Přerušení na PC. Fakulta informačních technologií VUT v Brně Ústav informatiky a výpočetní techniky. Personální počítače, technická péče cvičení
|
|
- Jana Tereza Marková
- před 7 lety
- Počet zobrazení:
Transkript
1 Fakulta informačních technologií VUT v Brně Ústav informatiky a výpočetní techniky Personální počítače, technická péče cvičení 5 Přerušení na PC Zadání Seznamte se s konstrukcí cvičné zásuvné adaptérové desky do PC, zejména pak s konstrukcí generátoru přerušení. Vytvořte a odlaďte rezidentní program včetně obslužné rutiny hardwarového přerušení, který bude vhodným způsobem demonstrovat událost příchodu přerušení z adaptérové desky. Blokové schéma adaptérové desky sběrnice ISA datová sběrnice adresní sběrnice řídící signály IOR IOW AEN MEMW A 0..A 9, A 16..A obousměrný oddělovač datové sběrnice GAL20V8 vnitřní datová sběrnice G CS G CS SEG CS DIP CS CFG CS RAM Q SEG záchytný obvod displejů DIP oddělovač DIP přepínačů CFG obvod nulování žádosti o přerušení RAM A 0..A 14 volatile paměť 32KB řídící signály MEMR MEMW IRQ RS KLO R S TLAČÍTKO OE WE 1
2 Detailní schéma adaptérové desky 2
3 Adaptérová deska Adaptérová deska ISA 1 obsahuje následující: programovatelný adresový dekodér (GAL20V8 2 ) paměť RAM (32KB, b, IO 62256) vstupní port DIP spínačů výstupní port LED segmentového displeje výstupní port potvrzení hardwarového přerušení tlačítko pro generování hardwarového přerušení Výstupní port potvrzování hardwarového přerušení je na adrese 300h, výstupní port LED segmentového displeje má adresu 301h, vstupní port DIP spínačů má adresu 302h. Paměť RAM je v segmentu D000h. Adresový dekodér Jádrem adresového dekodéru je programovatelná součástka typu GAL20V8. Na její vstupy je přivedena část adresové sběrnice a několik řídicích signálů. Z přivedených signálů je možné odvodit vnitřní řídicí signály adaptérové desky a vybírat jimi jednotlivé obvody desky. Vstupní signály Výstupní signály A 0 -A 9 adresové vodiče CS SEG aktivace LED displeje A 16 -A 19 adresové vodiče CS CFG aktivace potvrzování IOR čtení ze vstupního portu CS DIP aktivace DIP spínačů IOW zápis na výstupní port CS RAM aktivace paměti MEMW zápis do paměti AEN address enable 1 ISA = Industry Standard Architecture, 16bitová sběrnice pro PC AT, navržená v roce programovatelné logické pole, EECMOS 3
4 Z důvodů omezeného počtu vstupů programovatelné součástky GAL20V8 přivedena do adresového dekodéru celá adresová sběrnice. Přivedené adresové vodiče postačují pro bezkonfliktní adresování. Periferie mapované u osobních počítačů do V/V 3 adresového prostoru využívají totiž pouze prvních deset adresových vodičů adresové sběrnice. Protože adaptérová deska obsahuje i paměť RAM, jsou na vstup adresového dekodéru přivedeny i adresové vodiče A 16 až A 19. Z řídicích signálů sběrnice ISA jsou do adresového dekodéru přivedeny signály IOR, IOW, MEMW a AEN, které jsou aktivní v úrovni L. Signály IOR a IOW odlišují čtecí a zápisový cyklus sběrnice ISA při přístupu k V/V portům na desce zápis je možný do registru ovládajícího display a do registru potvrzení přerušení, čtení je možné z registru na jehož vstupech jsou přepínače. Signál MEMW není na vstup adresového dekodéru přiveden, jak by se mohlo na první pohled zdát, k ošetření čtecích a zápisových cyklů do paměti RAM, ale pro možnost alespoň vyzkoušet mapování výstupních portů do paměťového prostoru počítače. Signál AEN je aktivní vždy, pokud jde o přístup procesoru k periferiím či paměti. Probíhá-li DMA přenos, je signál AEN neaktivní, adaptér se neaktivuje a tím není DMA narušen. Výstupní signály CS X slouží jako aktivační signály pro jednotlivé komponenty adaptérové desky. Vstupně/výstupní (V/V) porty Na adaptérové desce jsou dva výstupní a jeden vstupní port. Všechny mají šířku osm bitů. Na výstupním portu na adrese 301h jsou připojeny dva sedmisegmentové displeje LED s šestnáctkovými dekodéry. Tento port slouží jak k jednoduchému ověření funkce adresového dekodéru, tak i k demonstraci sběrnicového cyklu zápis na výstupní port. Data vložená na tento port jsou ihned zobrazena na displaji. Aby byla zapsaná hodnota zobrazena i po skončení sběrnicového cyklu, je tento port realizován osmibitovým registrem typu latch Druhý výstupní port na adrese 300h slouží jako port potvrzení (nulování) žádosti o přerušení. Krátkým nastavením nejnižšího bitu portu na hodnotu 0 se asynchronně vynuluje vzniklá žádost o přerušení. Poté se nejnižší bit portu musí nastavit opět do 1. Čtením vstupního portu na adrese 302h lze získat stav osmi přepínačů DIP. K realizaci tohoto portu použit pouze třístavový budič Paměť RAM Paměť RAM na desce má kapacitu 32KB. Jde o statickou paměť bitů (62256). Paměť lze číst i do ní zapisovat. Řídicí signály rozlišující druh sběrnicového cyklu (a tedy tok dat z nebo do paměti) jsou přivedeny přímo jako řídicí signály sběrnice ISA. Vzhledem k tomu, že adresový vodič A 15 není do adresového dekodéru zapojen, je paměť zrcadlena v obou polovinách 64KB segmentu. 3 V/V = vstupně/výstupní, v anglické literatuře input/output, I/O 4
5 Zdroj přerušení Zdrojem maskovatelného hardwarového přerušení (IRQ) je tlačítko, které je ošetřeno proti zákmitům. Požadavek na přerušení, generovaný stiskem tlačítka je uschován v klopném obvodu typu D. Sběrnice ISA reaguje na hladinu H na přerušovacím vodiči, proto je potřeba jako potvrzení obsluhy žádosti nulovat klopný obvod. K tomu je určen nejnižší bit druhého výstupního portu. Pomocí propojky na desce je možno volit různé číslo požadavku na přerušení. Na výběr je IRQ 3, 5 a 7. Omezení výběru plyne z mapy obsazení jednotlivých přerušovacích linek standardními periferiemi osobního počítače. Obvod GAL20V8 GAL20V8 je programovatelné logické pole s možností elektrického vymazání. GAL20V8 obsahuje 14 dedikovaných vstupních portů a 8 vstupně/výstupních portů pro vytváření logických funkcí. Na desce je GAL20V8 připojen následovně: pin typ pinu připojen I 0 (pin 1) vstupní A 0 adresy sběrnice ISA I 1 (pin 2) vstupní A 1 adresy sběrnice ISA I 2 (pin 3) vstupní A 2 adresy sběrnice ISA I 3 (pin 4) vstupní A 3 adresy sběrnice ISA I 4 (pin 5) vstupní A 4 adresy sběrnice ISA I 5 (pin 6) vstupní A 5 adresy sběrnice ISA I 6 (pin 7) vstupní A 6 adresy sběrnice ISA I 7 (pin 8) vstupní A 7 adresy sběrnice ISA I 8 (pin 9) vstupní A 8 adresy sběrnice ISA I 9 (pin 10) vstupní A 9 adresy sběrnice ISA I 10 (pin 11) vstupní A 10 adresy sběrnice ISA GND (pin 12) napájení GND sběrnice ISA OE/I 11 (pin 13) vstupní (invertovaný) MEMW sběrnice ISA I 12 (pin 14) vstupní IOR sběrnice ISA O 0 (pin 15) vstupně/výstupní (invertovaný) CS RAM O 1 (pin 16) vstupně/výstupní (invertovaný) CS DIP O 2 (pin 17) vstupně/výstupní (invertovaný) A 16 adresy sběrnice ISA O 3 (pin 18) vstupně/výstupní (invertovaný) CS CFG O 4 (pin 19) vstupně/výstupní (invertovaný) CS SEG O 5 (pin 20) vstupně/výstupní (invertovaný) A 17 adresy sběrnice ISA O 6 (pin 21) vstupně/výstupní (invertovaný) (A 18 AND A 19 ) ISA O 7 (pin 22) vstupně/výstupní (invertovaný) G (připojení datové sběrnice) I 13 (pin 23) vstupní IOW sběrnice ISA V CC (pin 24) napájení +5VDC sběrnice ISA 5
6 Přerušovací systém PC Na PC/AT je 15 linek hardwarového přerušení (IRQ) zapojených přes dva kaskádně spojené řadiče přerušení typu HW přerušení jsou mapována do 256ti vektorů přerušení (INT) procesorů Intel řady x86 podle následující tabulky: IRQ INT popis IRQ0 8 timer (55ms intervals, 18.2 per second) IRQ1 9 keyboard service required IRQ2 A slave 8259 or EGA/VGA vertical retrace IRQ8 70 real time clock IRQ9 71 software redirected to IRQ2 IRQ10 72 reserved IRQ11 73 reserved IRQ12 74 mouse interrupt IRQ13 75 numeric coprocessor error IRQ14 76 fixed disk controller IRQ15 77 reserved IRQ3 B COM2 or COM4 service required IRQ4 C COM1 or COM3 service required IRQ5 D fixed disk or data request from LPT2 IRQ6 E floppy disk service required IRQ7 F data request from LPT1 První (master) řadič přerušení 8259 obsluhuje IRQ0 až IRQ7, druhý (slave, u modelů AT) pak IRQ8-15. Řadiče jsou zapojeny do kaskády, slave řadič je připojen na master přes IRQ2, na ně je přesměrováno IRQ9. Každý řadič má dvě adresy v I/O prostoru. Pro řadič master je to 20h a 21h, pro slave pak A0h a A1h. Je důležité po obsloužení přerušení (nejlépe na konci obslužné rutiny) poslat na port 20h číslo 20h. Tím se dá řadiči najevo, že obsluha přerušení je u konce a může se tudíž vyvolat další. Povolení či zakázaní některé linky žádosti o přerušení se děje modifikací příslušného bitu na portu 21h. Má-li být přerušení povoleno, musí být příslušný bit nulován. Hodnoty ostatních bitů musí zůstat nezměněny! 6
7 Postup práce Pro vytvoření obsahu programovatelného pole GAL 1. nastudování zapojení vstupů a výstupů obvodu GAL dle detailního schématu 2. vytvoření PLD souboru s obsahem pole pro GAL 3. kompilace PLD v OrCADu na JED soubor 4. nahrání JED souboru do GAL přes programátor ELNEC (při vytahování čipu GAL používejte zelené kleště u programátoru) Pro ověření funkcí desky je možno vytvořit následující triviální programy 1. čítání na displeji program v cyklu zapisuje na výstupní port 301h hodnoty, které se zobrazují na displeji adaptérové desky 2. načítání stavů DIP program v cyklu načítá hodnoty z DIP přepínačů a zobrazuje je na monitoru, případně přímo na displeji adaptérové desky Pro vytvoření rezidentního programu, který bude obsluhovat hardwarové přerušení 1. úschova původního vektoru přerušení (nejlépe službou DOSu) 2. nastavení nového vektoru přerušení (nejlépe službou DOSu) 3. nulování D klopného obvodu zápisem nuly a následně jedničky na nejnižší bit výstupního portu 300h. 4. povolení přerušení v řadiči přerušení (adresa 21h) 5. povolení přerušení v procesoru (instrukce STI) 6. dále se program stane rezidentním (služba DOSu) 7. před případným odinstalováním rezidentu je třeba vrátit původní vektor přerušení Samotná obsluha hardwarového přerušení: 1. úschova ohrožených registrů, včetně segmentových, nejlépe na zásobník 2. samotná obsluha v tomto cvičném případě je dobré, aby se vyvolání obslužné rutiny nějak projevilo (pípnutí, výpis hlášení) 3. potvrzení obsluhy adapteru (krátké vynulování nejnižšího bitu na portu 300h) 4. potvrzení obsluhy přerušení řadiči přerušení 5. obnova uschovaných registrů 6. návrat z obslužné rutiny (instrukce IRET) nebo lépe předání řízení původní obslužné rutině (FAR JMP na uschovaný vektor) Použitelný software na PC Volkov commander (vc) nebo Norton commander (nc) Turbo Pascal 7 (compiler + IDE) Turbo Assembler a Tlink OrCAD (PLD) 7
Vysoké učení technické v Brně Fakulta informačních technologií ITP Technika personálních počítačů Služby ROM BIOS a BootROM
Vysoké učení technické v Brně Fakulta informačních technologií ITP Technika personálních počítačů Služby ROM BIOS a BootROM Úloha č.: 5. Zadání: 1. Seznamte se s konstrukcí cvičné zásuvné adaptérové desky
Fakulta informačních technologií, VUT v Brně Ústav počítačových systémů Personální počítače, technická péče, cvičení. Sběrnice ISA
Fakulta informačních technologií, VUT v Brně Ústav počítačových systémů Personální počítače, technická péče, cvičení Sběrnice ISA Úloha č. 7 Zadání: 1. Seznamte se s rozmístěním signálů sběrnice ISA na
Fakulta informačních technologií VUT v Brně Ústav počítačových systémů Technika personálních počítačů, cvičení ITP Služby ROM BIOS a BootRom
Fakulta informačních technologií VUT v Brně Ústav počítačových systémů Technika personálních počítačů, cvičení ITP Služby ROM BIOS a BootRom Úloha č. 4. Zadání: 1. Seznamte se s konstrukcí cvičné zásuvné
Metody připojování periferií BI-MPP Přednáška 2
Metody připojování periferií BI-MPP Přednáška 2 Ing. Miroslav Skrbek, Ph.D. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze Miroslav Skrbek 2010,2011
Obsluha periferních operací, přerušení a jeho obsluha, vybavení systémových sběrnic
Obsluha periferních operací, přerušení a jeho obsluha, vybavení systémových sběrnic 1 Cíl přednášky Zabývat se principy využití principů přerušení. Popsat, jak se tyto principy odrazily v konstrukci systémových
Akademický rok: 2004/05 Datum: Příjmení: Křestní jméno: Osobní číslo: Obor:
Západočeská univerzita v Plzni Písemná zkouška z předmětu: Zkoušející: Katedra informatiky a výpočetní techniky Počítačová technika KIV/POT Dr. Ing. Karel Dudáček Akademický rok: 2004/05 Datum: Příjmení:
Principy komunikace s adaptéry periferních zařízení (PZ)
Principy komunikace s adaptéry periferních zařízení (PZ) Několik možností kategorizace principů komunikace s externími adaptéry, např.: 1. Podle způsobu adresace registrů, které jsou součástí adaptérů.
frekvence 8 Mhz, přestože spolupracuje s procesori různe rychlými. 16 bitová ISA sběrnice je
České vysoké učení technické Fakulta elektrotechnická, katedra počítačů Karlovo náměstí 13, 121 35 Praha 2 Měrení na sběrnici ISA Referát z předmětu Periférní zařízení autor: Perd och Michal, Ptáček Milan,
PCKIT LPT MODUL SBĚRNICE IOBUS PRO PC LPT. Příručka uživatele. Střešovická 49, Praha 6, s o f c o s o f c o n.
PCKIT LPT MODUL SBĚRNICE IOBUS PRO PC LPT Příručka uživatele Střešovická 49, 162 00 Praha 6, e-mail: s o f c o n @ s o f c o n. c z tel./fax : (02) 20 61 03 48 / (02) 20 18 04 54, http :// w w w. s o f
Periferní operace využívající přímý přístup do paměti
Periferní operace využívající přímý přístup do paměti Základní pojmy Programová obsluha periferní operace řízení této činnosti procesorem. Periferní operace využívající přerušení řízení řadičem přerušení,
Periferní operace využívající přerušení
Periferní operace využívající přerušení Základní pojmy proč přerušení? PZ jsou ve velké většině případů elektromechanická zařízení. Mechanická část - vlastní realizace periferní operace (provádí se asynchronně
Periferní operace využívající přerušení
Periferní operace využívající přerušení Základní pojmy proč přerušení? PZ jsou ve velké většině případů elektromechanická zařízení. Mechanická část - vlastní realizace periferní operace (provádí se asynchronně
Periferní operace využívající přerušení
Periferní operace využívající přerušení Základní pojmy proč přerušení? PZ jsou ve velké většině případů elektromechanická zařízení. Mechanická část - vlastní realizace periferní operace (provádí se asynchronně
Komunikace procesoru s okolím
Komunikace procesoru s okolím Obvody umožňující komunikaci procesoru s okolím, zahrnujeme do tzv. podpůrných obvodů, které jsou součástí čipové sady základní desky. Ke komunikaci s okolím procesor používá
Sběrnicová architektura POT POT. Jednotlivé subsystémy počítače jsou propojeny sběrnicí, po které se přenáší data oběma směry.
Systémov mová sběrnice 1 Sběrnicová architektura Jednotlivé subsystémy počítače jsou propojeny sběrnicí, po které se přenáší data oběma směry. Single master jeden procesor na sběrnici, Multi master více
Mikrokontroléry. Doplňující text pro POS K. D. 2001
Mikrokontroléry Doplňující text pro POS K. D. 2001 Úvod Mikrokontroléry, jinak též označované jako jednočipové mikropočítače, obsahují v jediném pouzdře všechny podstatné části mikropočítače: Řadič a aritmetickou
Profilová část maturitní zkoušky 2014/2015
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2014/2015 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: technika
Metody připojování periferií
Metody připojování periferií BI-MPP Přednáška 3 Ing. Miroslav Skrbek, Ph.D. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze Miroslav Skrbek 2010,2011
Základní principy konstrukce systémové sběrnice - shrnutí. Shrnout základní principy konstrukce a fungování systémových sběrnic.
Základní principy konstrukce systémové sběrnice - shrnutí Shrnout základní principy konstrukce a fungování systémových sběrnic. 1 Co je to systémová sběrnice? Systémová sběrnice je prostředek sloužící
Přerušovací systém s prioritním řetězem
Přerušovací systém s prioritním řetězem Doplňující text pro přednášky z POT Úvod Přerušovací systém mikropočítače může být koncipován několika způsoby. Jednou z možností je přerušovací systém s prioritním
Přednášející: Zdeněk Kotásek. Ústav počítačových systémů, místnost č. 25
PERIFERNÍ ZAŘÍZENÍ Přednášející: Zdeněk Kotásek Ústav počítačových systémů, místnost č. 25 1 Periferní operace základní principy Na periferní operaci se podílejí: počítač systémová sběrnice adaptér V/V
Strojový kód. Instrukce počítače
Strojový kód Strojový kód (Machine code) je program vyjádřený v počítači jako posloupnost instrukcí procesoru (posloupnost bajtů, resp. bitů). Z hlediska uživatele je strojový kód nesrozumitelný, z hlediska
Řízení IO přenosů DMA řadičem
Řízení IO přenosů DMA řadičem Doplňující text pro POT K. D. 2001 DMA řadič Při přímém řízení IO operací procesorem i při použití přerušovacího systému je rychlost přenosu dat mezi IO řadičem a pamětí limitována
Adapter ROM BIOS. Fakulta informačních technologií VUT v Brně Ústav informatiky a výpočetní techniky. Personální počítače, technická péče cvičení
Fakulta informačních technologií VUT v Brně Ústav informatiky a výpočetní techniky 10 Personální počítače, technická péče cvičení Adapter ROM BIOS Zadání 1. Seznamte se s konstrukcí cvičné zásuvné adaptérové
požadovan adované velikosti a vlastností Interpretace adresy POT POT
požadovan adované velikosti a vlastností K.D. - přednášky 1 Interpretace adresy Ve kterémkoliv místě lze adresu rozdělit na číslo bloku a offset uvnitř bloku. Velikost bloku je dána délkou příslušné části
Pokročilé architektury počítačů
Pokročilé architektury počítačů Architektura IO podsystému České vysoké učení technické, Fakulta elektrotechnická A4M36PAP Pokročílé architektury počítačů Ver.1.00 2010 1 Co je úkolem? Propojit jednotlivé
Přerušovací systém 12.přednáška
Přerušovací systém 12.přednáška Přerušovací systém Pomocí přerušení procesor reaguje na asynchronní události. Přerušení znamená přechod na vykonávání obsluhy přerušení (součást OS). Po vykonání ošetření
Obvody a architektura počítačů. Jednoprocesorové počítače
Obvody a architektura počítačů Jednoprocesorové počítače Josef Voltr, 2013 Modulární sestava počítače s jedním procesorem Postup činnosti počítače 1. procesor vyšle adresu pamětové buňky 2. paměť vyšle
Koncepce DMA POT POT. Při vstupu nebo výstupu dat se opakují jednoduché činnosti. Jednotlivé kroky lze realizovat pomocí speciálního HW.
p 1 Koncepce DMA Při vstupu nebo výstupu dat se opakují jednoduché činnosti. Jednotlivé kroky lze realizovat pomocí speciálního HW. Čekání na připravenost V/V Přenos paměť V/V nebo V/V paměť Posun pointeru
SEKVENČNÍ LOGICKÉ OBVODY
Sekvenční logický obvod je elektronický obvod složený z logických členů. Sekvenční obvod se skládá ze dvou částí kombinační a paměťové. Abychom mohli určit hodnotu výstupní proměnné, je potřeba u sekvenčních
Semestrální práce z předmětu Speciální číslicové systémy X31SCS
Semestrální práce z předmětu Speciální číslicové systémy X31SCS Katedra obvodů DSP16411 ZPRACOVAL: Roman Holubec Školní rok: 2006/2007 Úvod DSP16411 patří do rodiny DSP16411 rozšiřuje DSP16410 o vyšší
Systém řízení sběrnice
Systém řízení sběrnice Sběrnice je komunikační cesta, která spojuje dvě či více zařízení. V určitý okamžik je možné aby pouze jedno z připojených zařízení vložilo na sběrnici data. Vložená data pak mohou
Přednáška. Vstup/Výstup. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012
Přednáška Vstup/Výstup. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Příprava studijního programu Informatika je podporována projektem financovaným z Evropského
PROGRAMOVATELNÉ LOGICKÉ OBVODY
PROGRAMOVATELNÉ LOGICKÉ OBVODY (PROGRAMMABLE LOGIC DEVICE PLD) Programovatelné logické obvody jsou číslicové obvody, jejichž logická funkce může být programována uživatelem. Výhody: snížení počtu integrovaných
Registrový model HDD
Registrový model HDD Charakteristika Pevný disk IDE v sestavě personálního počítače sestává z disku a jeho řadiče tyto dvě komponenty tvoří jeden mechanický celek. Procesor komunikuje s řadičem přes registry
TECHNICKÝ POPIS MODULU GRAFIK =============================
listů: 8 list : 1 TECHNICKÝ POPIS MODULU GRAFIK ============================= zpracoval: Nevoral schválil: Cajthaml ZPA, k.p. Nový Bor, listopad 1985 4-151-00342-4 list: 1 list: 2 1. VŠEOBECNĚ Obvody realizované
Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC
Informatika 2 Technické prostředky počítačové techniky - 2 Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Spojení: e-mail: jan.skrbek@tul.cz 16 10 17 45 tel.: 48 535 2442 Obsah:
Struktura a architektura počítačů (BI-SAP) 10
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 10 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC
Informační systémy 2 Obsah: Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC ROM RAM Paměti typu CACHE IS2-4 1 Dnešní info: Informační systémy 2 03 Informační systémy
Profilová část maturitní zkoušky 2015/2016
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: technika
Základy informatiky. 2. Přednáška HW. Lenka Carr Motyčková. February 22, 2011 Základy informatiky 2
Základy informatiky 2. Přednáška HW Lenka Carr Motyčková February 22, 2011 Základy informatiky 1 February 22, 2011 Základy informatiky 2 February 22, 2011 Základy informatiky 3 February 22, 2011 Základy
Program "Světla" pro mikropočítač PMI-80
Program "Světla" pro mikropočítač PMI-80 Dokument věnovaný mikropočítači PMI-80, jeho programování a praktickým ukázkám. Verze dokumentu:. Autor: Blackhead Datum: rok 1997, 4.3.004 1 Úvod Tento program
Pohled do nitra mikroprocesoru Josef Horálek
Pohled do nitra mikroprocesoru Josef Horálek Z čeho vycházíme = Vycházíme z Von Neumannovy architektury = Celý počítač se tak skládá z pěti koncepčních bloků: = Operační paměť = Programový řadič = Aritmeticko-logická
Paměťový podsystém počítače
Paměťový podsystém počítače typy pamětových systémů počítače virtuální paměť stránkování segmentace rychlá vyrovnávací paměť 30.1.2013 O. Novák: CIE6 1 Organizace paměťového systému počítače Paměťová hierarchie...
Činnost CPU. IMTEE Přednáška č. 2. Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus
Činnost CPU Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus Hodinový cyklus CPU je synchronní obvod nutné hodiny (f CLK ) Instrukční cyklus IF = doba potřebná
Návod k obsluze výukové desky CPLD
Návod k obsluze výukové desky CPLD FEKT Brno 2008 Obsah 1 Úvod... 3 2 Popis desky... 4 2.1 Hodinový signál... 5 2.2 7- Segmentový displej... 5 2.3 LED zobrazení... 6 2.4 Přepínače... 6 2.5 PORT 1 - Externí
... sekvenční výstupy. Obr. 1: Obecné schéma stavového automatu
Předmět Ústav Úloha č. 10 BDIO - Digitální obvody Ústav mikroelektroniky Komplexní příklad - návrh řídicí logiky pro jednoduchý nápojový automat, kombinační + sekvenční logika (stavové automaty) Student
Přednášející: Zdeněk Kotásek. Ústav počítačových systémů, místnost č. L322
PERIFERNÍ ZAŘÍZENÍ Přednášející: Zdeněk Kotásek Ústav počítačových systémů, místnost č. L322 1 Charakteristika předmětu Předmět zaměřený na principy řízení periferních operací, sběrnice systémové, sběrnice
Praktické úlohy- 2.oblast zaměření
Praktické úlohy- 2.oblast zaměření Realizace praktických úloh zaměřených na dovednosti v oblastech: Měření specializovanými přístroji, jejich obsluha a parametrizace; Diagnostika a specifikace závad, měření
Použití programovatelného čítače 8253
Použití programovatelného čítače 8253 Zadání 1) Připojte obvod programovatelný čítač- časovač 8253 k mikropočítači 89C52. Pro čtení bude obvod mapován do prostoru vnější programové (CODE) i datové (XDATA)
Přednáška A3B38MMP. Bloky mikropočítače vestavné aplikace, dohlížecí obvody. 2015, kat. měření, ČVUT - FEL, Praha J. Fischer
Přednáška A3B38MMP Bloky mikropočítače vestavné aplikace, dohlížecí obvody 2015, kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2015, J.Fischer, kat. měření, ČVUT - FEL Praha 1 Hlavní bloky procesoru
Rozšiřující desce s dalšími paralelními porty Rozšiřující desce s motorkem Elektrickém zapojení Principu činnosti Způsobu programování
8. Rozšiřující deska Evb_IO a Evb_Motor Čas ke studiu: 2-3 hodiny Cíl Po prostudování tohoto odstavce budete něco vědět o Výklad Rozšiřující desce s dalšími paralelními porty Rozšiřující desce s motorkem
Metody připojování periferií BI-MPP Přednáška 1
Metody připojování periferií BI-MPP Přednáška 1 Ing. Miroslav Skrbek, Ph.D. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze Miroslav Skrbek 2010,2011
SuperCom. Stavebnice PROMOS Line 2. Technický manuál
ELSACO, Jaselská 77 28000 KOLÍN, CZ tel/fax +420-32-727753 http://www.elsaco.cz mail: elsaco@elsaco.cz Stavebnice PROMOS Line 2 SuperCom Technický manuál 2. 04. 2005 2005 sdružení ELSACO Účelová publikace
Struktura a architektura počítačů (BI-SAP) 9
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 9 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
Přerušení POT POT. Přerušovací systém. Přerušovací systém. skok do obslužného programu. vykonávaný program. asynchronní událost. obslužný.
1 Přerušení Při výskytu určité události procesor přeruší vykonávání hlavního programu a začne vykonávat obslužnou proceduru pro danou událost. Po dokončení obslužné procedury pokračuje výpočet hlavního
KONSTRUKCE SBĚRNICE PCI
KONSTRUKCE SBĚRNICE PCI 1 Obsah přednášky Pozice systémové sběrnice ve výpočetním systému (opakování). Výčet funkcí systémové sběrnice. Výčet funkcí sběrnice PCI, rozdělení signálů. Role signálů sběrnice
Metody připojování periferií
Metody připojování periferií BI-MPP Přednáška 8 Ing. Miroslav Skrbek, Ph.D. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze Miroslav Skrbek 2010,2011
MSP 430F1611. Jiří Kašpar. Charakteristika
MSP 430F1611 Charakteristika Mikroprocesor MSP430F1611 je 16 bitový, RISC struktura s von-neumannovou architekturou. Na mikroprocesor má neuvěřitelně velkou RAM paměť 10KB, 48KB + 256B FLASH paměť. Takže
O čem bude předmět X36PZ A?
O čem bude předmět X36PZ A? Úvodní přednáška 1. část 1 Obsah přednášky Obsah předmětu. V/V vs. periferní zařízení, vyjasnění pojmů. V její 2. části: Terminologie interfejsingu, programování V/V. Základní
Uživatelská příručka
Rele Control Elektronické ovládání výstupů Uživatelská příručka ver. 1.36 (09/02/2006) revize 07.10.2006 HW PROGRESS Milan Jaroš OBSAH: 1 Seznámení... 3 1.1 Určení... 3 1.2 Základní údaje... 3 1.3 Složení
Přednášející: Zdeněk Kotásek. Ústav počítačových systémů, místnost č. L336
PERIFERNÍ ZAŘÍZENÍ Přednášející: Zdeněk Kotásek Ústav počítačových systémů, místnost č. L336 1 Charakteristika předmětu Předmět zaměřený na principy řízení periferních operací, sběrnice systémové, sběrnice
FPGA + mikroprocesorové jádro:
Úvod: V tomto dokumentu je stručný popis programovatelných obvodů od firmy ALTERA www.altera.com, které umožňují realizovat číslicové systémy s procesorem v jenom programovatelném integrovaném obvodu (SOPC
Návrh konstrukce odchovny 2. dil
1 Portál pre odborné publikovanie ISSN 1338-0087 Návrh konstrukce odchovny 2. dil Pikner Michal Elektrotechnika 19.01.2011 V minulem dile jsme si popsali návrh konstrukce odchovny. senzamili jsme se s
Manuál přípravku FPGA University Board (FUB)
Manuál přípravku FPGA University Board (FUB) Rozmístění prvků na přípravku Obr. 1: Rozmístění prvků na přípravku Na obrázku (Obr. 1) je osazený přípravek s FPGA obvodem Altera Cyclone III EP3C5E144C8 a
Logická organizace paměti Josef Horálek
Logická organizace paměti Josef Horálek Logická organizace paměti = Paměť využívají = uživatelské aplikace = operační systém = bios HW zařízení = uloženy adresy I/O zařízení atd. = Logická organizace paměti
Vstupně - výstupní moduly
Vstupně - výstupní moduly Přídavná zařízení sloužící ke vstupu a výstupu dat bo k uchovávání a archivaci dat Nejsou připojována ke sběrnici přímo, ale prostřednictvím vstupně-výstupních modulů ( ů ). Hlavní
Obecné principy konstrukce systémové sběrnice
Obecné principy konstrukce systémové sběrnice 1 Osnova přednášky Výčet funkcí systémové sběrnice implementace těchto funkcí ve sběrnici PCI. Cílem této prezentace je poskytnout studentům výčet funkcí systémové
Návrh ovládání zdroje ATX
Návrh ovládání zdroje ATX Zapínání a vypínání PC zdroj ATX se zapíná spojením řídicího signálu \PS_ON se zemí zapnutí PC stiskem tlačítka POWER vypnutí PC (hardwarové) stiskem tlačítka POWER a jeho podržením
Přednášející: Zdeněk Kotásek. Ústav počítačových systémů, místnost č. L322
PERIFERNÍ ZAŘÍZENÍ Přednášející: Zdeněk Kotásek Ústav počítačových systémů, místnost č. L322 1 Charakteristika předmětu Předmět zaměřený na principy řízení periferních operací, sběrnice systémové, sběrnice
3. Počítačové systémy
3. Počítačové systémy 3.1. Spolupráce s počítačem a řešení úloh 1. přímý přístup uživatele - neekonomické. Interakce při odlaďování programů (spusť., zastav.,krok, diagnostika) 2. dávkové zpracování (batch
Dekódování adres a návrh paměťového systému
Dekódování adres a návrh paměťového systému K.D. 2004 Tento text je určen k doplnění přednášek z předmětu POT. Je zaměřen jen na některé body probírané na přednáškách bez snahy o úplné vysvětlení celé
ŘÍDÍCÍ DESKA SYSTÉMU ZAT-DV
ŘÍDÍCÍ DESKA SYSTÉMU ZAT-DV DV300 ZÁKLADNÍ CHARAKTERISTIKA Procesor PowerQUICC II MPC8270 (jádro PowerPC 603E s integrovanými moduly FPU, CPM, PCI a paměťového řadiče) na frekvenci 266MHz 6kB datové cache,
G R A F I C K É K A R T Y
G R A F I C K É K A R T Y Grafická karta nebo také videoadaptér je součást počítače, která se stará o grafický výstup na monitor, TV obrazovku či jinou zobrazovací jednotku. Režimy grafických karet TEXTOVÝ
Počítač jako prostředek řízení. Struktura a organizace počítače
Řídicí počítače - pro řízení technologických procesů. Specielní přídavná zařízení - I/O, přerušovací systém, reálný čas, Č/A a A/Č převodníky a j. s obsluhou - operátorské periferie bez obsluhy - operátorský
Jednočipové mikropočítače (mikrokontroléry)
Počítačové systémy Jednočipové mikropočítače (mikrokontroléry) Miroslav Flídr Počítačové systémy LS 2006-1/17- Západočeská univerzita v Plzni Co je mikrokontrolér integrovaný obvod, který je často součástí
Způsoby realizace této funkce:
KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je výstup určen jen výhradně kombinací vstupních veličin. Hodnoty výstupních veličin nezávisejí na předcházejícím stavu logického obvodu, což znamená, že kombinační
Technické prostředky počítačové techniky
Počítač - stroj, který podle předem připravených instrukcí zpracovává data Základní části: centrální procesorová jednotka (schopná řídit se posloupností instrukcí a ovládat další části počítače) zařízení
3. Principy komunikace s perifériemi: V/V brány, programové řízení, přerušení, řešení priorit. Řadiče, DMA kanály. Popis činnosti DMA kanálu.
3. Principy komunikace s perifériemi: V/V brány, programové řízení, přerušení, řešení priorit. Řadiče, DMA kanály. Popis činnosti DMA kanálu. Obsah 3. Principy komunikace s perifériemi: V/V brány, programové
Základní uspořádání pamětí MCU
Základní uspořádání pamětí MCU Harwardská architektura. Oddělený adresní prostor kódové a datové. Používané u malých MCU a signálových procesorů. Von Neumannova architektura (Princetonská). Kódová i jsou
Maticová klávesnice. Projekt do předmětu Subsystémy PC. Brno, 2002-2003. Tomáš Kreuzwieser, Ondřej Kožín
Maticová klávesnice Projekt do předmětu Subsystémy PC Brno, 2002-2003 Tomáš Kreuzwieser, Ondřej Kožín Obsah Úvod............................................ 1 1. Hardware........................................
IMTEE Přednáška č. 8. interrupt vector table CPU při vzniku přerušení skáče na pevně dané místo v paměti (obvykle začátek CODE seg.
Přerušení Důvod obsluha asynchronních událostí (CPU mnohem rychlejší než pomalé periferie má klávesnice nějaké znaky? ) Zdroje přerušení interrupt source o HW periferie (UART, Disk, časovače apod.) o SW
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta informačních technologií
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta informačních technologií Autor: Tomáš Válek, xvalek02@stud.fit.vutbr.cz Login: xvalek02 Datum: 21.listopadu 2012 Obsah 1 Úvod do rozhraní I 2 C (IIC) 1 2 Popis funkčnosti
Vestavné systémy BI-VES Přednáška 5
Vestavné systémy BI-VES Přednáška 5 Ing. Miroslav Skrbek, Ph.D. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze Miroslav Skrbek 2010,2011 ZS2010/11 Evropský
Administrace počítačových sítí. WEB a LPT
Administrace počítačových sítí WEB a LPT Ovládání výstupů z počítače, například několika LED připojených na paralelní port, pomocí webové stránky s metodou GET Jaroslav Bušek 2010 1/15 Výběr komponent
Struktura a architektura počítačů (BI-SAP) 7
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 7 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
INFORMAČNÍ A KOMUNIKAČNÍ TECHNOLOGIE
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Ing. Hana Šmídová Název materiálu: VY_32_INOVACE_12_HARDWARE_S1 Číslo projektu: CZ 1.07/1.5.00/34.1077
FREESCALE TECHNOLOGY APPLICATION
FREESCALE TECHNOLOGY APPLICATION 2013-2014 3D LED Cube Jméno: Libor Odstrčil Ročník: 4. Obor: IT Univerzita Tomáše Bati ve Zlíně, Fakulta aplikované informatiky 2 1 Konstrukce Obr. 1.: Výsledná LED kostka.
Procesor z pohledu programátora
Procesor z pohledu programátora Terminologie Procesor (CPU) = řadič + ALU. Mikroprocesor = procesor vyrobený monolitickou technologií na čipu. Mikropočítač = počítač postavený na bázi mikroprocesoru. Mikrokontrolér
Dělení pamětí Volatilní paměti Nevolatilní paměti. Miroslav Flídr Počítačové systémy LS /11- Západočeská univerzita v Plzni
ělení pamětí Volatilní paměti Nevolatilní paměti Počítačové systémy Vnitřní paměti Miroslav Flídr Počítačové systémy LS 2006-1/11- Západočeská univerzita v Plzni ělení pamětí Volatilní paměti Nevolatilní
Programování PICAXE18M2 v Assembleru
Nastavení programming editoru PICAXE PROGRAMMING EDITOR 6 Programování PICAXE18M2 v Assembleru Nastavit PICAXE Type PICAXE 18M2(WJEC-ASSEMBLER, stejně tak nastavit Simulation Pokud tam není, otevřeme přes
Zadání semestrálního projektu PAM
P ř evaděč RS485 Navrhněte s procesorem AT89C2051 převaděč komunikační sběrnice RS485 s automatickým obracením směru převodníku po přenosu bytu. Převaděč vybavte manuálním nastavením přenosové rychlosti
Přednášky o výpočetní technice. Hardware teoreticky. Adam Dominec 2010
Přednášky o výpočetní technice Hardware teoreticky Adam Dominec 2010 Rozvržení Historie Procesor Paměť Základní deska přednášky o výpočetní technice Počítací stroje Mechanické počítačky se rozvíjely už
UniPi 1.1 Lite Technologická dokumentace
UniPi 1.1 Lite Technologická dokumentace Obsah 1 Úvodní představení produktu... 3 2 Popis produktu... 4 2.1 Využití GPIO pinů... 5 2.2 GPIO konektor... 5 2.3 Napájení... 6 2.4 Montáž Raspberry Pi k UniPi
D/A převodník a generování zvuku
Fakulta informačních technologií VUT v Brně Ústav počítačových systémů Personální počítače, technická péče, cvičení D/A převodník a generování zvuku úloha č. 8. Zadání:. Na paralelní port je připojen D/A
Jak studovat systémovou sběrnici
Jak studovat systémovou sběrnici 1 Osnova přednášky Pozice systémové sběrnice ve výpočetním systému (opakování). Výčet funkcí systémové sběrnice. Výčet funkcí sběrnice PCI, rozdělení signálů. Role signálů
Systém adresace paměti
Systém adresace paměti Základní pojmy Adresa fyzická - adresa, která je přenesena na adresní sběrnici a fyzicky adresuje hlavní paměť logická - adresa, kterou má k dispozici proces k adresaci přiděleného
Jak do počítače. aneb. Co je vlastně uvnitř
Jak do počítače aneb Co je vlastně uvnitř Po odkrytí svrchních desek uvidíme... Von Neumannovo schéma Řadič ALU Vstupně/výstupní zař. Operační paměť Počítač je zařízení, které vstupní údaje transformuje
Cíl přednášky: Obsah přednášky:
Cíl přednášky: Vysvětlit principy konstrukce a principy činnosti sběrnice PCI, dát je do relace s obecnými principy konstrukce systémových sběrnic. Upozornit na odlišnosti konstrukce sběrnice PCI od předcházejících