěžnosti bioplynu. Mechanické usnadnění míchání, čerpání, dávkování. Legislativní nařízená předúprava VŽP:
Důvody předúpravy: Technologické zlepšení výtěžnosti bioplynu Mechanické usnadnění míchání, čerpání, dávkování Legislativní nařízená předúprava VŽP: hygienizace vstupního materiálu Výsledkem předúpravy
Revolvingový fond Ministerstva životního prostředí. Výukové materiály projektu NAUČÍME VÁS, JAK BÝT EFEKTIVNĚJŠÍ VÝROBA BIOPLYNU
Výukové materiály projektu NAUČÍME VÁS, JAK BÝT EFEKTIVNĚJŠÍ VÝROBA BIOPLYNU Výukové materiály vznikly za finanční pomoci Revolvingového fondu Ministerstva životního prostředí. Za jejich obsah zodpovídá
ROZDĚLENÍ A POŽADAVKY NA KATEGORIE FUNKCE VÝROBKU, KATEGORIE SLOŽKOVÝCH MATERIÁLŮ. Jana Meitská Sekce zemědělských vstupů ÚKZÚZ Brno
ROZDĚLENÍ A POŽADAVKY NA KATEGORIE FUNKCE VÝROBKU, KATEGORIE SLOŽKOVÝCH MATERIÁLŮ Jana Meitská Sekce zemědělských vstupů ÚKZÚZ Brno KATEGORIE HNOJIVÝCH VÝROBKŮ (DLE FUNKCE) 1. Hnojivo 2. Materiál k vápnění
Školení provozování BPS zásady dobré praxe. Ing. Jan Štambaský, Ph.D.
zásady dobré praxe Ing. Jan Štambaský, Ph.D. Obsah semináře AD a vznik bioplynu Propad produkce, vznik a následky Možnosti chemické analýzy Vlivy teploty Přetížení procesu Nedostatek minerální výživy 2
Cíle. Seznámit studenta s technickými zařízeními bioplynových stanic.
Bioplynové stanice Cíle Seznámit studenta s technickými zařízeními bioplynových stanic. Klíčová slova Reaktor, metanogeneze, kogenerační jednotka 1. Úvod Bioplynové stanice (BPS) jsou dnes rozšířenou biotechnologií
Vermikompostování perspektivní metoda pro zpracování bioodpadů. Vermikompostování
Vermikompostování perspektivní metoda pro zpracování bioodpadů Aleš Hanč a, Petr Plíva b a Česká zemědělská univerzita v Praze b Výzkumný ústav zemědělské techniky, Praha Vermikompostování je považováno
Hygienizace a redukce Biologicky rozložitelného a kuchyňského odpadu
Hygienizace a redukce Biologicky rozložitelného a kuchyňského odpadu Odpad Česká legislativa pod pojmem odpad rozumí: Odpadje movitávěc, kterése člověkzbavujenebomáúmyslnebopovinnostse jí zbavit. Z pohleduprávapřesněodpaddefinujezákonč.
SUCHÁ FERMENTACE V MALOOBJEMOVÉM
SUCHÁ FERMENTACE V MALOOBJEMOVÉM FERMENTAČNÍM M REAKTORU Marian Mikulík Žilinská univerzita v Žilině seminář Energetické využití biomasy 2011 Trojanovice 18. 19. 5. 2011 Anaerobní fermentace Mikrobiální
Komunitní kompostárna. Náměšť n.o. 28.5.2015
Komunitní kompostárna Náměšť n.o. 28.5.2015 Biologicky rozložitelný odpad Bioodpad je odpad podléhající aerobnímu či anaerobnímu rozkladu, jejich seznam je přílohou Vyhláška 341/2008 Sb. V rámci obce kat.č.
ÚVOD. Kdo jsme. Projekty na klíč pro kompletní. Výroba patentované technologie pro. 22 let zkušeností. zpracování. odpadů. zpracování.
SPECIALISTA ÚVOD Zero Waste Technologie Projekty na klíč pro kompletní zpracování odpadů 22 let zkušeností Kdo jsme Celosvětová distribuce Výroba patentované technologie pro zpracování bioodpadů Konzultační
Digitální učební materiál
Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn CZ.1.07/1.5.00/34.0061 VY_32_INOVACE_D.1.10 Integrovaná střední škola technická
Biologické odstraňování nutrientů
Biologické odstraňování nutrientů Martin Pivokonský, Jana Načeradská 8. přednáška, kurz Znečišťování a ochrana vod Ústav pro životní prostředí PřF UK Ústav pro hydrodynamiku AV ČR, v. v. i. Nutrienty v
Obnovitelné zdroje energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 2 1 je hmota organického původu (rostlinného
Obsah 5. Obsah. Úvod... 9
Obsah 5 Obsah Úvod... 9 1. Základy výživy rostlin... 11 1.1 Rostlinné živiny... 11 1.2 Příjem živin rostlinami... 12 1.3 Projevy nedostatku a nadbytku živin... 14 1.3.1 Dusík... 14 1.3.2 Fosfor... 14 1.3.3
CHEMIE ŽIVOTNÍHO PROSTŘEDÍ I. (06) Biogeochemické cykly
Centre of Excellence CHEMIE ŽIVOTNÍHO PROSTŘEDÍ I Environmentální procesy (06) Biogeochemické cykly Ivan Holoubek RECETOX, Masaryk University, Brno, CR holoubek@recetox. recetox.muni.cz; http://recetox.muni
Možnosti využití bioodpadů ve školách
Možnosti využití bioodpadů ve školách Bioodpad je jediným odpadem, který lze v domácích podmínkách plně recyklovat - kompostovat. Pro zahrádkáře to není nic nového. Kompostovat však můžeme i ve městech
Návrh. Čl. I. 3. Příloha č. 1 zní:
Návrh Vyhláška ze dne 008, kterou se mění vyhláška č. 48/005 Sb., o stanovení druhů, způsobů využití a parametrů biomasy při podpoře výroby elektřiny z biomasy, ve znění vyhlášky č. 5/007 Sb. Ministerstvo
bioodpad, BRKO biomasa! zpracování bioodpadu kompostace aerobní x anaerobní procesy závěr k nakládání s odpadem film Průmyslové komposty
Odpady a recyklace Přednáška č.3 - Bioodpad bioodpad, BRKO biomasa! zpracování bioodpadu kompostace aerobní x anaerobní procesy závěr k nakládání s odpadem film Průmyslové komposty Katedra hydromeliorací
OKRUH II LEGISLATIVA. Ing. Lucie Valentová, Ph.D. ZERA - Zemědělská a ekologická regionální agentura, o.s.
OKRUH II LEGISLATIVA Ing. Lucie Valentová, Ph.D. ZERA - Zemědělská a ekologická regionální agentura, o.s. LEGISLATIVA nakládání s biologicky rozložitelnými odpady Biologicky rozložitelný odpad - pojmy
Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR
Celkový dusík Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na zdraví člověka, rizika
značné množství druhů a odrůd zeleniny ovocné dřeviny okrasné dřeviny květiny travní porosty.
o značné množství druhů a odrůd zeleniny ovocné dřeviny okrasné dřeviny květiny travní porosty. Podobné složení živých organismů Rostlina má celkově více cukrů Mezidruhové rozdíly u rostlin Živočichové
Koloběh látek v přírodě - koloběh dusíku
Koloběh látek v přírodě - koloběh dusíku Globální oběh látek v přírodě se žádná látka nevyskytuje stále na jednom místě díky různým činitelům (voda, vítr..) se látky dostávají do pohybu oběhu - cyklu N
Exkurze do Rakouska - 27.10.2009
Exkurze do Rakouska - 27.10.2009 Informace o cestě, denní program Plán cesty: Výjezd z Jičína v 6:00, dále následují zastávky, kde nabereme účastníky exkurze, kteří nejsou z Jičína pravděpodobné zastávky:
MIKROORGANISMY EDÍ. Ústav inženýrstv. enýrství ochrany ŽP FT UTB ve Zlíně
MIKROORGANISMY A OCHRANA ŽIVOTNÍHO PROSTŘED EDÍ Ústav inženýrstv enýrství ochrany ŽP FT UTB ve Zlíně Důvody využívání mikroorganismů v procesech ochrany životního prostřed edí jsou prakticky všudypřítomné
Vliv kompostu na kvalitu půdy
Okruh IV Vliv kompostu na kvalitu půdy Ing. Lucie Valentová, Ph.D. Ing. Květuše Hejátková ZERA - Zemědělská a ekologická regionální agentura, o.s. Proč se zabývat BIODEGRADABILNÍM MATERIÁLEM Ochrana životního
Zplyňování biomasy. Sesuvný generátor. Autotermní zplyňování Autotermní a alotermní zplyňování
Zplyňování = termochemická přeměna uhlíkatého materiálu v pevném či kapalném skupenství na výhřevný energetický plyn pomocí zplyňovacích médií a tepla. Produktem je plyn obsahující výhřevné složky (H 2,
A. Identifikace uchazeče a řešitele
A. Identifikace uchazeče a řešitele KRYCÍ LIST Název projektu UCHAZEČzmocněnec (obchodní jméno a adresa) Technické řešení malého zařízení ke zpracování BRO dle patentu č.297411 Janites, s.r.o. Hořanská
Kompostování - nejen na zahradě
Kompostování - nejen na zahradě Kompostování (definice) = řízený aerobní rozklad organického materiálu za vzniku kvalitního hnojiva - nejefektivnější recyklace rostlinného odpadu - nejúčinnější způsob
BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV PROCESNÍHO A EKOLOGICKÉHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV PROCESNÍHO A EKOLOGICKÉHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF PROCESS AND ENVIRONMENTAL