Počítače a grafika. Ing. Radek Poliščuk, Ph.D. Přednáška 4. z předmětu
|
|
- Dominik Toman
- před 9 lety
- Počet zobrazení:
Transkript
1 Ústav automatizace a informatiky Fakulta strojního inženýrství Vysoké učení technické v Brně Přednáška 4. z předmětu Počítače a grafika Ing. Radek Poliščuk, Ph.D. 1/19
2 Obsah přednášky Přednáška 4 Barvy a barevné systémy: Světlo a jeho barva Lidské barevné vidění Barevné systémy. Úvod do problematiky řízení barev. E = mc Barva [R,G,B] 2 2/19
3 Světlo a jeho barva Co je to světlo? Světlo je postupná vlna s elektrickou a magnetickou složkou. elektromagnetické vlnění = tok fotonů (energetických částic) ze zdroje E = hν = mc2, kde c = 2, m s-1 je rychlost světla ve vakuu ( km/s), h = 6, J s je Planckova konstanta. Světelná energie se uvolňuje např. během: tepelného chvění částic ( záření černého tělesa - chromosféra slunce, žárovka...), přechodu elementárních částic mezi různými energetickými stavy (skokové energie => charakteristické emisní čáry => vlnové délky Luminiscence) Stimulovaná (Laser/Maser, LED, Fluorescence, fosforescence, chemoluminiscence...) Spontánní (radioaktivita). Charakteristické vlastnosti EM záření: Spektrální složení (histogram amplitud jednotlivých frekvencí) a Fáze a polarita vln (interferenční a laserové technologie, holografie...). 3/19
4 Světlo a jeho barva Viditelné světlo zabírá jen velmi malou část frekvenčního spektra EM záření: nm 4/19
5 Světlo a jeho barva Jaké spektrum odpovídá Bílé barvě? Lidské oko a mozek při barevném vidění využívají schopnost adaptace na spektrum použitého světelného zdroje kompenzací barevné teploty. 5/19
6 Světlo a jeho barva Vnímání barvy je důsledkem spektra zaznamenaného v místě pozorovatele. Toto spektrum je obecně dáno superpozicí: emisního spektra světelného zdroje (zdrojů), spektrální odrazivosti sledovaných povrchů, spektrální propustností všech prostředí kterými světlo prochází a spektrální přenosovou charakteristikou použitého snímače. Poznámka: V relativistické fyzice a v astronomii je navíc nutné zohlednit případné dopplerovské jevy při vysokých vzájemných rychlostech zdrojů a pozorovatele (červený/modrý posuv Fraunhoferových absorbčních čar). 6/19
7 Lidské barevné vidění Historie: Aristoteles ( ): řada barev Isaac Newton ( ): Interpretace Marciho experimentu (rozklad bílého světla hranolem), kruh 7 základních barev (Opticks, 1704). Johann Wolfgang Goethe ( ): Oponentní model (Teorie barev, 1823) žlutá (slunce) proti modré (tma) a červená proti zelené Thomas Young a Hermann von Helmholz: Trichromatická teorie: Lidské oko vnímá obrazovou informaci na principu současného zpracování trojice lineárně nezávislých barevných stimulů (druhý Grassmanův zákon). 7/19
8 Lidské barevné vidění Optická soustava lidského oka je tvořena čtyřmi optickými prostředími: rohovkou, komorovou vodou, čočkou a sklivcem. Světlo vstupuje do rohovky, jeho množství je regulováno velikostí zornice v duhovce, je fokusováno čočkou a dopadá na sítnici na zadní straně oka. Sítnice obsahuje světlocitlivé tyčinky a čípky: 8/19
9 Lidské barevné vidění Tyčinky: černobílé noční vidění, maximum citlivosti kolem 520nm (Purkyňův jev: za úsvitu vnímáme nejdřív modře) Čípky: barevné (fotopické) vidění na denním světle nejhustěji uspořádané v okolí žluté skvrny, intenzita světla je vnímáná na základě fotochemických reakcí očního Rhodopsinu ve třech širokopásmových oblastech: ρ (červený), maximum v okolí 590 nm, γ (zelený), maximum v okolí 540 nm a β (modrý), maximum v okolí 430 nm. Tyto závislosti jsou spektrální, ne bodové, střed barevné citlivosti je v okolí 555 nm. Vjem v modrém kanálu ovlivňuje také tvorbu Melatoninu (biologické hodiny: spánek/den) 9/19
10 Lidské barevné vidění Barva je vnímaná okem je vizuálním vjemem, produkovaným specifickou spektrální odezvou čípků sítnice na energii dopadajícího světla: Intenzitu tohoto vjemu je obecně možné vyjádřit trojicí relativnách fotometrických stimulů R, G a B, odpovídajících plochám pod křivkami ρ, γ a β. Hodnoty signálů z čípků jsou sloučeny dle schématu a zrakovým nervem elektrochemicky předávány k dalšímu zpracování do mozku. díky této jednoduché fyziologické transformaci je člověk schopen rozlišovat světlost i odstíny. způsob porovnávání odstínů modré proti žluté" a červené proti zelené" se nazývá oponentní transformace tohoto schématu jsou základem referenčních barevných systémů CIE. 10/19
11 Lidské barevné vidění Trichromatické barevné vidění spojitého spektra je (kromě jiných vad) zatíženo také Metamerismem: To že vnímáme dvě barvy totožně ještě neznamená že jsou totožné: 11/19
12 Barevné systémy Dnešní kolorimetrický aparát vychází zejména z usnesení Mezinárodní komise pro osvětlení (Commission Internationale de ľéclairage, CIE), zasedá od roku Mezi její nejvýznamější doporučení patří: definice parametrů standardního pozorovatele, standardních iluminantů, barevných prostorů a barevné diferenční formule. Na práci CIE navazuje od roku 1993 Mezinárodní konsorcium pro barvu (International Color Consortium, ICC) metodikou color managementu. 12/19
13 Barevné systémy Standardních iluminanty: A: Žhavené wolframové vlákno 2856 K (žárovka); B: Sluneční světlo o korelované barevné teplotě 4874 K (nepoužíváno); C: Ranní sluneční světlo o korelované barevné teplotě 6774 K (zastaralé); D: Hlavní série iluminantů odpovídajících různým typům denního světla: D50 (5000K - denní světlo v interiéru) a D65 (6504K - denní světlo v nulové nadmořské výšce); E: Teoretický iluminant o "shodné energii" (pouze pro výpočty); F: Série odpovídající různým fluorescenčním lampám (F2, F3 až F12). Standardní barevné prostory: CIEXYZ (transformace RGB, diagram chromatičnosti), CIELAB / CIELUV / CIELCH (psychometrický prostor) 13/19
14 Barevné systémy Míru rozdílnosti barev ( E) je možné vyčíslit pomocí barevných diferenčních formulí E: CIE1976 (prostá vzdálenost v prostoru L*a*b*), CIE94, CMC(l:c), BFD(l:c),... 14/19
15 Color Management Rozsah použitelných barev (Gamut) trichromatického zařízení je dán polohou vrcholů barevného n-úhelníku v barevném prostoru. Aditivní míchání ( svítící RGB na černém pozadí), Substraktivní (odečítání CMY od barvy bílého podkladu). Gamuty reálných zařízení se prakticky vždy liší a vznikají tak kombinace, které jsou nereprodukovatelné (Skener > Monitor > Tisk). Výsledná barva je dále ovlivňována: metamerismem, barevnou teplotou okolí, u substraktivních podkladů také barvou podkladu (papíru),... Pro korektní reprodukci při přenášení a při práci s barevnou grafikou je tedy nutný nějaký systém řízení barev (Color Management System, CMS). 15/19
16 Color Management Dříve se k seřizování zařízení používalo bodové seřizování s pomocí barevných vzorníků Munsell / GretagMacbeth (systém HSV) Pantone Kodak... Tištěné vzorníky a bodové kolorimetry se ke bodovým kontrolám barev používají dodnes. Základem dnešních CMS je referenční barevný systém CIELAB, ke kterému se vztahují specifikace profilů jednotlivých zařízení. Každému zařízení v CMS je definován jeho barevný profil, popisující transformaci barev zařízením a fyzické limity zobrazitelných barev (gamut). Profily se pak vztahují buď k typickým okolním podmínkám, ve kterých je zařízení provozováno (osvětlení, typ papíru, typicky hodnoty standardního pozorovatele). Zařízení tak mohou pracovat v nativním RGB/CMY(K) režimu, převody řeší CMS. 16/19
17 Color Management Kalibrace a profilace zařízení: Snímače a skenery: testovací tabulky a terče Zobrazovací jednotky: bodové kolorimetry a spektrometry Tiskárny: souřadnicové nebo ruční spektrometry, souřadnicové nebo ruční kolorimetry, nebo zkalibrované skenery. Vytvoření vlastního profilu zařízení pak řeší příslušný software: GretagMacbeth Monaco Optics (MonacoEZcolor) Pantone Základní ICC profily některých zařízení dodává už jejich výrobce. 17/19
18 Color Management Transformace gamutu CMS zahrnují: výběr profilu u jednotlivých zařízení (skener, monitor, tiskárna), určení korekcí u bodových barev a výběr kolorimetrického záměru pro danou transformaci: Perceptuální: poměrné rozložení barev zdroje do cílového gamutu. Zachovává barevné poměry, někdy za cenu sníženého kontrastu. Saturační: Roztažení původního gamutu po hranice nového, i za cenu příp. přetečení a ořezu. Typické pro grafy a obchodní grafiku. Absolutní kolorimetrický: Simulace barev původního obrazu. Relativní kolorimetrický: Simulace původních barev, s kompenzací bílého bodu na cílovém zařízení. 18/19
19 Závěr Probrané kapitoly světlo a jeho barva, lidské barevné vidění, barevné systémy a řízení barev představují jen stručný úvod do oborů fotometrie, kolorimetrie a řízení barev. Na látku navazují kapitoly Záznam obrazu, Zobrazovací jednotky a Tisk. Tam kde si s uhlídáním barev nebudete vědět rady, raději než hádku hledejte radu od zkušenějších. Uvedené obory jsou v neustálém vývoji a uvedená doporučení se během pár let mohou změnit. Doporučená literatura: Fraser, Murphy, Bunting: Real World Color Management. Námět cvičení: Diskuse vlivu barevné teploty okolí na vnímání barev Demo profilace zařízení v rámci CMS 19/19
Světlo. Podstata světla. Elektromagnetické záření Korpuskulární charakter. Rychlost světla. Vlnová délka. Vlnění, foton. c = 1 079 252 848,8 km/h
Světlo Světlo Podstata světla Elektromagnetické záření Korpuskulární charakter Vlnění, foton Rychlost světla c = 1 079 252 848,8 km/h Vlnová délka Elektromagnetické spektrum Rádiové vlny Mikrovlny Infračervené
Geometrická optika. Vnímání a měření barev. světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem
Vnímání a měření barev světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem fyzikální charakteristika subjektivní vjem světelný tok subjektivní jas vlnová
Ing. Jan Buriánek. Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek, 2010
Ing. Jan Buriánek (ČVUT FIT) Barvy a barevné prostory I BI-MGA, 2010, Přednáška 3 1/32 Ing. Jan Buriánek Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v
Montážní program XMF
Montážní program Slovníček pojmů www.isspolygr.cz Vytvořila: Eva Bartoňková Vytvořila dne: 2. 4. 2013 Strana: 1/9 Škola Ročník 4. ročník (SOŠ, SOU) Název projektu Interaktivní metody zdokonalující proces
Světlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V
Kapitola 2 Barvy, barvy, barvičky 2.1 Vnímání barev Světlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V něm se vyskytují všechny známé druhy záření, např. gama záření či infračervené
Aplikace barevného vidění ve studiu elastohydrodynamického mazání
Ústav fyzikálního inženýrství Fakulta strojního inženýrství Vysoké učení technické v Brně Aplikace barevného vidění ve studiu elastohydrodynamického mazání Ing. Radek Poliščuk 1/16 Cíle disertační práce
Viditelné elektromagnetické záření
Aj to bude masakr 1 Viditelné elektromagnetické záření Vlnová délka 1 až 1 000 000 000 nm Světlo se chová jako vlnění nebo proud fotonů (záleží na okolnostech) 2 Optické záření 1645 Korpuskulární teorie
Barvy. Radek Fiala. Podpořeno z projektu FRVŠ 584/2011
fialar@kma.zcu.cz Podpořeno z projektu FRVŠ 584/2011 Kde se berou barvy? Co je barva Světlo jako elmg. záření nemá barvu. Jednou z vlastností světla je tzv. spektrální rozdělení (Spectral Power Distribution,
Barevné modely, práce s barvou. Martin Klíma
Barevné modely, práce s barvou Martin Klíma Proč je barva důležitá Důležitý vizuální atribut Různá zařízení, aplikace, média Monitor Tiskárna Video Televize Světlo a barvy Elektromagnetické vlnění Viditelná
Grafické systémy. Obrázek 1. Znázornění elektromagnetického spektra.
1. 1.5 Světlo a vnímání barev Pro vnímání barev je nezbytné světlo. Viditelné světlo je elektromagnetické záření o vlnové délce 400 750 nm. Různé frekvence světla vidíme jako barvy, od červeného světla
Gamut. - souřadný systém, ve kterém udáváme barvy (CIE, CMYK,RGB )
Přežiju to? 1 Gamut CMYK,RGB ) - souřadný systém, ve kterém udáváme barvy (CIE, dosažitelná oblast barev v barevném prostoru Vyjadřuje Rozsah barevného snímání (rozlišitelné barvy) Barevnou reprodukci
Radiometrie se zabývá objektivním a fotometrie subjektivním měřením světla.
12. Radiometrie a fotometrie 12.1. Základní optické schéma 12.2. Zdroj světla 12.3. Objekt a prostředí 12.4. Detektory světla 12.5. Radiometrie 12.6. Fotometrie 12.7. Oko 12.8. Měření barev 12. Radiometrie
PV156 Digitální fotografie Barvy Tomáš Slavíček / Vít Kovalčík FI MU, podzim 2014
PV156 Digitální fotografie Barvy Tomáš Slavíček / Vít Kovalčík FI MU, podzim 2014 Dva úhly pohledu v DF se na barvy můžeme dívat ze dvou pohledů estetický působení na člověka jejich využití v kompozici
Spektrální charakteristiky
Spektrální charakteristiky Cíl cvičení: Měření spektrálních charakteristik filtrů a zdrojů osvětlení 1 Teoretický úvod Interakcí elektromagnetického vlnění s libovolnou látkou vzniká optický jev, který
Obsah. Úvod 9 Co v knize najdete 9 Komu je kniha určena 9 Konvence užité v knize 9 Vzkaz čtenářům 10 Typografické konvence použité v knize 11
Obsah Úvod 9 Co v knize najdete 9 Komu je kniha určena 9 Konvence užité v knize 9 Vzkaz čtenářům 10 Typografické konvence použité v knize 11 KAPITOLA 1 Působení barev 13 Fyzikální působení barev 15 Spektrum
ZÁKLADNÍ TERMINOLOGIE V COLOR MANAGEMENTU
ZÁKLADNÍ TERMINOLOGIE V COLOR MANAGEMENTU V Colormanagementu se neustále operuje s několika termíny: a) barevný gamut, b) barevné prostory CMYK a RGB, c) nezávislý barevný prostor, d) ICC profil S těmito
Správa barev při digitalizaci archiválií. Magdalena Buriánková
Magdalena Buriánková 21. 6. 2012 Význam správy barev při digitalizaci archiválií Základní vlastnosti barev a práce s nimi Správa barev při digitalizaci archiválií v praxi Jedním z důležitých požadavků
PV156 Digitální fotografie Barvy Tomáš Slavíček / Vít Kovalčík FI MU, podzim 2012
PV156 Digitální fotografie Barvy Tomáš Slavíček / Vít Kovalčík FI MU, podzim 2012 Barva jako součást kompozice barva hraje důležitou roli barva je samostatným prvkem kompozice, který má na diváka (estetický)
ZÁKLADNÍ FOTOMETRICKÉ VELIČINY
ZÁKLADNÍ FOTOMETRICKÉ VELIČINY Ing. Petr Žák VÝVOJ ČLOVĚKA vývoj člověka přizpůsobení okolnímu prostředí (adaptace) příjem informací o okolním prostředí smyslové orgány rozhraní pro příjem informací SMYSLOVÉ
Základní vyšetření zraku
Základní vyšetření zraku Až 80 % informací z okolí přijímáme pomocí zraku. Lidské oko je přibližně kulového tvaru o velikosti 24 mm. Elektromagnetické vlny o vlnové délce 400 až 800 nm, které se odrazily
Michal Vik a Martina Viková: Základy koloristiky ZKO3
Fyziologie vnímání barev Příklady vizuáln lních iluzí: Vliv barvy pozadí I Jsou tyto kruhy barevně shodné? Příklady vizuáln lních iluzí: Vliv barvy pozadí II Jsou tyto kruhy barevně shodné? Příklady vizuáln
světelný tok -Φ [ lm ] (lumen) Světelný tok udává, kolik světla celkem vyzáří zdroj do všech směrů.
Světeln telné veličiny iny a jejich jednotky Světeln telné veličiny iny a jejich jednotky, světeln telné vlastnosti látekl světelný tok -Φ [ lm ] (lumen) Světelný tok udává, kolik světla celkem vyzáří
Mýty a omyly v systému správy barev aneb dodržováním několika principů se správy barev nemusím bát
Mýty a omyly v systému správy barev aneb dodržováním několika principů se správy barev nemusím bát Jan Kaiser Fomei a.s., Hradec Králové Kaiser@fomei.com, +420 603 587 898 červen 2012 Který obraz je správný?
08 - Optika a Akustika
08 - Optika a Akustika Zvuk je mechanické vlnění v látkovém prostředí, které je schopno vyvolat sluchový vjem. Člověk je schopen vnímat vlnění o frekvenci 16 Hz až 20000 Hz (20kHz). Frekvenci nižší než
Aplikace barevného vidění při studiu elastohydrodynamického mazání
Ústav fyzikálního inženýrství Fakulta strojního inženýrství Vysoké učení technické v Brně Disertační práce na téma Aplikace barevného vidění při studiu elastohydrodynamického mazání Ing. Radek Poliščuk
Barva. v počítačové grafice. Poznámky k přednášce předmětu Počítačová grafika
Barva v počítačové grafice Poznámky k přednášce předmětu Počítačová grafika Martina Mudrová 2007 Barvy v počítačové grafice Co je barva? světlo = elmg. vlnění v rozsahu 4,3.10 14-7,5.10 14 Hz rentgenové
Barva a barevné modely
Počítačová grafika Elektromagnetické spektrum Barva a barevné modely Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU Zdroj: Svět barev, Albatros 2 Elektromagnetické spektrum
Tiskové techniky. 11. Kontrola kvality tisku. Vytvořila: Hana Světlíková Vytvořeno dne: Tiskové techniky.
11. Kontrola kvality tisku www.isspolygr.cz Vytvořila: Hana Světlíková Vytvořeno dne: 5. 2. 2013 Strana: 1/10 Škola Ročník 4. ročník (SOŠ, SOU) Název projektu Interaktivní metody zdokonalující proces edukace
Color Management System
Semestrální práce z předmětu Kartografická polygrafie a reprografie Color Management System Autor: Lenka Bajusová, Stanislava Balcarová Editor: Václav Kysela Praha, červen 2010 Katedra mapování a kartografie
Přednáška kurzu MPOV. Barevné modely
Přednáška kurzu MPOV Barevné modely Ing. P. Petyovský (email: petyovsky@feec.vutbr.cz), kancelář E512, tel. 1194, Integrovaný objekt - 1/11 - Barvy v počítačové grafice Barevné modely Aditivní modely RGB,
Počítače a grafika. Ing. Radek Poliščuk, Ph.D. Přednáška č.7. z předmětu
Ústav automatizace a informatiky Fakulta strojního inženýrství Vysoké učení technické v Brně Přednáška č.7. z předmětu Počítače a grafika Ing. Radek Poliščuk, Ph.D. 1/14 Obsahy přednášek Přednáška 7 Zpracování
Digitální fotografie. Mgr. Milana Soukupová Gymnázium Česká Třebová
Digitální fotografie Mgr. Milana Soukupová Gymnázium Česká Třebová Téma sady didaktických materiálů Digitální fotografie I. Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu
Barevné vidění Josef Pelikán CGG MFF UK Praha
Barevné vidění 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ ColorPerception 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 15 Co je světlo? Špatnota
Barvy v počítačové grafice
arvy v počítačové grafice 2. přednáška předmětu Zpracování obrazů Martina Mudrová 2004 arvy v počítačové grafice Co je barva? světlo = elmg. vlnění v rozsahu 4,3.10 14-7,5.10 14 Hz rentgenové zář ení zář
Doc. Ing. Michal Vik, Ph.D.: Kolorimetrie KME6. Kolorimetrické soustavy
Kolorimetrické soustavy (poměrn Doc. Ing. Michal Vik, Ph.D.: Kolorimetrie KME6 Spektráln lní luminósn sní funkce V λ rná spektráln lní citlivost normáln lního pozorovatele) Young-Helmholtz Helmholtzův
Úvod do správy barev a profilace monitorů a fotoaparátů. Ing. Tomáš Syrový, Ph.D.
Úvod do správy barev a profilace monitorů a fotoaparátů Ing. Tomáš Syrový, Ph.D. Barva Barva je subjektivní zrakový vjem a je dána třemi aspekty Lidský zrak (subjektivní), záznamové médium sensor spektrofotometru,
Stručný úvod do spektroskopie
Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,
Barevné prostory. RGB, CMYK, HSV a Lab gamut
J. Vrzal, 1.0 Barevné prostory RGB, CMYK, HSV a Lab gamut rozsah všech barev, které jsou dosažitelné v určitém barevném prostoru barvy mimo oblast gamutu jsou reprodukovány nejbližší dostupnou barvou z
Světlo x elmag. záření. základní principy
Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =
Barevné systémy 1995-2015 Josef Pelikán CGG MFF UK Praha
Barevné systémy 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Colors 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 21 Rozklad spektrálních barev
Charakteristiky optického záření
Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární
Barvy v počítačové grafice
arvy v počítačové grafice 2. přednáška předmětu Zpracování obrazů Martina Mudrová 24 arvy v počítačové grafice o je barva? světlo = elmg. vlnění v rozsahu 4,3. 4-7,5. 4 Hz viditelná č ást spektra rentgenové
Michal Vik a Martina Viková: Základy koloristiky ZKO10. Správa barev
Správa barev Přenos barevné a obrazové informace I Každodenn dodenní problémy s přenosem... p en samý dokument vypadá jinak, když: je vytištěn na různých tiskárnách je vyobrazen na různých monitorech je
Úvod do počítačové grafiky
Úvod do počítačové grafiky elmag. záření s určitou vlnovou délkou dopadající na sítnici našeho oka vnímáme jako barvu v rámci viditelné části spektra je člověk schopen rozlišit přibližně 10 milionů barev
František Pluháček Katedra optiky PřF UP v Olomouci
František Pluháček Katedra optiky PřF UP v Olomouci Zrakový klam = nesouhlas zrakového vjemu a pozorované skutečnosti Na vzniku zrakových klamů se podílí: anatomická a funkční stavba oka psychologické
Barvy. Vítězslav Otruba doc. Otruba 1
Barvy Vítězslav Otruba 2006 doc. Otruba 1 Elektromagnetické záření 2006 doc. Otruba 2 Achromatické světlo Bílé světlo : signál složený ze záření všech vlnových délek viditelného spektra Difúzní odraz dopadajícího
Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA
Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA OPTIKA ZÁKLADNÍ POJMY Optika a její dělení Světlo jako elektromagnetické vlnění Šíření světla Odraz a lom světla Disperze (rozklad) světla OPTIKA
Správa barev. Složky správy barev. Správa barev. Vytvořila: Jana Zavadilová Vytvořila dne: 3. prosince 2012. www.isspolygr.cz
Složky správy barev www.isspolygr.cz Vytvořila: Jana Zavadilová Vytvořila dne: 3. prosince 2012 Strana: 1/11 Škola Ročník 4. ročník (SOŠ, SOU) Název projektu Interaktivní metody zdokonalující proces edukace
ZRAKOVÝ ORGÁN A PROCES VIDĚNÍ. Prof. Ing. Jiří Habel, DrSc. FEL ČVUT Praha
ZRAKOVÝ ORGÁN A PROCES VIDĚNÍ Prof. Ing. Jiří Habel, DrSc. FEL ČVUT Praha prosinec 2014 1 ZRAKOVÝ ORGÁN A PROCES VIDĚNÍ PROCES VIDĚNÍ - 1. oko jako čidlo zraku zajistí nejen příjem informace přinášené
Konstrukce zdroje záření a jeho využití ve výuce optiky
Konstrukce zdroje záření a jeho využití ve výuce optiky LENKA TICHÁČKOVÁ, LENKA HÖNIGOVÁ Ostravská univerzita v Ostravě Abstrakt Tento článek se věnuje zdroji záření viditelné oblasti a UV. Jak tento levný
Práce na počítači. Bc. Veronika Tomsová
Práce na počítači Bc. Veronika Tomsová Barvy Barvy v počítačové grafice I. nejčastější reprezentace barev: 1-bitová informace rozlišující černou a bílou barvu 0... bílá, 1... černá 8-bitové číslo určující
SOUSTAVA SMYSLOVÁ Informace o okolním světě a o vlastním těle dostáváme prostřednictvím smyslových buněk Smyslové buňky tvoří základ čidel Čidla jsou
SOUSTAVA SMYSLOVÁ Informace o okolním světě a o vlastním těle dostáváme prostřednictvím smyslových buněk Smyslové buňky tvoří základ čidel Čidla jsou vybavena vždy pro příjem a zpracování určitého podnětu
Geometrická optika. Optické přístroje a soustavy. převážně jsou založeny na vzájemné interakci světelného pole s látkou nebo s jiným fyzikálním polem
Optické přístroje a soustav Geometrická optika převážně jsou založen na vzájemné interakci světelného pole s látkou nebo s jiným fzikálním polem Důsledkem této t to interakce je: změna fzikáln lních vlastností
PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. IV Název: Měření fotometrického diagramu. Fotometrické veličiny a jejich jednotky Pracoval: Jan Polášek stud.
Správa barev. Měřící přístroje. Správa barev. Vytvořila: Jana Zavadilová Vytvořila dne: 14. února 2013. www.isspolygr.cz
Měřící přístroje www.isspolygr.cz Vytvořila: Jana Zavadilová Vytvořila dne: 14. února 2013 Strana: 1/12 Škola Ročník 4. ročník (SOŠ, SOU) Název projektu Interaktivní metody zdokonalující proces edukace
ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika
ODRAZ A LOM SVĚTLA Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika Odraz světla Vychází z Huygensova principu Zákon odrazu: Úhel odrazu vlnění je roven úhlu dopadu. Obvykle provádíme konstrukci pomocí
Světlo jako elektromagnetické záření
Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti
Kapitola 11 / Barevný tisk
DTP1 (příprava textu pomocí počítače) Kapitola 11 / Barevný tisk Petr Lobaz, 2. 5. 2007 Typy barev průhledné (ofset) neprůhledné (sítotisk) s běžnými pigmenty metalické výtažkové přímé s různými tiskařskými
DTP1. Typy barev. Označení barevnosti. Barevný tisk. (příprava textu pomocí počítače) Kapitola 11 / Barevný tisk
DTP1 (příprava textu pomocí počítače) Typy barev průhledné (ofset) neprůhledné (sítotisk) Kapitola 11 / Barevný tisk s běžnými pigmenty metalické výtažkové přímé s různými tiskařskými parametry (krytí,
nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL
Inovace a rozvoj studia nanomateriálů na TUL nano.tul.cz Tyto materiály byly vytvořeny v rámci projektu ESF OP VK: Inovace a rozvoj studia nanomateriálů na Technické univerzitě v Liberci Experimentální
84. Barvové profily (monitory, skenery)
Semestrální práce z předmětu Kartografická polygrafie a reprografie 84. Barvové profily (monitory, skenery) Autor: Tomáš Kysilko, Zdeněk Sovadina Editor: Jakub Kozák Praha, květen 2010 Katedra mapování
F. Pluháček. František Pluháček Katedra optiky PřF UP v Olomouci
František Pluháček Katedra optiky PřF UP v Olomouci Obsah přednášky Optický systém lidského oka Zraková ostrost Dioptrické vady oka a jejich korekce Další vady optické soustavy oka Akomodace a vetchozrakost
Světlo a stín. Patrik Szakoš, Jáchym Tuček, Daniel Šůna
Světlo a stín Patrik Szakoš, Jáchym Tuček, Daniel Šůna Osnova k prezentaci 1)Co je to světlo? A) Definice B) Šíření světla C) Vlnová délka D) Zdroje a využití světla 2)Co je to stín? A) Definice B) Části
Mgr. Markéta Trnečková, Ph.D. Palacký University, Olomouc
Světlo a barvy v počítačové grafice Počítačová grafika Mgr. Markéta Trnečková, Ph.D. Palacký University, Olomouc EM spektrum λ = c f, E = h f c... rychlost světla (300000 km/h) h... Planckova konstanta
Jméno: Michal Hegr Datum: 15.11. 2011. Oko
Jméno: Michal Hegr Datum: 15.11. 2011 Referát na téma: Oko Oko Oko je smyslový orgán reagující na světlo (fotoreceptor), tedy zajišťující zrak. V průběhu vývoje živočichů došlo k výraznému rozvoji od světločivných
DTP1. (příprava textu pomocí počítače) Kapitola 9 / Barevný tisk
DTP1 (příprava textu pomocí počítače) Kapitola 9 / Barevný tisk Petr Lobaz, 18. 4. 2013 Barva běžné světlo směs mnoha vlnových délek ~ 400 nm modrá ~ 550 nm zelená ~ 700 nm červená receptory v oku tyčinky
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +
SFA1. Denní osvětlení. Přednáška 4. Bošová- SFA1 Přednáška 4/1
SFA1 Denní osvětlení Přednáška 4 Bošová- SFA1 Přednáška 4/1 CÍL: Přístup světla rozptýleného v atmosféře do interiéru (denní světlo je nezávislé na světových stranách) Vytvoření zrakové pohody pro uživatele
5.1 Měření barevných souřadnic světla pomocí Donaldsonova kolorimetru
Měření barevných souřadnic světla pomocí Donaldsonova kolorimetru 25 5 LABORATORNÍ ÚLOHY ZE SVĚTELNÉ A OSVĚTLOVACÍ TECHNIKY 5.1 Měření barevných souřadnic světla pomocí Donaldsonova kolorimetru 5.1.1 Úvod
Optické přístroje. Oko
Optické přístroje Oko Oko je orgán živočichů reagující na světlo. Obratlovci a hlavonožci mají jednoduché oči, členovci, kteří mají menší rozměry a jednoduché oko by trpělo difrakčními jevy, mají složené
DTP 2. Radek Fiala. fialar@kma.zcu.cz. Podpořeno z projektu FRVŠ 584/2011. Radek Fiala DTP 2
DTP 2 Radek Fiala fialar@kma.zcu.cz Podpořeno z projektu FRVŠ 584/2011 PostScript Požadavky na obsah PS dokumentu PS dokument je program, který může být (stejně jako program v jiných programovacích jazycích)
λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny
Elektromagnetické vlny Optika, část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko si jím ohmatává
Inovace studia obecné jazykovědy a teorie komunikace ve spolupráci s přírodními vědami
Inovace studia obecné jazykovědy a teorie komunikace ve spolupráci s přírodními vědami reg. č.: CZ.1.07/2.2.00/28.0076 Dějiny vizuality: od ikony k virtuální Vizuální percepce: teoretická, empirická i
Multimediální systémy. 02 Reprezentace barev v počítači
Multimediální systémy 02 Reprezentace barev v počítači Michal Kačmařík Institut geoinformatiky, VŠB-TUO Osnova přednášky Reprezentace barev v PC Způsoby míchání barev Barevné modely Bitová hloubka Barvy
DIGITÁLNÍ FOTOGRAFIE
DIGITÁLNÍ FOTOGRAFIE Petr Vaněček, katedra informatiky a výpočetní techniky Fakulta aplikovaných věd, Západočeská univerzita v Plzni 19. listopadu 2009 1888, Geroge Eastman You press the button, we do
O čem si něco povíme
1 O čem si něco povíme co to vlastně je předtisková příprava (prepress) různé způsoby tisku (offset, flexo, digital printing,...) správa barev inkousty, barevné prostory, profily RIP (raster image processor),
Základy spektroskopie a její využití v astronomii
Ing. Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Základy spektroskopie a její využití v astronomii Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Světlo x záření Jak vypadá spektrum?
1. Zpracování barev v publikacích
1. Zpracování barev v publikacích Studijní cíl V tomto bloku kurzu se budeme zabývat problematikou zpracování barev, vnímání barev, rozlišení barev a vlastnostmi barev. Vysvětlíme si co je to barvový model,
Omyly, mýty a skutečnost
Omyly, mýty a skutečnost - není pouze jedno RGB - neexistuje cosi jako standardní CMYK - konverze RGB > CMYK není pouhým převodem - existuje cosi jako ICC profil tiskového papíru Color Management (CMS)
Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu
Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce
M I K R O S K O P I E
Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066
1. Určete spektrální propustnost vybraných materiálů (různých typů stavebních skel, fólií a optických filtrů) pomocí spektrofotometru
FP 5 Měření optických vlastností materiálů Úkoly : 1. Určete spektrální propustnost vybraných materiálů různých typů stavebních skel, fólií a optických filtrů pomocí spektrofotometru 2. Určete spektrální
ZÁŘENÍ V ASTROFYZICE
ZÁŘENÍ V ASTROFYZICE Plazmový vesmír Uvádí se, že 99 % veškeré hmoty ve vesmíru je v plazmovém skupenství (hvězdy, mlhoviny, ) I na Zemi se vyskytuje plazma, např. v podobě blesků, polárních září Ve sluneční
Rozšíření bakalářské práce
Rozšíření bakalářské práce Vojtěch Vlkovský 2011 1 Obsah Seznam obrázků... 3 1 Barevné modely... 4 1.1 RGB barevný model... 4 1.2 Barevný model CMY(K)... 4 1.3 Další barevné modely... 4 1.3.1 Model CIE
B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Fyzika.
4.8.13. Fyzikální seminář Předmět Fyzikální seminář je vyučován v sextě, septimě a v oktávě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Fyzikální seminář vychází ze vzdělávací oblasti
Oko - stavba oka a vady
Oko - stavba oka a vady Masarykova ZŠ a MŠ Velká Bystřice projekt č. CZ.1.07/1.4.00/21.1920 Název projektu: Učení pro život Č. DUMu: VY_32_INOVACE_31_18 Tématický celek: Člověk Autor: Renata Kramplová
Více denního světla, více pohody
Izolace První vydání Květen 2017 Více denního světla, více pohody STUDIE ZLEPŠENÍ DENNÍHO OSVĚTLENÍ V ZÁVISLOSTI NA POUŽITÍ FASÁDNÍ IZOLACE Kingspan Kooltherm K5 KONTAKTNÍ FASÁDNÍ DESKA NAMÍSTO MINERÁLNÍ
5.3.1 Disperze světla, barvy
5.3.1 Disperze světla, barvy Předpoklady: 5103 Svítíme paprskem bílého světla ze žárovky na skleněný hranol. Světlo se láme podle zákona lomu na zdi vznikne osvětlená stopa Stopa vznikla, ale není bílá,
DTP1. (příprava textu pomocí počítače) Kapitola 10 / Barevný tisk
DTP1 (příprava textu pomocí počítače) Kapitola 10 / Barevný tisk Petr Lobaz, 30. 4. 2009 Barva běžné světlo směs mnoha vlnových délek ~ 400 nm modrá ~ 550 nm zelená ~ 700 nm červená receptory v oku tyčinky
Fyzikální a chemická podstata záznamu barevných obrazů
1 Fyzikální a chemická podstata záznamu barevných obrazů Oldřich Zmeškal, Michal Veselý a Barbora Komendová Ústav fyzikální a spotřební chemie, Fakulta chemická, Vysoké učení technické v Brně, Purkyňova
Anotace: Materiál je určen k výuce přírodopisu v 8. ročníku ZŠ. Seznamuje žáky se základními pojmy a informacemi o stavbě a funkci smyslové soustavy.
Anotace: Materiál je určen k výuce přírodopisu v 8. ročníku ZŠ. Seznamuje žáky se základními pojmy a informacemi o stavbě a funkci smyslové soustavy. Materiál je plně funkční pouze s použitím internetu.
Cv NS-i-3. Ústav nauky o budovách, 1. ročník, zimní semestr 2015/2016 21. 10. 31. 10. 2015. Jan Paroubek, Zbyšek Stýblo
Cv NS-i-3 Ústav nauky o budovách, 1. ročník, zimní semestr 2015/2016 21. 10. 31. 10. 2015 Jan Paroubek, Zbyšek Stýblo NS I -3_ Cvičení Paroubek 2014/15 Fyziologie vidění Stavba oka řasnaté tělísko
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE. Barvové prostory.
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE Barvové prostory semestrální práce Jana Pospíšilová Lenka Roušarová V Praze dne 26. 4. 2010
VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ
VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro
FYZIKA Světelné vlnění
Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. FYZIKA Světelné
25 A Vypracoval : Zdeněk Žák Pyrometrie υ = -40 C.. +10000 C. Výhody termovize Senzory infračerveného záření Rozdělení tepelné senzory
25 A Vypracoval : Zdeněk Žák Pyrometrie Bezdotykové měření Pyrometrie (obrázky viz. sešit) Bezdotykové měření teplot je měření povrchové teploty těles na základě elektromagnetického záření mezi tělesem
Přednáška kurzu BZVS. Barevné modely
Přednáška kurzu BZVS Barevné modely Ing. P. Petyovský (email: petyovsky@feec.vutbr.cz), kancelář SD3.152, tel. 6434, Technická 12, VUT v Brně - 1/16 - Barvy v počítačové grafice Barevné modely Aditivní
Color Management System
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE Color Management System semestrální práce Lena Bajusová Stanislava Balcarová V Praze dne
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012 Číslo DUM: VY_32_INOVACE_20_FY_C Ročník: II. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: