TECHNICKÉ INFORMACE VYSVĚTLIVKY K ODBORNÝM VÝRAZŮM 1 (2)

Rozměr: px
Začít zobrazení ze stránky:

Download "TECHNICKÉ INFORMACE VYSVĚTLIVKY K ODBORNÝM VÝRAZŮM 1 (2)"

Transkript

1 VYSVĚTLIVKY K ODBORNÝM VÝRAZŮM 1 (2) VYSVĚTLIVKY K ODBORNÝM VÝRAZŮM 1. Pálené cihly Pálené cihly jsou nejstarším stavebním materiálem, jež si člověk vyrábí sám. Cihelné zdivo je přírodní materiál, který velmi dobře izoluje i akumuluje teplo a bezproblémově zvládá kolísání vlhkosti vzduchu. Tyto faktory příznivě ovlivňují klima v interiéru objektu, čímž je dán základ pro zdravé bydlení. A tak charakteristické a léty prověřené kvality cihel řadí tyto výrobky neustále mezi nejlepší stavební materiály na trhu. Barva cihly Různé zabarvení cihel po výpalu je způsobeno odlišným obsahem oxidů železa ve výchozí surovině, tj. cihlářské hlíně. Pálené cihly vyráběné ze sprašových hlín (Cihelna Dolní Bukovsko) mají vzhledem k většímu obsahu oxidů železa barvu červenější. Naopak pálené cihly vyráběné z mořských sedimentů (Cihelna Hevlín a Cihelna Libochovice) mají díky menšímu obsahu těchto oxidů barvu světlou, pouze mírně načervenalou. Toto zabarvení cihel má pouze vizuální význam a nemá vliv na technické parametry výrobku. Výrobky firmy cihlářský průmysl v. o. s. Pálené cihly firmy cihlářský průmysl v. o. s. prodávané pod obchodním názvem se vyrábějí podle ČSN EN a současně odpovídají ČSN Cihlářské výrobky: Společná ustanovení. Cihelné děrované zazubené bloky určené pro obvodové zdivo se vyrábí s objemovou hmotností kg/m 3. Tím je docíleno vysokého tepelného odporu zdiva a to k hodnotám R až 6,0 m 2 K/W (u součinitele tepelné vodivosti U až 0,16 W/m 2 K). Cihelné bloky dosahují i při vysokém vylehčení pevnost v tlaku 6 15 MPa. Pro vnitřní nosné zdivo, u něhož není rozhodující tepelný odpor, ale naopak vyšší pevnost, se vyrábějí cihelné bloky s objemovou hmotností kg/m 3, které mají díky vyšší hmotnosti zvýšený zvukový útlum. Tloušťka spár Tloušťka spár je určena výrobním a modulovým rozměrem cihel. Vzhledem k rozměrovému modulu výšky 250 mm a výšce cihly 238 mm vychází průměrná tloušťka spáry 12 mm. Tato tloušťka plně postačuje k vyrovnání výrobních tolerancí cihel. Maltové spáry nesmějí být příliš tenké ani příliš silné. Vysoké a nerovnoměrně silné maltové lože, zvláště při použití malt o nižších pevnostech, by snižovalo celkovou pevnost zdiva. V důsledku rozdílných deformačních sil a různě silného maltového lože mohou vznikat místa se zvýšeným pnutím. Zdicí se proto zpravidla nanáší v celé ploše ložné spáry. Při použití broušených cihelných tvarovek (, PLUS, STI, FAMILY, THERMO STI) je maltová spára jen 1 mm. Aby byl dodržen modulový rozměr, je jejich výška 249 mm. Používají se speciální malty pro zdění na tenkou spáru (bez překrytí dutin) nebo s celoplošným překrytím dutin.. Další možnou variantou je použití pěny. Tato se nanáší v jednom pruhu (u tloušťky stěny 14 cm a menší) nebo ve dvou pruzích (u tloušťky stěny větší než 14 cm). U pálených cihel je použit systém pero a drážka pro styk svislých spár. Tyto cihly se k sobě kladou na sraz bez použití malty. Systém pero a drážka u cihel má příznivý vliv na zvýšení tepelného odporu zdiva o 5 8 %, úsporu malty a snížení pracnosti o %. Při maltování je nutné dbát na to, aby zbytečně nezatékala do vylehčujících otvorů cihel, neboť by tím docházelo ke snižování tepelněizolačních vlastností hotového zdiva. Z tohoto důvodu se při betonáži stropů doporučuje pod betonovou vrstvu položit asfaltový pás na zdivo. Vazba cihel při vyzdívání Pro zajištění dostatečné vazby zdiva se jednotlivé cihly převazují o minimální délku h = 0,4 násobek výšky cihel. To znamená, že cihly s výškou 238 mm se musí převazovat minimálně o 95 mm, při výšce cihel 249 mm minimálně o 100 mm. Tepelněizolační Tepelněizolační malty se používají pro snížení tepelných ztrát u obvodového zdiva. Při jejich použití se tyto ztráty snižují až o % oproti použití klasické vápenocementové malty. Tepelněizolační malty obsahují proti běžným maltám lehká plniva, např. polystyrén, perlit apod., čímž zlepšují tepelněizolační vlastnosti. Firma cihlářský průmysl v. o. s. nabízí maltu TM. Její pevnost je 5 MPa při hodnotě součinitele tepelné vodivosti λ < 0,21 W/mK. Ekonomická návratnost při použití tepelněizolační malty oproti obyčejné maltě činí 4 6 let. Tepelněizolační malty se dodávají v suchém stavu v pytlích nebo volně ložené v zásobních silech. Maltová směs je již namíchaná, před použitím se pouze doplní záměsová voda. 2. Mechanické vlastnosti cihel Objemová hmotnost cihel Objemová hmotnost cihly je její hmotnost vztažená k objemu vysušené cihly. Objem cihly je dán vnějšími rozměry včetně dutin. Objemová hmotnost cihel má výrazný vliv na tepelný odpor konečného zdiva. Cihelné bloky pro venkovní zdivo se vyrábějí s objemovou hmotností kg/m 3. Pevnost v tlaku Pevnost v tlaku se udává v MPa. Určuje, jak je možno celoplošně zatížit cihlu zatížením na mezi pevnosti cihly. Postup zkoušky a její provádění stanovuje ČSN EN Mrazuvzdornost Z hlediska odolnosti proti mrazu (OPM) se cihlářské výrobky dělí na nemrazuvzdorné (bez označení) a mrazuvzdorné např. M 25, M 50, kde číslo udává počet mrazuvzdorných cyklů v souladu s PNG Čím vyšší číslo, tím vyšší mrazuvzdornost. Nemrazuvzdorné výrobky tzn. ty, které nejsou deklarované jako mrazuvzdorné, je nutné podle ČSN EN a PNG chránit před povětrnostními vlivy (zatékání vody, déšť, sníh), a to jak vlastní výrobky na skladě, tak i prováděné nebo hotové zdivo. 3. Cihelné zdivo Nosná stěna Nosná stěna z cihelných bloků je určena pro přenášení hlavně svislého zatížení, vlastní tíhy a vodorovného zatížení. Nenosná stěna Nenosná stěna není určena pro přenášení zatížení (zatížena především vlastní hmotností, neslouží k vyztužení stavby), a proto může být odstraněna bez snížení stability stavby. Jedná se o dělící příčky, výplňové zdivo u železobetonových konstrukcí apod. Ztužující stěna Ztužující stěna je situovaná kolmo na nosnou stěnu, čímž jí vytváří oporu proti vybočení. Používá se pro zvýšení stability stavby. Ztužení v úrovni stropních konstrukcí Všechny vnější i vnitřní stěny je nutno v úrovni stropu každého podlaží vyztužit tak, aby tato výztuž byla spojena s výztuží protilehlých obvodových železobetonových věnců (ČSN ). Jednovrstvá stěna Jednovrstvá stěna je stěna bez vnitřní dělící dutiny nebo bez svislé spáry ve své rovině. Za jednovrstvé zdivo se považuje např. stěna o tloušťce 440 mm vyzděná z cihelných bloků 44. Vrstvená (dutinová) stěna Vrstvená stěna se skládá ze dvou souběžných jednovrstvých stěn vzájemně spojených nerez sponami s tím, že jedna stěna (případně obě) je zatížena svislými silami. Dutý prostor mezi oběma jednovrstvými stěnami je buď ponechán jako vzduchová mezera, a nebo může být pro zvýšení tepelné izolace vyplněn tepelněizolačním materiálem (polystyrén, minerální vlna apod.) / Strana 8

2 VYSVĚTLIVKY K ODBORNÝM VÝRAZŮM 2 (2) Dvouvrstvá stěna Dvouvrstvá stěna se skládá ze dvou rovnoběžných zděných vrstev, mezi kterými je souvislá průběžná spára vyplněná maltou. Tloušťka spáry je max. 25 mm. Obě vrstvy se musí stabilně připojit stěnovými sponami, které zabezpečují jejich úplné spolupůsobení. 4. Tepelnětechnické vlastnosti cihel Setrvačnost teploty Setrvačnost teploty popisuje vlastnosti stavební konstrukce ve vztahu ke změnám teplot. Dobrá setrvačnost teploty je zvláště důležitá u obvodového zdiva budovy. Vnitřní prostor budovy je tím lepší pro bydlení, čím obvodové stěny v zimě déle chladnou a v létě se déle zahřívají. Vysoký tepelný odpor zdiva a jeho schopnost akumulovat teplo jsou důležitými předpoklady pro vyšší setrvačnost teploty a tím i pro příjemné bydlení. Akumulace tepla Akumulace tepla je velmi důležitá v prostorách, ve kterých není možno udržovat stálým vytápěním konstantní teplotu. U obvodových stěn s nízkou akumulací tepla dochází při přerušení vytápění k velmi rychlému poklesu teploty povrchu stěn na vnitřní straně obytných prostor. Obvodové zdivo z pálených cihel vykazuje při vysokém tepelném odporu zároveň vysokou schopnost tepelné akumulace. Součinitel tepelné vodivosti Každý materiál vede teplo. Tuto vlastnost u stejnorodých materiálů popisuje součinitel tepelné vodivosti λ (W/mK). Hodnota součinitele udává jaké množství tepla projde vrstvou materiálu o ploše 1m 2 a tloušťce 1m při konstantním teplotním rozdílu 1 K mezi oběma povrchy této vrstvy. Protože cihelné zdivo z pálených cihel je nestejnorodou vrstvou materiálů, je nutno použít k popisu vedení tepla takovéto konstrukce ekvivalentního součinitele tepelné vodivosti λ ev, který zahrnuje vedení tepla všemi složkami konstrukce. Tepelný odpor materiálu R mat Vyjadřuje tepelněizolační vlastnosti materiálu. R mat = d/λ mat, kde d je tloušťka vrstvy materiálu a λ mat je součinitel tepelné vodivosti tohoto materiálu. Tepelný odpor konstrukce R Vyjadřuje tepelněizolační vlastnosti konstrukce. R = Σ R mat Odpor konstrukce při prostupu tepla R T Vyjadřuje úhrnný tepelný odpor, bránící výměně tepla mezi prostředími (v zimním období) oddělenými od sebe stavební konstrukcí o tepelném odporu R. R T = R i + R + R e Pozn.: R i = odpor při přestupu tepla na vnitřní straně konstrukce (0,13 m 2 K/W), R e = odpor při přestupu tepla na vnější straně konstrukce (0,04 m 2 K/W), (v zimním období). Obvykle R i + R e = 0,17 m 2 K/W pro obvodové zdivo a R i + R e = 0,26 m 2 K/W pro vnitřní zdivo. Součinitel prostupu tepla konstrukce U Vyjadřuje celkovou výměnu tepla mezi prostory oddělenými od sebe danou stavební konstrukcí o tepelném odporu R. U = 1/R T 5. Vlhkost Vlhkost, rovnovážná vlhkost Pálené cihly jako přírodní materiál vždy obsahují určitou vlhkost. Její množství závisí na struktuře materiálu (pórovitosti) a na okolních podmínkách (relativní vlhkosti a teplotě vzduchu). Je li materiál delší dobu uskladněn v daném prostředí, ustálí se jeho vlhkost na určité hodnotě. Vlhkost cihelného zdiva má vliv na jeho tepelněizolační vlastnosti. Se stoupající vlhkostí se tepelná izolace zdiva zhoršuje. Praktická hmotnostní vlhkost materiálu w mp Výpočtově stanovená hodnota vlhkosti materiálu dané stavební konstrukce, určená na základě výsledků z odběru vlhkostních sond ze stavební konstrukce. Tato vlhkost nebude s 90 % pravděpodobností v průběhu jejího užívání překročena při dodržení určujících parametrů vnitřního a vnějšího prostředí podle ČSN Praktická hmotnostní vlhkost z bloků THERM je 1,0 % u obvodového zdiva a 0,5 % v případě vnitřního zdiva. Teplota rosného bodu t w Teplota, při které je vzduch vodní párou právě nasycen. Kondenzace Při teplotách pod teplotou rosného bodu dochází ke srážení vodní páry. Faktor difúzního odporu µ Vyjadřuje relativní schopnost materiálu propouštět vodní páry difúzí. Je poměrem difúzního odporu materiálu a difúzního odporu vrstvy vzduchu o téže tloušťce za stejných podmínek. Faktor difúzního odporu cihel je 5/10. Difúzní chování je rozdílné, pokud nastane difúze uvnitř stavební konstrukce (nižší hodnoty) nebo vně stavební konstrukce (vyšší hodnoty). Součinitel difúzní vodivosti δ Součinitel difúzní vodivosti vyjadřuje schopnost materiálu propouštět vodní páru difúzí. δ = q d /(-grad p d ), kde q d = hustota ustáleného difúzního toku vodní páry, grad p d = gradient částečného tlaku vodní páry. 6. Zvuk Zvuk Jedná se o mechanické vlnění a pohyb částic pružného prostředí kolem rovnovážné polohy. Lidský sluch vnímá vlnění v kmitočtovém rozsahu cca 16 Hz až Hz. Zvuk přenášený vzduchem (vzdušný zvuk) Ve vzduchu se zvuk šíří postupným podélným vlněním. Narazí-li toto vlnění na stavební prvek, dojde u prvku ke chvění. Zvuk těles Tento zvuk vzniká chvěním pevných těles. Zvuk těles se může dále šířit vzduchem. Kročejový zvuk Zvláštním případem zvuku, který se šíří konstrukcí, je kročejový zvuk. Vzniká při chůzi po podlaze nebo nárazy na stavební konstrukci. Tento zvuk je pak vyzařován do sousedních prostorů, ve kterých se šíří vzduchem. Vzduchová neprůzvučnost Vzduchová neprůzvučnost se značí R (db) a označuje schopnost stavebních prvků izolovat vzdušný zvuk. Je přímo závislá na hmotnosti stavební konstrukce v závislosti na její ploše, pozn. neuvažuje se přenos zvuku dalšími cestami. Stavební (zdánlivá) vzduchová neprůzvučnost Stavební vzduchová neprůzvučnost se značí R (db) a označuje schopnost stavebního prvku izolovat vzdušný zvuk i s uvažováním přenosu zvuku vedlejšími cestami. Vážená vzduchová neprůzvučnost Index vzduchové neprůzvučnosti se značí R w (db). Jedná se o laboratorně zjištěnou hodnotu, ve které se neuvažuje s přenosem zvuku vedlejšími cestami. Vážená stavební (zdánlivá) vzduchová neprůzvučnost Vážená stavební vzduchová neprůzvučnost se značí R w (db). Zjišťuje se měřením na stavbě a zahrnuje obvyklé vedlejší cesty přenosu zvuku stavbou. 7. Reakce na oheň Materiály cihlářských a betonářských výrobků (cihelný střep, beton, ocel) jsou zatříděny podle reakce na oheň do třídy A1 nehořlavé / Strana 9

3 TECHNOLOGIE ZDĚNÍ Pokyny pro zdění z cihelných bloků HELuz na maltu TM 39 a tm 34 Při napojování nosného zdiva na obvodové zdivo namaltujeme cihly z boku a namaltovanou stranou přisadíme k obvodové zdi. V každé druhé vyzdívané vrstvě provážeme nosné zdivo s obvodovou zdí. Pro zachování tepelněizolačních parametrů obvodového zdiva není vhodné provazovat nosné zdivo s obvodovým do kapes. Provazování provádíme v každé druhé vrstvě pomocí dvou nerezových kotev. Pro vazbu zdiva z cihelných bloků v šikmých rozích nebo v případech, kdy délkový modul zdiva nevychází v násobcích 250 mm je nezbytné cihelné bloky řezat. Řezání lze provádět na stolních okružních pilách nebo ručními elektrickými pilami. Cihly můžeme řezat též ruční pilou. Při vyzdívání stále kontrolujeme správnou polohu a napnutí zednické šňůry. Svislost zdiva průběžně ověřujeme pomocí vodováhy či olovnice a výšku vrstev zdiva připravenou latí. Pokud výška zdiva není vázána ve výškovém modulu 250 mm je možné použít doplňkové cihly nízké nebo cihly upravit na požadovanou výšku řezem. Zdění stěn Před začátkem vyzdívání stěn si připravíme ohoblovanou rovnou lať, na které si uděláme značky po 250 mm pro kontrolu délkového a výškového modulu. Délka latě bude stejná jako výška budoucí zdi. Provedeme kontrolu rovinnosti podkladu pro zdění. Případné nerovnosti ve výšce základové nebo stropní konstrukce je nutno vyrovnat maltou. Je nutné prověřit, zda je na připravovaném podkladu pro zdění požadována vodorovná izolace proti vlhkosti. Případné pásy izolace by měly být položeny pod budoucí zeď v šířce o 150 mm větší než je šířka stěny (u obvodového zdiva). Pro urychlení a rovnoměrné nanášení malty na ložné spáry zdiva si můžeme připravit šablonu (truhlík) např. z rovných hoblovaných latí, jež bude mít šířku rovnající se tloušťce vyzdívané stěny a délku cca 1m. Rovněž je možné použít posuvný maltovací přípravek pro zdivo, který zaručí přesné dávkování malty na ložnou spáru. Zdění by mělo být prováděno při teplotě +5 až +30 C. Při teplotách nižších než -5 C je zdění zakázáno. Zdicí prvky nesmí být namrzlé, zaprášené, mastné nebo jinak promočené. Nejprve uložíme cihelné bloky na namaltované konce (rohy) budoucí stěny. Cihelné bloky srovnáme vodorovně a svisle do roviny a dbáme při tom na správnou orientaci systému per a drážek v délce stěny. Pro zdění rohů a ostění využijeme doplňkové cihly (poloviční, rohové, krajové), aby byla zajištěna dokonalá vazba zdiva a dosaženo nejlepšího tepelného odporu těchto citlivých míst obvodové zdi. Cihelné bloky na koncích stěny spojíme z vnější strany zdiva napnutou zednickou šňůrou. Maltu naneseme na ložnou plochu mezi cihelnými bloky na konci stěn. Maltové lože bude stejné šířky jako je tloušťka zdi a bez přerušení. Začneme pokládat cihelné bloky podél napnuté zednické šňůry do čerstvé malty vedle sebe tak, aby se vzájemně dotýkaly. Pera a drážky na bocích cihelných bloků slouží jako šablona. Polohu vyzdívaných cihelných bloků srovnáváme gumovou paličkou podle vodováhy a připravené latě. Maltu vytékající z ložné spáry stáhneme zednickou lžící, aby nepřesahovala přes hrany cihelných bloků. U cihel se svislé spáry vůbec nemaltují, neboť jsou nahrazeny systémem pero+drážka. Při vyzdívání nesmíme zapomínat na správnou konzistenci malty, aby nezatékala do otvorů ve spodní vrstvě. Před nanášením malty na další vrstvu zdiva navlhčíme vždy vrchní část cihelných bloků poslední vyzděné vrstvy. Následující vrstvy zdíme tak, aby převazba svislých spár byla minimálně 95 mm u výšky tvarovek 238 mm a 100 mm u výšky 249 mm. Zdění příček Před začátkem vyzdívání příčky si zkontrolujeme rovinnost podkladu a prověříme, zda nemá být pod budoucí příčkou vodorovná izolace proti vlhkosti. Případné izolační pásy musí být o 300 mm širší než budoucí příčka (150 mm na každou stranu příčky). Výšku jednotlivých vrstev příčkového zdiva řešíme v souladu s vrstvami obvodového nebo nosného zdiva mezi kterým příčku zdíme. Ostatní zásady pro zdění příček jsou shodné se zásadami a postupy pro zdění stěn. Při napojování příčky z cihel 14, 11,5, 8 a 6,5 na nosnou nebo obvodovou zeď postupujeme tak, že cihlu namaltujeme z boku a přimáčkneme ji k nosné nebo obvodové zdi. Dále je nutné, v každé druhé vrstvě, v ložné spáře provést vyztužení, v místě napojení příčky na zeď plochou nerez kotvou ( Kotvu ohneme do pravého úhlu a vmáčkneme do malty ložné spáry příčky, svislou část kotvy přišroubujeme pomocí vrutu a hmoždinky k napojované stěně. Uchycení ocelových kotev do zdi můžeme také provést tím způsobem, že při jejím zdění vložíme ocelové kotvy do ložných spár v místech budoucího napojení příček. Při osazování klasických dveřních zárubní do zdiva postupujeme tak, že zárubně vyrovnáme pomocí vodováhy a zafixujeme klíny a šikmými latěmi. Zárubně se do zdiva upevňují maltou, nebo pomocí montážní pěny. Příčkové zdivo se v rozích spojuje na vazbu. Mezery mezi stropem a poslední vrstvou příčky se vyplňují maltou. Pokud je příčka pod stropem, který má rozpětí větší než 3,5 m, vyplňuje se tato mezera stlačitelným materiálem, z důvodu možného průhybu stropu / Strana 10

4 TECHNOLOGIE ZDĚNÍ, PROVÁDĚNÍ ZDIVA Kotvení vnitřní nosné zdi do obvodové zdi se zazděnými kotvami (půdorys) Kotvení příčky do obvodové zdi se zazděnými kotvami (půdorys) Kotvení zdiva příčky do obvodové zdi přišroubováním nerezové kotvy (řez) výška cihly 249 mm a tloušťka spáry 1 mm. Pro výšku zdiva 1 m potřebujeme vyzdít 4 vrstvy z cihel. Hrubou výšku místností proto navrhujeme nejlépe v modulu 250 mm. V případě jiných výšek místností lze cihly výškově upravit řezáním, použít nadbetonování v místě uložení stropní konstrukce nebo použít cihly s poloviční či třetinovou výškou. V systému se používají též cihly nízké o výšce 155 mm, které se vyrábějí pod označením N: 49-N, 44-N, 40-N, 38-N, 36,5-N a 30/24-N. Kombinací klasických cihelných bloků a nízkých cihelných bloků můžeme volit jiné výšky zdiva (nejen v modulu 250 mm). Délkový modul Cihelné zdivo systému se vyzdívá v délkovém modulu 250 mm. Tento modul vychází z rozměrů cihelných bloků. Na jednu vrstvu zdiva délky 1 m spotřebujeme 4 cihly o skladebné délce 250 mm. Proto je vhodné navrhovat délku stěn objektů v půdorysném vnitřním modulu 250 mm. Délka modulu se měří od vnitřního rohu stěny. Při používání tohoto modulu se značně usnadní práce na stavbě neboť se cihla nemusí řezat. Pro zajištění odpovídající kvality zdiva se nesmí cihly osekávat. Vzhledem k délkovým tolerancím cihel, nemusí délkový modul vždy přesně vycházet v násobcích délky 250 mm. Případný rozdíl vyrovnáme promaltováním svislé spáry tepelněizolační maltou TM, aby se zabránilo vzniku tepelného mostu ve zdivu. Při větším rozdílu v délce zdi upravíme cihly řezem. U takto upravené cihly se promaltuje i svislá spára. Pokyny pro zdění z cihelných bloků na tenkou spáru Odlišnosti při zdění stěn a příček: Příprava pro zdění je stejná jako při použití malty na zdění o tl. 12 mm. První vrstva cihel se zakládá na dokonale vodorovnou a souvislou vrstvu malty (ne na pruzích), která nesmí být v žádném případě tenčí než 10 mm. K nanesení speciálních malt pro zdění na tenkou spáru použijeme nanášecí válce, které zajistí optimální dávkování a rozprostření po celé ploše ložné spáry. Maltu pro tenkou spáru naneseme pomocí válce pouze na žebra tvarovek. Další možností je namočení tvarovky do nádoby s maltou do hloubky max. 5 mm tak, aby ulpěla na žebrech tvarovky. Maltu pro celoplošnou tenkou spáru naneseme v tloušťce 3 mm pomocí válce tak, aby překrývala celoplošně i dutiny tvarovek. Při zpracování maltové směsi je nutno přesně dodržet návod na jejím obalu, aby byla zajištěna správná konzistence. pěnu naneseme u zdiva do tloušťky 140 mm v jednom pruhu ve středu zdiva. U zdiva tloušťky 175 mm a více naneseme pěnu ve dvou pruzích asi 5 cm od kraje zdiva. Cihly osazujeme do zdiva shora zasouváním per do drážek. Posouvání cihel po maltovém loži je zakázáno. VÝŠKOVÝ A DÉLKOVÝ MODUL ZDIVA SYSTÉMU Výškový modul Cihelné zdivo systému se vyzdívá ve výškovém modulu 250 mm. Tato výška je stanovena součtem výšek cihly a průměrnou tloušťkou ložné spáry. U stávajícího systému je výška cihly 238 mm a tloušťka spáry 12 mm. Při použití systému zdění na tenkou spáru (speciálních malt nebo pěny) je Světlá výška bez úpravy v modulu 250 Světlá výška upravená použitím cihel CDm, CD (třetinovou nebo poloviční výškou modulu 250) Pro vysoce tepelněizolační obvodové nosné zdivo se vyrábí a dodávají cihly v pevnosti P8 MPa včetně doplňků. FAMILY 50 broušená THERMO STI 49 THERMO STI 49 broušená FAMILY 38 broušená THERMO STI 44 THERMO STI 44 broušená STI 40 STI 40 broušená STI 38 STI 38 broušená STI 36,5 STI 36,5 broušená STI 30 STI 30 broušená STI 25 STI 25 broušená Světlá výška upravená nadbetonováním v místě uložení stropu Světlá výška upravená použitím nízkých cihel -N / Strana 11

5 PROVÁDĚNÍ ZDIVA, MALTY PRO ZDĚNÍ Pro tepelněizolační obvodové nosné zdivo se vyrábí a dodávají cihly v pevnosti P 8; P 10 a P 15 MPa. PLUS 44 PLUS 44 broušená P15 44 P15 44 broušená TREND 44 PLUS 40 PLUS 40 broušená P15 40 P15 40 broušená PLUS 38 PLUS 38 broušená P15 38 P15 38 broušená TREND 38* PLUS 36,5 PLUS 36,5 broušená P15 36,5 P15 36,5 broušená Pro vnitřní a vnější nosné stěny se vyrábí a dodávají cihly s pevností P 8; 10; 15 MPa. PLUS 30 PLUS 30 broušená P15 30 P15 30 broušená P15 25* P15 25 broušená* broušená P15 24 P15 24 broušená broušená 17,5 17,5 broušená Pro příčky a nenosné zdivo se vyrábí a dodávají tyto : broušená 11,5 11,5 broušená 8 8 broušená 6,5 a maloformátové cihly CDM (2 DF), CV 14, PkCD2 * Sortiment pro Slovensko. Doplňkové cihly v komplexním cihelném systému jsou k dispozici kromě celých cihel také doplňkové - poloviční, rohové, krajové, krajové poloviční a nízké cihly. Doplňkový sortiment cihel řeší detaily (vyzby rohů, ostění otvorů atd.) na stavbě. Eliminace tepelných mostů ve stavebním systému Z důvodu vylepšení tepelněizolačních vlastností první vrstvy zdiva na betonovém základu, kde dochází k tepelným ztrátám ze zdiva, doporučuje společnost vyplnit dutiny v cihelných tvarovkách tepelněizolačním materiálem expandovaným hydrofobizovaným perlitem. Tvarovka tím získá až 5x lepší tepelněizolační vlastnosti ve svislém směru. Toto řešení je rychlý, jednoduchý a finančně nenáročný způsob jak snížit tepelné ztráty ze zdiva do betonového základu. Pro zachování mimořádných tepelněizolačních parametrů obvodového zdiva kolem rámů otvorových výplní doporučuje výrobce vyzdít parapety a ostění otvorů pomocí doplňkových cihel s kapsou pro vložení tepelného izolantu extrudovaného polystyrénu. Toto řešení spolehlivě zabrání vzniku tepelných mostů kolem rámů oken a dveří. Pro zdění obvodových stěn se zalomením pod úhlem 135º (např. arkýře, apsidy) u nejčastěji používané tl. zdiva 440 mm jsou určené cihly 44-R 135º. Zalomení je tvořeno pomocí dvou speciálních rohových cihelných tvarovek, mezi které se vkládá tepelná izolace polystyrén tl. 50 mm. Odpadá tak nutnost pracného řezání cihel a zároveň je zachována převazba zdiva ve vrstvách. Nesnižuje se pevnost zdiva a skladba rohu splňuje požadovanou hodnotu součinitele prostupu tepla. Vyřešíme každý detail Optimalizované stavební detaily pro výstavbu nízkoenergetických a pasivních domů nabízí Příručka vyhodnocení typických tepelných mostů s podtitulem Tepelnětechnické vlastnosti konstrukcí z komplexního cihelného systému, která obsahuje 45 druhů detailů pro různé tloušťky obvodového zdiva, celkem 310 variant. Zájemci si mohou tuto příručku objednat na tel: (kontaktní osoba Ing. Petra Zmatlíková) nebo ové adrese zmatlikova@heluz.cz. Malty pro zdění V současné době se na stavbách stále více používají suché maltové směsi namísto malt vyráběných přímo na stavbě z jednotlivých složek (vápno, cement, písek a voda). Je to hlavně z důvodu zabezpečení kvality malt. Výrobci maltových směsí dnes díky kvalitním technologiím výroby zajišťují vysokou kvalitu a zároveň možnost přípravy maltových směsí pro různá použití. Zdicí malty se dělí podle pevnosti v tlaku od 2,5 do 10 MPa, podle způsobu zpracování na ruční a strojní malty a podle objemové hmotnosti na obyčejné a tepelněizolační zdicí malty. Malty pro zdění stěn ze svisle děrovaných cihelných bloků typu THERM Malty pro nosné vnitřní stěny a pilíře K tomuto účelu se používá klasická vápenocementová nebo cementová třídy min. M 5 pro vnitřní stěny a min. M pro nosné pilíře. Požadavek na pevnost malty vychází z individuálního posudku statika stavby. Překlady ve vnitřních stěnách se kladou do malty min. M 5, doporučuje se však vždy nejméně o třídu vyšší, než třída malty, která byla použita pro zdivo. Důvodem je zabezpečení tuhosti spoje při přenosu zatížení z překladu do stěny tak, aby zde nedocházelo ke vzniku trhlin v nadpraží. Malty pro zdění vnějších stěn Malty, které se používají pro vnější stěny, musí být třídy min. M 2,5 (pokud projekt nestanoví hodnoty vyšší). Objemová hmotnost zatvrdlé malty musí být menší než kg m -3. Pokud chceme zvýšit tepelný odpor konstrukce, musíme použít tepelněizolační malty, které mají tyto parametry ještě zpřísněny a navíc uvádějí součinitel tepelné vodivosti l. Konkrétní hodnoty jsou uváděny v technických listech. Malty jsou / Strana 12

6 MALTY PRO ZDĚNÍ vylehčeny buď fyzikálně (perlitem, keramzitem, agloporitem apod.) nebo chemicky (provzdušňující přísady). Ve většině případů se však jedná o kombinaci obou typů vylehčení. Pro obvodové zdivo systému doporučujeme používat tepelněizolační zdicí maltu TM. Zvýšení tepelného odporu zdiva při použití tepelněizolační malty TM činí až % oproti obyčejné maltě. Návratnost vynaložených nákladů při současných cenách vytápění činí 4 6 let. Překlady v obvodových stěnách se ukládají do tepelněizolační nebo lehčené malty, jejíž pevnost je alespoň 5 MPa. Důvodem je zabezpečení tuhosti spoje. Malty pro zdění tenkých příček Používají se malty vyšší pevnosti, aby se zajistila statická tuhost příčky. Nedoporučují se lehčené nebo tepelněizolační malty z důvodu nižší hodnoty vzduchové neprůzvučnosti příčky při jejich použití. Používají se spíše těžší cementové malty. Malty pro zdění z broušených cihel Zdivo z cihel broušených skýtá mnoho výhod, které bezesporu uspokojí i nejnáročnější zákazníky. Tepelněizolační cihelné zdivo vytvořené z cihel broušených výrazně eliminuje vznik tepelných mostů způsobených klasickou zdicí maltou. Vyznačuje se též nižší pracností zdění, nižší spotřebou zdicí malty a vytvářením jednolitého podkladu pod omítku. Cihly mají ložné plochy zbroušené do roviny, což umožňuje vyzdívání zdiva na speciální malty pro tenké spáry. Cihly se vyrábějí stejným způsobem jako klasické cihly ovšem, s tím rozdílem, že se ložné plochy cihel po vysušení, případně vypálení, zbrousí do roviny na speciálním zařízení se dvěma navzájem rovnoběžnými brusnými kotouči. Takto upravené cihly mají stejnou výšku s odchylkou maximálně 1 mm a dvě navzájem rovnoběžné a dokonale rovné ložné plochy. Při tomto systému zdění na tenkou spáru můžeme použít speciální malty nebo pěnu. Malty pro tenkovrstovu spáru a celoplošnou tenkou spáru mají pevnost v tlaku 10 MPa a dodávají se v pytlích po 25 kg. se dodává v dózách 750 ml a nanáší se aplikační pistolí. Použití pěny přináší zrychlení výstavby, jednodušší manipulaci s pojivem a hlavně jde o tzv. suchou cestu výstavby. Nedochází k namáčení tvarovek a prodlužování zrání zdiva. Příprava maltového lože na položení první vrstvy zdiva První vrstva cihel se zakládá na dokonale vodorovnou a souvislou vrstvu malty (ne na pruzích), která nesmí být v žádném případě tenčí než 10 mm. Na založení první vrstvy se používá speciální zakládací. Aby vrstva malty pro první řadu cihel byla skutečně vodorovná, používá se při jejím nanášení nivelační přístroj s latí a vyrovnávací souprava, která se skládá ze dvou přípravků s měnitelným nastavením. Pomocí těchto přípravků se nastavuje tloušťka a šířka nanášené maltové vrstvy na jednotlivých místech základů. Získáme tak dokonale vodorovné, souvislé maltové lože na položení první vrstvy cihel. Nanášení lepidla válcem Malty pro další vrstvy zdiva z broušených cihel Od druhé vrstvy se broušené cihly zdí na maltu pro tenké spáry, která se dodává speciálně pro tento účel spolu s cihlami. Používají se dva typy malt pro tenké spáry. První se nanáší pouze na žebra cihelných tvarovek, druhý typ vytváří celoplošnou ložnou tepelněizolační vrstvu. Malty se připraví podle návodu na obalu. Na míchání se používá vhodná vrtačka s míchadlem, případně speciální ponorné mísidlo. V případě vysoké teploty a suchého vzduchu při zdění je potřeba zabránit rychlému odsátí vody z malty navlhčením vrstvy cihel těsně před nanášením malty. Nanášení malty, která pokrývá pouze žebra cihel, je možné provádět dvěma způsoby: namáčením cihel do malty Spodní ložná plocha cihly se ponoří rovnoměrně do připravené malty pro tenké spáry, maximálně do hloubky 5 mm. Namočená cihla se ihned osadí na své místo ve zdivu. Nanesené množství malty tímto způsobem plně postačuje na pevné spojení jednotlivých cihel do požadované vazby. Do maltového lože se cihelná tvarovka osazuje shora zasouváním per do drážek a její posouvání po maltovém loži je zakázáno. nanášením malty pomocí nanášecího válce Nanášecí válec je jednoduché zařízení pro urychlení a zjednodušení zdění z broušených cihel. Malta se dávkuje do zásobníku nanášecího válce, odkud se dostává při rovnoměrném pohybu válce na ložnou plochu již položených cihel. Do takto nanesené tenké vrstvy malty se pokládá nová vrstva cihel. Tvarovky lze po osazení lehce upravovat do požadované roviny. Malta pro celoplošnou tenkou spáru se nanáší ve vrstvě cca 3 mm, čímž lépe vyrovná nerovnosti mezi cihlami. Po uložení cihly do maltového lože dojde ke stlačení malty tak, že konečná tloušťka vrstvy malty mezi cihelnými bloky je 1 mm. Nanášení malty pro celoplošnou tenkou spáru je možné pouze nanášecím válcem, který je podobný válci používaným k nanášení malty předchozího typu. Při použití této malty se dosahuje až o 30 % vyšších pevností zdiva v tlaku. Příprava první vrstvy malty Nanášení malty (lepidla) válcem / Strana 13

7 MALTY PRO ZDĚNÍ, SPÁRY Obecné podmínky pro zdění Maltování spár Z hlediska maltování spár rozlišujeme dva druhy zdění: nanášení malty na ložnou (vodorovnou) spáru a vyplňování styčné (svislé) spáry (klasické zdění); nanášení malty pouze na ložnou spáru, styčná spára je opatřena pery a drážkami a maltou se nevyplňuje. Klimatické podmínky pro zdění Zdění by mělo být prováděno při teplotě +5 až +30 C. Zdicí prvky se nenamáčejí, pokud to není vysloveně uvedeno v technologickém postupu. Nesmí být namrzlé, zaprášené, mastné nebo jinak znečištěné. Při zdění v zimě musí malty obsahovat mrazuvzdorné přísady a je nutno používat malty s pevností o stupeň vyšší (např. pokud je předepsána s pevností 2,5 MPa, musí se v zimě použít s pevností min. 5 MPa). Použití mrazuvzdorných přísad je nutno konzultovat s výrobci suchých maltových směsí nebo dodávky již takto upravených malt s nimi dohodnout. Po dokončení prací je třeba chránit zdivo před promrznutím, např. zakrytím polystyrenovými deskami, izolačními rohožemi apod. Zdění za teplot nižších než +5 C se nedoporučuje, zdění za teplot nižších než -5 C je zakázáno. Vyjímkou je zdění na speciální polyuretanovou pěnu. Průmyslově vyráběné malty Všechny průmyslově vyráběné malty musí mít ES prohlášení o shodě výrobku, závazné technické listy a pokyny pro zpracování. Tyto malty jsou pravidelně zkoušeny v podnikových laboratořích a v autorizovaných zkušebnách a zaručují stálou kvalitu zkoušených parametrů. Jejich zpracování na stavbách je jednodušší než u malt na stavbách přímo připravovaných. Průmyslově vyráběné malty se dodávají buď v pytlích (klasické malty většinou po 40 kg, speciální malty po kg), nebo v mobilních zásobnících (silech) o objemu 1 až 22,5 m 3. Rozdělávání malty se provádí v samospádových nebo kontinuálních míchačkách s předepsaným množstvím vody. Na ložnou nebo styčnou spáru se nanáší ručně pomocí zednické lžíce nebo strojně pomocí speciální hubice na dopravní hadici. Neprovádět v zimním období při očekávaných mrazech. Postup omítání při styku dvou různých materiálů Všechny styky dvou různých podkladových materiálů (beton cihla, pórobeton cihla, heraklit cihla apod.) ve vnějším i vnitřním prostředí by měly být vyztuženy rabitzovým pletivem nebo alkalivzdornou sklotextilní síťovinou s velikostí ok cca 8 x 8 mm. Výztuž se klade do jádrové omítky pod její povrch (krytí min. 3 mm), maximálně však do 1/3 tloušťky pod její povrch (jádrová omítka se provádí ve dvou vrstvách do první se vmáčkne pletivo nebo tkanina a hned se nanese další vrstva). Pás výztuže by měl být minimálně tak široký, aby přesahoval 150 mm na každou stranu od styku různých materiálů. Ložná (vodorovná) spára Tloušťka ložné spáry pro cihly se vypočte odečtením jmenovité výšky cihly 238 mm od výškového modulu zdiva 250 mm a její obvyklá tloušťka by měla být cca 12 mm. Tato tloušťka postačuje k vyrovnání případných rozměrových tolerancí cihel. Naproti tomu tlustší nebo nerovnoměrně tlusté ložné spáry mohou snižovat pevnost zdiva a ve zdivu mohou vznikat místa se zvýšeným pnutím. Pro rovnoměrné a rychlé nanášení malty lze používat různých pomůcek pro zdění (šablony, truhlíky apod.). U staticky namáhaného zdiva (obvodové a vnitřní stěny z cihel o tloušťce 175 až 490 mm) se ložná spára zplna promaltovává. Po dohodě se statikem se připouští i provedení přerušované ložné spáry, která uspoří maltu a zlepší tepelněizolační vlastnosti zdiva. Zdění v pruzích nelze provádět u bloků STI, THERMO STI a FAMILY. Při systému zdění na tenkou spáru (broušené cihly) se používá pro tenkou spáru nebo pro celoplošnou tenkou spáru. Malta pro tenkou spáru se nanášení pouze na žebra tvarovek, celoplošná překrývá celoplošně dutiny tvarovek a nanáší se v tloušťce 3 mm (po uložení a vyrovnání tvarovky zůstává ložná spára tloušťky 1 mm). Oba druhy těchto malt mají velkou pevnost v tlaku (10 MPa) a dodávají se v pytlích po 25 kg, takže je s nimi snadná manipulace na staveništi. Použitím pěny zcela odpadá výroba zdicí malty na staveništi a tím dochází i ke snížení nákladů na stavbu. se nanáší aplikační pistolí v jednom pruhu (u tloušťky stěny do 14 cm) nebo ve dvou pruzích (u tloušťky stěny 17,5 cm a více). Dodává se v dózách o objemu 750 ml a její použití je velice jednoduché. U obvodového zdiva, které splňuje požadavek na vysoký tepelný odpor dle ČSN Tepelná ochrana budov (z listopadu 2002) je nevhodné používat pro zdění obyčejnou vápenocementovou maltu, která má až 9x horší tepelněizolační vlastnosti než samotné cihelné bloky a při společném působení ve zdivu dochází k degradaci tepelněizolační schopnosti cihelných bloků. Nepříznivý účinek obyčejné zdicí malty na tepelněizolační vlastnosti zdiva můžeme redukovat několika způsoby: použitím tepelněizolační zdicí malty např. TM (nezaměnit s tepelněizolační omítkou!), používat cihelné bloky na pero a drážku, kdy odpadá používání malty do svislé spáry mezi jednotlivými prvky, provedením přerušované ložné spáry jen po dohodě se statikem. Avšak toto není možné u bloků STI, THERMO STI a FAMILY. Přerušovaná ložná spára je vlastně maltování v pruzích, čímž docílíme toho, že tepelný most tvořený obyčejnou maltou v ložné spáře je jednou nebo dvakrát přerušen vzduchovou mezerou šířky 30 až 50 mm. Přerušované maltování ložné spáry nelze používat libovolně, ale pouze tam, kde je statickým výpočtem doložena možnost jejího provedení. Nejlepším řešením je používání tepelněizolační malty, která má výborné tepelněizolační vlastnosti při zachování dostatečné pevnosti v tlaku. Její cena je vyšší oproti obyčejným vápenocementovým maltám, avšak návratnost je 4 6 let úsporami na vytápění. V kombinaci s cihelnými bloky je spotřeba malty pro zdivo o 1/3 nižší než u zdiva z cihel s kapsou na maltu ve svislé spáře a o více než 1/2 nižší než u cihel, které mají svislou spáru plně promaltovanou. Tepelněizolační maltu je též vhodné používat u vnějších stěn se zakřiveným půdorysem, kde se musí maltou vyplňovat klínovitě se rozevírající svislé spáry. Styčná (svislá) spára Podle druhu styčné spáry se cihelné zdivo dělí na: zdivo s viditelně (plně) promaltovanými styčnými spárami zdivo bez viditelně promaltovaných styčných spár (systém pero+drážka) Pro vnitřní a vnější nosné i nenosné zdivo bez velkých nároků na tepelný odpor se dosud používá tradiční zdivo s viditelně promaltovanými svislými styčnými spárami (zdivo z CP, Pk CD, CV, CO, CDm, CD (1 NF) apod.). Většinou se jedná o maloformátové prvky a spotřeba malty a pracovního času je oproti vyzdívání z cihelných bloků mnohem vyšší. Nové druhy zdiva z cihelných bloků jsou bez viditelně promaltovaných svislých spár a používají se též na jednovrstvé tepelněizolační stěny, kdy se tyto bloky kladou na sraz. Spáry mezi cihelnými bloky přímá - uprostřed tloušťky zdiva je kapsa vyplněná maltou (pouze u doplňkového zdiva) zazubená (svislá spára není promaltovaná), maximální úspora zdicí malty i pracovního času / Strana 14

8 VAZBA ZDIVA, POVĚTRNOSTNÍ VLIVY Vazba zdiva Pro vlastnosti zdiva je ze statického hlediska velice důležitá tzv. vazba cihel. Vyzděná stěna nebo pilíř se musí chovat jako jeden konstrukční prvek, a proto se musí cihly ve stěně nebo v pilíři po vrstvách převázat. K zajištění náležité vazby zdiva musí být svislé spáry mezi cihlami vždy ve dvou sousedních vrstvách posunuty alespoň na délku rovnou větší z hodnot 0,4 x h nebo 40 mm (h = jmenovitá výška cihel). U cihelných bloků vysokých 238 mm je minimální délka převázání 95 mm. U výšky bloků 249 mm pak musí být minimální převázání 100 mm. Vzhledem k rozměrům cihelných bloků a doporučenému půdorysnému modulu stavby 250 mm vychází u cihel délka převazby 125 mm. Povětrnostní vlivy Na stavbě musíme většinu materiálu chránit před povětrnostními vlivy. U cihel zajišťuje neporušená balicí fólie jejich dostatečnou ochranu a zabraňuje jejich promáčení. Při skladování musíme zabránit též jejich podmáčení. Teplota prostředí při zdění, tvrdnutí a tuhnutí malty by neměla klesnout pod +5 o C, aby se nenarušily chemické procesy probíhající v maltě. Cihly pro zdění nesmí být zmrzlé a nesmí na nich ulpívat sníh či led! Zeď se musí chránit před nepříznivými povětrnostními vlivy (déšť, sníh, atd.), neboť u svisle děrovaných cihel se v komůrkách může nahromadit voda, která bude dlouhou dobu vysychat, příp. může dojít k poškození zdiva mrazem. Zvláště horní části stěn a parapetů je nutno přikrýt nepropustnými obaly, aby se zabránilo tvoření výkvětů a vyplavování čerstvé malty a snadno rozpustných hmot (např. vápna). Hotové rozestavěné zdivo je nutno chránit před povětrnostními vlivy zakrytím nepromokavým materiálem (fólie, lepenka apod.). Takto zachycená voda nesmí stékat po hotovém zdivu. Hotové zdivo musí být řádně odizolované od zemní vlhkosti. Zdivu musí být zabráněno, aby sálo srážkovou vodu ze základové nebo stropní desky. + 5 Při mrazu nezdít! Materiál a zdivo chraňte před mrazem. Přikrytí parapetů oken a provizorních otvorů nepromokavou fólií. Drážky a výklenky V případě nutnosti vytváření drážek a výklenků do zdiva (elektroinstalační rozvody, vodoinstalace, plynoinstalace apod.) musíme zabezpečit stabilitu stěny. Drážky a výklenky nemají procházet překlady nebo jinými částmi konstrukce zabudovanými do stěny. Rozměry výklenků a svislých drážek ve zdivu, které jsou přípustné bez posouzení statickým výpočtem, jsou uvedeny v ČSN EN Navrhování zděných konstrukcí. Viz tabulka č. 1. Tabulka 1 Velikost svislých drážek a výklenků ve zdivu přípustných bez výpočtu tloušťka stěny dodatečně prováděné drážky a výklenky maximální hloubka maximální šířka vyzdívané drážky a výklenky maximální šířka minimální zbytková tloušťka stěny (mm) (mm) (mm) (mm) (mm) do přes Poznámky: Maximální hloubka drážky nebo výklenku zahrnuje hloubku jakéhokoliv výklenku, který byl při vytváření drážky nebo výklenku zasažen. U dodatečně prováděných svislých drážek dosahujících nad úrovní stropu nejvýše do 1/3 výšky podlaží je dovolena do hloubky až 80 mm a šířky až 120 mm v případě, že tloušťka stěny je 225 mm a větší. Vodorovná vzdálenost mezi sousedními drážkami, drážkou a výklenkem nebo otvorem nemá být menší než 225 mm. Vodorovná vzdálenost mezi sousedními dvěma výklenky, situovanými na téže straně nebo opačných stranách stěny, nemá být menší než dvojnásobek šířky širšího z obou výklenků. Celková šířka drážek a výklenků nemá přesáhnout 0,13násobek délky stěny. Vodorovné a šikmé drážky by se neměly používat. V případě, že se jim nevyhneme, měly by být vzdáleny od horního nebo dolního líce stropu nejvíce o 1/8 výšky podlaží. Jejich celková hloubka přípustná bez posouzení statickým výpočtem je uvedena ve stejné normě. Viz tabulka č. 2. Jestliže je některá z mezí uvedených v obou tabulkách překročena, musí se únosnost stěny v tlaku, smyku a ohybu ověřit výpočtem. Tabulka 2 Velikost vodorovných a šikmých drážek ve zdivu přípustných bez výpočtu tloušťka stěny neomezená délka maximální hloubka drážky délka mm Přikrytí zdiva fólií při přerušení práce. Odvedení dešťové vody z hrubé stavby ze střech a stropů, aby nedocházelo k zatékání na hotové zdivo. (mm) (mm) (mm) do přes Poznámky: Maximální hloubka drážky zahrnuje hloubku jakéhokoliv výklenku, který byl při vytváření drážky nebo výklenku zasažen. Vodorovná vzdálenost mezi koncem drážky a otvorem nemá být menší než 500 mm / Strana 15

9 VÝPOČTOVÁ PEVNOST ZDIVA Vodorovná vzdálenost mezi sousedními drážkami omezené délky, které se vyskytují na téže nebo opačné straně, nemá být menší než dvojnásobek délky delší drážky. U stěn tloušťky větší než 115 mm, smí být přípustná hloubka drážky zvětšena o 10 mm, jestliže je strojem vyřezávána přesně na požadovanou hloubku. Je-li použito strojní vyřezávání drážek, smějí být hloubeny drážky na obou stranách stěny o hloubce 10 mm jen v případech, kdy tloušťka stěny není menší než 225 mm. Šířka drážek by neměla přestoupit polovinu zbytkové tloušťky stěny. Klasické provádění drážek v cihelném zdivu paličkou a sekáčem je pomalé, pracné, nepřesné a k samotnému cihelnému zdivu (např. příčkové zdivo) značně nešetrné. Pro značné snížení pracnosti a urychlení provádění doporučujeme použít elektrickou drážkovačku, která je ve specializovaných prodejnách ručního elektrického nářadí běžně v prodeji nebo si ji zapůjčit v některé z půjčoven nářadí. VÝPOČTOVÁ PEVNOST ZDIVA, SOUČINITEL PŘETVÁRNOSTI A CHARAKTERISTICKÁ PEVNOST ZDIVA Výpočtová pevnost zdiva, součinitel přetvárnosti, charakteristická pevnost zdiva a skupina zdicích prvků dle ČSN EN z cihel jsou uvedeny v tab. 3. Tabulka 3 pevnostní značka cihel (MPa) THERMO STI 49 broušená 8 6 výpočtová pevnost R d 1,4 1,9 1,0 1,1 1,6 0,8 součinitel přetvárnosti a charakteristická pevnost zdiva f k 2,4 3,1 1,9 1,9 2,5 1,6 THERMO STI M5 LM5 M5 LM5 výpočtová pevnost R d 1,2 1,0 1,0 0,7 charakteristická pevnost zdiva f k 2,8 2,2 2,3 1,8 THERMO STI 44 broušená 8 6 výpočtová pevnost R d 1,4 1,9 1,0 1,1 1,6 0,8 součinitel přetvárnosti a charakteristická pevnost zdiva f k 2,4 3,1 1,9 1,9 2,5 1,6 THERMO STI M5 LM5 M5 LM5 výpočtová pevnost R d 1,2 1,0 1,0 0,7 charakteristická pevnost zdiva f k 2,8 2,2 2,3 1,8 STI 40 broušená 8 6 výpočtová pevnost R d 1,4 1,9 1,0 1,1 1,6 0,8 součinitel přetvárnosti a charakteristická pevnost zdiva f k 2,4 3,1 1,9 1,9 2,5 1,6 STI M5 LM5 M5 LM5 výpočtová pevnost R d 1,2 1,0 1,0 0,7 součinitel přetvárnosti a charakteristická pevnost zdiva f k 2,8 2,2 2,3 1,8 STI 38 broušená 8 6 výpočtová pevnost R d 1,4 1,9 1,0 1,1 1,6 0,8 součinitel přetvárnosti a charakteristická pevnost zdiva f k 2,4 3,1 1,9 1,9 2,5 1,6 STI M5 LM5 M5 LM5 výpočtová pevnost R d 1,2 1,0 1,0 0,7 charakteristická pevnost zdiva f k 2,8 2,2 2,3 1,8 STI 36,5 broušená 8 6 výpočtová pevnost R d 1,4 1,9 1,2 1,1 1,6 1,0 součinitel přetvárnosti a charakteristická pevnost zdiva f k 2,4 3,1 1,9 1,9 2,5 1,6 STI 36,5 8 6 M5 LM5 M5 LM5 výpočtová pevnost R d 1,2 1,0 1,0 0,7 charakteristická pevnost zdiva f k 2,8 2,2 2,3 1,8 STI 30 broušená 8 6 výpočtová pevnost R d 1,4 1,9 1,0 1,1 1,6 0,8 součinitel přetvárnosti a charakteristická pevnost zdiva f k 2,4 3,1 1,9 1,9 2,5 1,6 STI M5 LM5 M5 LM5 výpočtová pevnost R d 1, ,7 charakteristická pevnost zdiva f k 2,8 2,2 2,3 1,8 STI 25 broušená 8 6 výpočtová pevnost R d 1,4 1,9 1,0 1,1 1,6 0,8 součinitel přetvárnosti a charakteristická pevnost zdiva f k 2,4 3,1 1,9 1,9 2,5 1,6 STI M5 LM5 M5 LM5 výpočtová pevnost R d 1, ,7 charakteristická pevnost zdiva f k 2,8 2,2 2,3 1,8 44 (PLUS; P15) broušená výpočtová pevnost R d 2,1 3 1,5 1,6 2,2 1,2 1,4 1,9 1,0 součinitel přetvárnosti a charakteristická pevnost zdiva f k 3,7 4,8 2,4 2,8 3,6 1,8 2,4 3,1 1, (PLUS; P15) M10 M5 LM5 M10 M5 LM5 M10 M5 LM5 výpočtová pevnost R d 1,9 1,6 1,4 1,5 1,2 1 1,3 1,1 0, charakteristická pevnost zdiva f k - - 2, , , (PLUS; P15) broušená výpočtová pevnost R d 2,1 3 1,5 1,6 2,2 1,2 1,4 1,9 1,0 součinitel přetvárnosti a charakteristická pevnost zdiva f k 3,7 4,8 2,4 2,8 3,6 1,8 2,4 3,1 1,6 40 (PLUS; P15) M10 M5 LM5 M10 M5 LM5 M10 M5 LM5 výpočtová pevnost R d 1,9 1,6 1,4 1,5 1,2 1 1,3 1,1 0, charakteristická pevnost zdiva f k - - 2, , ,9 38 (PLUS; P15) broušená výpočtová pevnost R d 2,1 3,0 1,5 1,6 2,2 1,2 1,4 1,9 1,0 součinitel přetvárnosti a charakteristická pevnost zdiva f k 3,7 4,8 2,4 2,8 3,6 1,8 2,4 3,1 1, / Strana 16

10 VÝPOČTOVÁ PEVNOST ZDIVA, MALTY PRO OMÍTÁNÍ 38 (PLUS) M10 M5 LM5 M10 M5 LM5 výpočtová pevnost R d 1,5 1,2 1 1,3 1,1 0, charakteristická pevnost zdiva f k 2,2 1,9 3 36,5 PLUS broušená výpočtová pevnost R d 2,1 3 1,5 1,6 2,2 1,2 1,4 1,9 1,0 součinitel přetvárnosti a charakteristická pevnost zdiva f k 3,7 4,8 2,4 2,8 3,6 1,8 2,4 3,1 1,6 36,5 (PLUS; P15) M10 M5 LM5 M10 M5 LM5 M10 M5 LM5 výpočtová pevnost R d 1,9 1,6 1,4 1,5 1,2 1 1,3 1,1 0, charakteristická pevnost zdiva f k - - 2,8 2,2 1,9 30 (PLUS; P15) broušená výpočtová pevnost R d 2,1 3 1,5 1,6 2,2 1,2 1,4 1,9 1,0 součinitel přetvárnosti a charakteristická pevnost zdiva f k 3,7 4,8 2,4 2,8 3,6 1,8 2,4 3,1 1,6 30 (PLUS; P15) M10 M5 LM5 M10 M5 LM5 M10 M5 LM5 výpočtová pevnost R d 1,9 1,6 1,2 1,5 1,2 0,9 1,3 1,1 0, charakteristická pevnost zdiva f k (P15) broušená výpočtová pevnost R d 2,3 3 1,6 1,7 2,3 1,2 1,5 1,9 1,0 součinitel přetvárnosti a charakteristická pevnost zdiva f k 3,7 4,8 2,5 2,8 3,6 1,8 2,4 3,1 1,6 24 (P15) M10 M5 LM5 M10 M5 LM5 M10 M5 LM5 výpočtová pevnost R d 1,9 1,6 1,2 1,5 1,2 0,9 1,3 1,1 0, broušená výpočtová pevnost R d 1,8 1,3 1,6 1,1 součinitel přetvárnosti a charakteristická pevnost zdiva f k 2,9 1,9 2,5 1, M10 M5 LM5 M10 M5 LM5 výpočtová pevnost R d 1,5 1,2 1,3 1,1 17,5 broušená výpočtová pevnost R d 1,9 1,3 1,6 1,1 součinitel přetvárnosti a charakteristická pevnost zdiva f k 3,0 2,4 2,6 2,1 17, M10 M5 LM5 M10 M5 LM5 výpočtová pevnost R d 1,5 1,2 1,3 1,1 charakteristická pevnost zdiva f k 3,0 2,4 2,6 2,1 Malty pro omítání K omítání zdiva z cihel lze využít omítkové směsi pro všechny účely použití omítky pro ruční i strojní zpracování, omítky jednovrstvé i omítky, které jsou tvořeny z více vrstev (tzv. omítkové systémy), omítky vnitřní, vnější, těžké omítky, omítky vylehčené, tepelněizolační, sanační, atd. Pro omítky na zdivo ze systému je vhodné použití dvou typů malt malty pro lehčené jádrové omítky se štuky a malty pro tepelněizolační omítky (tepelněizolační omítka TO). Požadavky na podklad zdiva pro omítky Měl by být rovný se zcela vyplněnými spárami mezi cihlami. Musí být suchý (max. vlhkost zdiva 6 %, v zimním období max. 4 %). Podklad se nesmí drolit. Nesmí být zmrzlý a voduodpuzující. Bez prachových částic a uvolněných kousků zdiva. Očištěný od škodlivých výkvětů (případné tmavé lokální zabarvení cihel, jež je způsobeno redukčním výpalem, nemá negativní vliv na kvalitu cihel). K zamezení vzniku trhlin v omítkách je nutné Povrch jiného stavebního materiálu (beton, polystyren, dřevo, ocel apod.) a jeho přechod na sousední zdivo opatřit výztužnou drátěnou nebo sklotextilní síťovinou s přesahem min. 100 mm. U zdiva ze zazubených cihel je v ostěních a v rozích stěn nutné drážky předem vyplnit maltou (pro zachování dobrých tepelněizolačních vlastností zdiva je vhodné použít tepelněizolační maltu), stejně jako případné díry a trhliny ve zdivu, a to alespoň 5 dnů před omítáním. Vnitřní omítky Vnitřní omítky se provádí nejdříve po dvou měsících od vyzdění stavby (u broušeného zdiva možno dříve), když je zdicí dostatečně vyzrálá a vlhkost zdiva nepřekračuje stanovenou mez. Omítání se provádí ručním nebo strojním způsobem. V případě, že odchylky od rovinnosti stěn z cihelného zdiva jsou menší než 5 mm na lati dlouhé 2 m a spáry jsou promaltovány až do líce zdiva, bývají vnitřní omítky ve složení 10 až 15 mm jádrové (vápenocementové, vápenosádrové nebo cementové) omítky a 1 až 2 mm vápenocementového nebo vápenného štuku. Pokud jsou spáry po zdění hlubší než 10 mm, je nutno použít před jádrovou omítkou cementovou postřikovou maltu (tzv. špric ). Jestliže je podklad pro omítku suchý, je vhodné zdivo pro zvýšení přilnavosti omítky navlhčit, ne však promočit! Pro vnitřní jádrové omítky lze použít vylehčené nebo tepelněizolační omítky, které jsou na dotek příjemně teplé. Vnější omítky Pro vnější omítky platí, že musí být prováděny alespoň dva měsíce po vnitřních omítkách, aby došlo k dostatečnému vysušení zdiva. Vnější omítky jsou vrstvené, neboť jsou přímo vystaveny klimatickým vlivům a musí odolávat působení vnějšího prostředí. Omítání se provádí ve třech vrstvách, ručním nebo strojním způsobem. Nejprve se nanáší spojovací vrstva z řídké cementové malty tzv. postřik. Postřik se provádí síťovitě s minimálním pokrytím 50 %. Pro postřik (tzv. špric ) se používá cementová nebo vápenocementová (spotřeba kolem 4 kg/m 2 ). Na jádro lze použít vápenocementovou nebo cementovou omítku o tloušťce alespoň 15 mm, lépe až 25 mm. Na zdivo ze svisle děrovaných cihelných bloků, které má výborné tepelněizolační vlastnosti, je nejlepší používat omítku lehčenou nebo tepelněizolační se součinitelem tepelné vodivosti λ max. 0,13 W/mK. Povrchová vrstva se provádí z hydrofobizovaného vápenocementového štuku nebo šlechtěných omítek. Po vyzrání omítky (za jeden den vyzraje 1-2 mm tloušťky omítky) je možno provést nátěr ze silikonové, silikátové, disperzní nebo vápenné barvy. Uzavírací vrstva se z důvodu požadované prodyšnosti doporučuje provést z materiálů na silikátové nebo silikonové bázi, neboť materiály na bázi akrylátů povrch více uzavírají / Strana 17

TECHNICKÉ INFORMACE SOUVISEJÍCÍ NORMY

TECHNICKÉ INFORMACE SOUVISEJÍCÍ NORMY SOUVISEJÍCÍ NORMY STÁTNÍ NORMY ČSN 72 2600 Cihlářské výrobky. Společná ustanovení ČSN 72 2601 Skúšanie tehliarskych výrobkov. Spoločné ustanovenia ČSN 72 2602 Skúšanie tehliarskych výrobkov. Zisťovanie

Více

10. Malty pro zdění. 10.1 Malty pro zdění z maloformátových cihel

10. Malty pro zdění. 10.1 Malty pro zdění z maloformátových cihel 10. Malty pro zdění Všeobecně se pro zdění zdiva používá obyčejná vápenocementová malta složená z cementu, vápenného hydrátu a písku, popř. s příměsí přísad. Pro zdění lze rovněž použít maltu vyrobenou

Více

nové řešení tepelných mostů broušené cihelné bloky HELUZ zásady správného zdění zdění na tenkou spáru s lepidlem pracovní pomůcky pro zdění

nové řešení tepelných mostů broušené cihelné bloky HELUZ zásady správného zdění zdění na tenkou spáru s lepidlem pracovní pomůcky pro zdění nové TECHNOLOGIE ZDĚNÍ broušené cihelné bloky HELUZ zdění na tenkou spáru s lepidlem zdění na tenkou spáru s celoplošným lepidlem řešení tepelných mostů zásady správného zdění pracovní pomůcky pro zdění

Více

HELUZ Supertherm STI SB a SB PŘESNOST

HELUZ Supertherm STI SB a SB PŘESNOST broušené cihelné bloky s nejlepšími tepelněizolačními vlastnostmi v ČR HELUZ Supertherm STI SB a SB PŘESNOST Hlavní výhody broušených cihel HELUZ Supertherm sti sb a SB Broušené cihelné bloky pro zdění

Více

Pevnostní třídy Pevnostní třídy udávají nejnižší pevnost daných cihel v tlaku

Pevnostní třídy Pevnostní třídy udávají nejnižší pevnost daných cihel v tlaku 1 Pevnost v tlaku Pevnost v tlaku je zatížení na mezi pevnosti vztažené na celou ložnou plochu (tlačená plocha průřezu včetně děrování). Zkoušky a zařazení cihel do pevnostních tříd se uskutečňují na základě

Více

HELUZ FAMILY. Cihla bez kompromisů

HELUZ FAMILY. Cihla bez kompromisů Cihla bez kompromisů 2in1 Stačí jedna vrstva a máte pasivní dům. Cihla FAMILY 2in1 má nejlepší tepelně izolační vlastnosti na trhu. NORMÁLNÍ JE NEZATEPLOVAT 2 PROČ JEDNOVRSTVÉ ZDIVO BEZ ZATEPLENÍ? Doporučujeme

Více

pasivní domy HELUZ FAMILY nízkoenergetické domy energeticky úsporné domy NOVINKA PRO PASIVNÍ A NÍZKOENERGETICKÉ STAVBY

pasivní domy HELUZ FAMILY nízkoenergetické domy energeticky úsporné domy NOVINKA PRO PASIVNÍ A NÍZKOENERGETICKÉ STAVBY NG nová generace stavebního systému pasivní domy nízkoenergetické domy A B HELUZ FAMILY energeticky úsporné domy C D HELUZ FAMILY NOVINKA PRO PASIVNÍ A NÍZKOENERGETICKÉ STAVBY HELUZ FAMILY 50 nadstandardní

Více

Seskupení zdících prvků uložených podle stanoveného uspořádání a spojených pojivem (maltou, zálivkou)

Seskupení zdících prvků uložených podle stanoveného uspořádání a spojených pojivem (maltou, zálivkou) Seskupení zdících prvků uložených podle stanoveného uspořádání a spojených pojivem (maltou, zálivkou) cihelné, tvárnicové, kamenné, smíšené Cihla plná (CP) rozměr: 290 140 65 mm tzv. velký formát (4:2:1)

Více

NOVÉ TECHNOLOGIE ZDĚNÍ

NOVÉ TECHNOLOGIE ZDĚNÍ NG nová generace stavebního systému NOVÉ TECHNOLOGIE ZDĚNÍ cihelné bloky HELUZ broušené cihelné bloky HELUZ zdění na tenkou spáru s lepidlem zdění na tenkou spáru s celoplošným lepidlem zdění se speciální

Více

nové zdění na tenkou spáru s lepidlem zdění na tenkou spáru s celoplošným lepidlem zdění se speciální polyuretanovou pěnou HELUZ

nové zdění na tenkou spáru s lepidlem zdění na tenkou spáru s celoplošným lepidlem zdění se speciální polyuretanovou pěnou HELUZ nové TECHNOLOGIE ZDĚNÍ cihelné bloky HELUZ broušené cihelné bloky HELUZ zdění na tenkou spáru s lepidlem zdění na tenkou spáru s celoplošným lepidlem zdění se speciální polyuretanovou pěnou HELUZ zdění

Více

ZÁKLADNÍ INFORMACE PROČ ZVOLIT KOMPLEXNÍ CIHELNÝ SYSTÉM HELUZ

ZÁKLADNÍ INFORMACE PROČ ZVOLIT KOMPLEXNÍ CIHELNÝ SYSTÉM HELUZ ZÁKLADNÍ INFORMACE PROČ ZVOLIT KOMPLEXNÍ CIHELNÝ SYSTÉM Nová generace cihel Není cihla jako cihla. Z klasické plné maloformátové cihly se vyvinuly děrované tepelněizolační cihelné bloky. Z klasické technologie

Více

Pracovní postup Cemix: Zdění z broušených cihel Platnost od 28. března 2014

Pracovní postup Cemix: Zdění z broušených cihel Platnost od 28. března 2014 Platnost od 28. března 2014 Obsah 1. Obecné... 1 2. Pracovní postup... 2 2.1. Zaměření základové desky... 2 2.2. Příprava lože pro uložení první řady... 2 2.3. Kladení první řady cihel... 3 2.4. Zdění

Více

cihelné bloky pro pasivní a nízkoenergetické stavby U až 0,15 W/m 2 K

cihelné bloky pro pasivní a nízkoenergetické stavby U až 0,15 W/m 2 K cihelné bloky HELUZ FAMILY pro pasivní a nízkoenergetické stavby U až 0,15 W/m 2 K nadstandardní jednovrstvé zdivo heluz family 50 Společnost HELUZ uvedla na trh v roce 2009 unikátní broušený cihelný blok,

Více

Pracovní postup Cemix: Zdění z broušených cihel

Pracovní postup Cemix: Zdění z broušených cihel Pracovní postup Cemix: Zdění z broušených cihel Pracovní postup Cemix: Zdění z broušených cihel Obsah 1 Obecné... 3 2 Typy zdicích malt... 3 3 Pracovní postup zdění... 4 3.1 Zaměření základové desky...

Více

systém POROTHERM P+D systém POROTHERM CB 11. 10. řada Výškový modulový rastr systému POROTHERM P+D a POROTHERM CB

systém POROTHERM P+D systém POROTHERM CB 11. 10. řada Výškový modulový rastr systému POROTHERM P+D a POROTHERM CB 1 Provádění zdiva z cihel POROTHERM 15. Broušené cihly Představují další výrazný krok vpřed ve vývoji pálených cihel z hlediska technologie zdění. Lze říci, že se jedná o high-tech mezi cihlami. Cihly

Více

NOVÉ CIHELNÉ BLOKY. U až 0,15 W/m 2 K PRO PASIVNÍ A NÍZKOENERGETICKÉ STAVBY HELUZ FAMILY. pasivní domy. nízkoenergetické. domy. energeticky úsporné

NOVÉ CIHELNÉ BLOKY. U až 0,15 W/m 2 K PRO PASIVNÍ A NÍZKOENERGETICKÉ STAVBY HELUZ FAMILY. pasivní domy. nízkoenergetické. domy. energeticky úsporné NG nová generace stavebního systému pasivní domy nízkoenergetické domy A B HELUZ FAMILY energeticky úsporné domy C D HELUZ FAMILY NOVÉ CIHELNÉ BLOKY PRO PASIVNÍ A NÍZKOENERGETICKÉ STAVBY U až 0,15 W/m

Více

Nosný roletový překlad HELUZ pro zajištění Vašeho soukromí WWW.HELUZ.CZ. Komplexní cihelný systém. 1 Technické změny vyhrazeny

Nosný roletový překlad HELUZ pro zajištění Vašeho soukromí WWW.HELUZ.CZ. Komplexní cihelný systém. 1 Technické změny vyhrazeny E L U Z Nosný roletový překlad HELUZ pro zajištění Vašeho soukromí Komplexní cihelný systém 1 Technické změny vyhrazeny 6) 1) 2) 5) 4) 2 Technické změny vyhrazeny VÝHODY ROLETOVÉHO PŘEKLADU HELUZ 1) Překlad

Více

Ceník POROTHERM. s platností od

Ceník POROTHERM. s platností od Ceník POROTHERM s platností od 6. 2. 2009 Cihly. Stvořené pro člověka. www.porotherm.cz Broušené cihly DRYFIX cihly d/š/v Pevnost v tlaku MPa Hmotnost cca kg/ks Součinitel prostupu tepla U [W/m 2 K] (Tepelný

Více

Pracovní postupy Cemix Provádění hliněných malt a omítek

Pracovní postupy Cemix Provádění hliněných malt a omítek Pracovní postupy Cemix Provádění hliněných malt a omítek Pracovní postupy Cemix - Provádění hliněných malt a omítek Obsah 1 Použití... 3 2 Skladba systému... 3 3 Postup provádění... 3 3.1 Zdění... 3 3.2

Více

HELUZ AKU 30 zalévaná Zdivo se zvýšeným akustickým útlumem EN 771-1

HELUZ AKU 30 zalévaná Zdivo se zvýšeným akustickým útlumem EN 771-1 HELUZ AKU 30 zalévaná se zvýšeným akustickým útlumem Šalovací cihly HELUZ AKU zalévané jsou určeny pro akustické zdivo tloušťky 300 mm. Hotové zdivo má zvýšené akustické a tepelně akumulační vlastnosti

Více

Pracovní postup Cemix: Omítání a zdění staveb z betonových skořepinových tvárnic

Pracovní postup Cemix: Omítání a zdění staveb z betonových skořepinových tvárnic Pracovní postup Cemix: Omítání a zdění staveb z betonových skořepinových tvárnic Pracovní postup Cemix: Omítání a zdění staveb z betonových skořepinových tvárnic Obsah 1 Obecná informace... 3 2 Zdění...

Více

HELUZ AKU KOMPAKT 21 broušená

HELUZ AKU KOMPAKT 21 broušená broušená Použití Cihelné bloky broušená jsou určeny pro konstrukci vnitřních nenosných stěn výšky maximálně 3,5 m s vysokou přidanou hodnotou vyznačující se vysokou mírou zvukové izolace. Cihelné bloky

Více

TVÁRNICE PRO NENOSNÉ STĚNY

TVÁRNICE PRO NENOSNÉ STĚNY TVÁRNICE PRO NENOSNÉ STĚNY Snadné a rychlé zdění bez odpadu Vysoká přesnost vyzděných stěn Nízká hmotnost Vysoká požární odolnost Specifikace Tvárnice z autoklávovaného pórobetonu kategorie I Norma/předpis

Více

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Číslo projektu Číslo materiálu Název školy CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_19_TECH_1.10 Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Tématický celek Ing. Zdenka

Více

TECHNICKÝ LIST ZDÍCÍ TVAROVKY

TECHNICKÝ LIST ZDÍCÍ TVAROVKY TECHNICKÝ LIST ZDÍCÍ TVAROVKY Specifikace Betonové zdící tvarovky jsou průmyslově vyráběny z vibrolisovaného betonu. Základem použitého betonu je cementová matrice, plnivo (kamenivo) a voda. Dále jsou

Více

SCHÖCK NOVOMUR LIGHT SCHÖCK NOVOMUR. Uspořádání v konstrukci...18. Dimenzační tabulka / rozměry / možnosti...19. Tepelně technické parametry...

SCHÖCK NOVOMUR LIGHT SCHÖCK NOVOMUR. Uspořádání v konstrukci...18. Dimenzační tabulka / rozměry / možnosti...19. Tepelně technické parametry... SCHÖCK NOVOMUR Nosný hydrofobní tepelně izolační prvek zabraňující vzniku tepelných mostů u paty zdiva pro použití u rodinných domů Schöck typ 6-17,5 Oblast použití: První vrstva zdiva na stropu suterénu

Více

2. ZDICÍ PRVKY A MALTY

2. ZDICÍ PRVKY A MALTY 2. ZDICÍ PRVKY A MALTY Zdicí malty Cemix jsou suché maltové směsi určené pro použití na širokou škálu různých druhů zdicích materiálů. Zdicí malty Cemix jsou zkoušeny a klasifikovány dle ČSN EN 998-2.

Více

Mrazuvzdorné maloformátové cihly HELUZ P15 36,5 broušená Obkladové pásky HELUZ Vínovky

Mrazuvzdorné maloformátové cihly HELUZ P15 36,5 broušená Obkladové pásky HELUZ Vínovky NG nová generace stavebního systému pohledové PRVKY HELUZ Mrazuvzdorné maloformátové cihly HELUZ P15 36,5 broušená Obkladové pásky HELUZ Vínovky strana 1 Mrazuvzdorné maloformátové cihly Příčně děrované

Více

20. Zásady provádění svislých konstrukcí z pálených zdicích prvků

20. Zásady provádění svislých konstrukcí z pálených zdicích prvků 20. Zásady provádění svislých konstrukcí z pálených zdicích prvků Definice zdiva podle EN 1996-1-1 Navrhování zděných konstrukcí (Eurokód 6) zní: Zdivo je seskupení zdicích prvků uložených podle stanoveného

Více

Překlady HELUZ. překlady nosné překlady ploché

Překlady HELUZ. překlady nosné překlady ploché NG nová generace stavebního systému Překlady HELUZ překlady nosné překlady ploché Nosný překlad HELUZ 23,8 238 mm 2 4 1 3 2 Výhody nosného překladu HELUZ 23,8 1. Překlad je plně staticky únosný po osazení

Více

PS01 POZEMNÍ STAVBY 1

PS01 POZEMNÍ STAVBY 1 PS01 POZEMNÍ STAVBY 1 SVISLÉ NOSNÉ KONSTRUKCE 1 Funkce a požadavky Ctislav Fiala A418a_ctislav.fiala@fsv.cvut.cz Konstrukční rozdělení stěny (tlak (tah), ohyb v xz, smyk) sloupy a pilíře (tlak (tah), ohyb)

Více

DÍLENSKÉ LISTY ZEDNÍK

DÍLENSKÉ LISTY ZEDNÍK DÍLENSKÉ LISTY ZEDNÍK TECHNOLOGIE A MATERIÁLY 1 TECHNOLOGIE A MATERIÁLY 2 TECHNOLOGIE A MATERIÁLY 3 PŘESTAVBY BUDOV Název a adresa školy: Střední odborné učiliště stavební Pardubice s. r. o., Černá za

Více

Zdicí materiály KERATHERM

Zdicí materiály KERATHERM Zdicí materiály KERATHERM O C Cihly KERATHERM broušené KERATHERM 44 B KERATHERM 44 B 1/2 KERATHERM 44 B R KERATHERM 38 B KERATHERM 38 B 1/2 KERATHERM 30 B KERATHERM 30 B 1/2 KERATHERM 30 B R KERATHERM

Více

KERAMICKÉ NOSNÉ PŘEKLADY JIST OP 238 EN 845-2 1 (2)

KERAMICKÉ NOSNÉ PŘEKLADY JIST OP 238 EN 845-2 1 (2) KERAMICKÉ NOSNÉ PŘEKLADY JIST OP 238 1 (2) POUŽITÍ Keramické nosné překlady JISTROP 238 se používají jako plně nosné překlady nad dveřními a okenními otvory. Tyto překlady lze i kombinovat s izolantem

Více

POROTHERM CB. broušené cihly. Cihly. Stvořené pro člověka.

POROTHERM CB. broušené cihly. Cihly. Stvořené pro člověka. POROTHERM CB broušené cihly Cihly. Stvořené pro člověka. SYSTÉM BROUŠENÝCH CIHEL Představuje další výrazný krok vpřed ve vývoji pálených cihel z hlediska technologie zdění. Lze říci, že se jedná o high-tech

Více

TECHNICKÝ LIST. AKU KOMPAKT 21 broušená. R w. =57 db

TECHNICKÝ LIST. AKU KOMPAKT 21 broušená. R w. =57 db TECHNICKÝ LIST AKU KOMPAKT 21 broušená R w =57 db broušená Použití Cihelné bloky broušená jsou určeny pro konstrukci vnitřních nenosných stěn výšky maximálně 3,5 m s vysokou přidanou hodnotou vyznačující

Více

Ověřené řešení pro cihelné zdivo. Porotherm AKU Profi. broušené akustické cihly. Podklad pro navrhování Technické listy

Ověřené řešení pro cihelné zdivo. Porotherm AKU Profi. broušené akustické cihly. Podklad pro navrhování Technické listy Porotherm AKU Profi broušené akustické cihly Podklad pro navrhování Technické listy Porotherm 30 AKU Z Profi Akusticky dělicí nosná stěna Broušený akustický cihelný blok P+D pro tl. stěny 30 a 64 cm na

Více

HELUZ Family 2in1 důležitá součást obálky budovy

HELUZ Family 2in1 důležitá součást obálky budovy 25.10.2013 Ing. Pavel Heinrich 1 HELUZ Family 2in1 důležitá součást obálky budovy Ing. Pavel Heinrich Technický rozvoj heinrich@heluz.cz 25.10.2013 Ing. Pavel Heinrich 2 HELUZ Family 2in1 Výroba cihel

Více

SCHÖCK NOVOMUR SCHÖCK NOVOMUR. Uspořádání v konstrukci...12. Dimenzační tabulka / rozměry / možnosti...13. Tepelně technické parametry...

SCHÖCK NOVOMUR SCHÖCK NOVOMUR. Uspořádání v konstrukci...12. Dimenzační tabulka / rozměry / možnosti...13. Tepelně technické parametry... SCHÖCK NOVOMUR Nosný hydrofobní tepelně izolační prvek zabraňující vzniku tepelných mostů u paty zdiva pro použití u vícepodlažních bytových staveb Schöck typ 20-17,5 Oblast použití: První vrstva zdiva

Více

11. Omítání, lepení obkladů a spárování

11. Omítání, lepení obkladů a spárování 11. Omítání, lepení obkladů a spárování Omítání, lepení obkladů a spárování 11.1 Omítání ve vnitřním prostředí Pro tyto omítky platí EN 998-1 Specifikace malt pro zdivo Část 1: Malty pro vnitřní a vnější

Více

NG nová generace stavebního systému

NG nová generace stavebního systému NG nová generace stavebního systému pasivní domy A HELUZ nízkoenergetické domy B energeticky úsporné domy C D E F G cihelné pasivní domy heluz Víte, že společnost HELUZ nabízí Řešení pro stavbu pasivních

Více

POROTHERM 44 CB DF NOVINKA 2008

POROTHERM 44 CB DF NOVINKA 2008 POROTHERM 44 CB DF Tepelněizolační vnější stěna 1/2 Cihly broušené POROTHERM 44 CB DF jsou určené pro jednovrstvé obvodové nosné i nenosné zdivo tlouš ky mm s vysokými nároky na tepelný odpor a tepelnou

Více

Pracovní postup Cemix: Omítky se stěnovým vytápěním

Pracovní postup Cemix: Omítky se stěnovým vytápěním Pracovní postup Cemix: Omítky se stěnovým vytápěním Pracovní postup Cemix: Omítky se stěnovým vytápěním Obsah 1 Použití... 3 2 Varianty vytápění stěn... 3 3 Tepelně technické podmínky... 3 4 Skladba systému...

Více

Ceník platnost od 3. 3. 2010. U až 0,15 W/m 2 K. Cihly, které již nemusíte zateplovat. Dotisk červen 2010. český výrobce s tradicí od roku 1876

Ceník platnost od 3. 3. 2010. U až 0,15 W/m 2 K. Cihly, které již nemusíte zateplovat. Dotisk červen 2010. český výrobce s tradicí od roku 1876 ský výrobc NG nová generace stavebního systému Ceník platnost od 3. 3. 2010 Cihly, které již nemusíte zateplovat U až 0,15 W/m 2 K Dotisk červen 2010 český výrobce s tradicí od roku 1876 Získejte dotaci

Více

2.1.3. www.velox.cz TECHNICKÉ VLASTNOSTI VÝROBKŮ

2.1.3. www.velox.cz TECHNICKÉ VLASTNOSTI VÝROBKŮ Podrobné technické vlastnosti jednotlivých výrobků jsou uvedeny v následujících přehledných tabulkách, řazených podle jejich použití ve stavebním systému VELOX: desky (VELOX WS, VELOX WSD, VELOX WS-EPS)

Více

BH 52 Pozemní stavitelství I

BH 52 Pozemní stavitelství I BH 52 Pozemní stavitelství I Svislé nosné konstrukce - stěny Zděné nosné stěny Cihelné zdivo Tvárnicové zdivo Ing. Lukáš Daněk, Ph.D. Svislé nosné konstrukce - stěny Základní požadavky a) mechanická odolnost

Více

Lepidla, malty a pěna HELUZ pro broušené cihly 122. Malty pro nebroušené cihly HELUZ 123. Polystyren HELUZ pro vysypávání cihel 125

Lepidla, malty a pěna HELUZ pro broušené cihly 122. Malty pro nebroušené cihly HELUZ 123. Polystyren HELUZ pro vysypávání cihel 125 Lepidla, malty a pěna HELUZ pro broušené cihly 122 Malty pro nebroušené cihly HELUZ 123 Omítky 124 Polystyren HELUZ pro vysypávání cihel 125 Extrudovaný polystyren HELUZ pro ostění s krajovými cihlami

Více

Nosné překlady HELUZ 23,8. Výhody. Technické údaje. Tepelný odpor. Požární odolnost. Dodávka a uskladnění. Statický návrh. Použití.

Nosné překlady HELUZ 23,8. Výhody. Technické údaje. Tepelný odpor. Požární odolnost. Dodávka a uskladnění. Statický návrh. Použití. Nosné překlady HELUZ 23,8 Nosné překlady HELUZ se používají jako překlady nad dveřními a okenními otvory ve vnitřních i vnějších stěnách. Tyto překlady lze kombinovat s izolantem pro dosažení zvýšených

Více

Bytová výstavba cihelnou zděnou technologií vs. KS-QUADRO

Bytová výstavba cihelnou zděnou technologií vs. KS-QUADRO Bytová výstavba cihelnou zděnou technologií vs. KS-QUADRO Systém KS-QUADRO = každý 10. byt navíc zdarma! 3.5.2008 Bytový dům stavěný klasickou zděnou technologií Bytový dům stavěný z vápenopískových bloků

Více

Pracovní postup Cemix: Hliněné omítky a zdící malty

Pracovní postup Cemix: Hliněné omítky a zdící malty Pracovní postup Cemix: Hliněné omítky a zdící malty Poradenství: Ing. Martin Bureš mobil: +420 602 546 855 e-mail: martin.bures@cemix.cz Pracovní postup Cemix: Hliněné omítky a zdící malty Obsah 1 Použití...

Více

HELUZ AKU KOMPAKT 21 broušená nové řešení akustických stěn. Ing. Pavel Heinrich

HELUZ AKU KOMPAKT 21 broušená nové řešení akustických stěn. Ing. Pavel Heinrich HELUZ AKU KOMPAKT 21 broušená nové řešení akustických stěn 1 Smíšené konstrukční systémy (domy > 4. NP) 2 Často nenosné stěny a řešení ukončení koruny stěny pod stropem 3 Zdění v zimním období 4 Technologie

Více

SVISLÉ NOSNÉ KONSTRUKCE 1.ROČNÍK POZEMNÍ STAVITELSTVÍ

SVISLÉ NOSNÉ KONSTRUKCE 1.ROČNÍK POZEMNÍ STAVITELSTVÍ SVISLÉ NOSNÉ KONSTRUKCE 1.ROČNÍK POZEMNÍ STAVITELSTVÍ ROZDĚLENÍ SVISLÝCH NOSNÝCH KONSTRUKCÍ 1. NOSNÉ ZDI, SLOUPY A PILÍŘE SVISLÉ NOSNÉ KONSTRUKCE JSOU ZÁKLADNÍ STATICKOU ČÁSTÍ KAŽDÉHO OBJEKTU. STĚNA -

Více

TECHNOLOGICKÉ ZÁSADY ZDĚNÍ TVAROVEK KB

TECHNOLOGICKÉ ZÁSADY ZDĚNÍ TVAROVEK KB TECHNOLOGICKÉ ZÁSADY ZDĚNÍ TVAROVEK KB 1) Tvarovky KB jsou určeny ke zdění na ložnou a styčnou spáru o tl. 8 10mm. 2) Základním modulovým rozměrem tvarovek systému KB je délka 400mm a výška 200mm (včetně

Více

BETONOVÉ TVÁRNICE BETONG. Průběžná Rohová Průběžná Rohová

BETONOVÉ TVÁRNICE BETONG. Průběžná Rohová Průběžná Rohová BETONOVÉ TVÁRNICE BETONG Betong 10 Betong 15 Průběžná Rohová Průběžná Rohová POPIS : Skořepinové tvárnice BETONG jsou vyráběny z betonu na stacionárním vibrolisu. Složení betonu: čistý drcený dolomitický

Více

Pracovní postup Cemix: Aplikace výrobků v zimním období

Pracovní postup Cemix: Aplikace výrobků v zimním období Pracovní postup Cemix: Aplikace výrobků v zimním období Pracovní postup Cemix: Aplikace výrobků v zimním období Obsah 1 Definice zimního období... 3 2 Omítání v zimním období... 3 2.1 Vlivy nízkých teplot

Více

Řešení pro cihelné zdivo. Technické listy. cihel plněných minerální vatou. Porotherm T Profi Porotherm T Profi Dryfix.

Řešení pro cihelné zdivo. Technické listy. cihel plněných minerální vatou. Porotherm T Profi Porotherm T Profi Dryfix. Technické listy cihel plněných minerální vatou Porotherm T Profi Porotherm T Profi Dryfix www.cihla-budoucnosti.cz Porotherm T Profi / Porotherm T Profi Dryfix Cihly plněné minerální vatou. Cihly budoucnosti.

Více

MATERIÁLY PRO ZDĚNÍ Extrudovaný polystyrén, expandovaný perlit

MATERIÁLY PRO ZDĚNÍ Extrudovaný polystyrén, expandovaný perlit MATERIÁLY PRO ZDĚNÍ Extrudovaný polystyrén, expandovaný perlit extrudovaný polystyrén XPS Při dosavadním způsobu montáže okenních rámů, nebo zárubní do zdiva, vzniká u tohoto detailu tepelný most. Pro

Více

JEDNOVRSTVÉ A DVOUVRSTVÉ OMÍTKOVÉ SYSTÉMY

JEDNOVRSTVÉ A DVOUVRSTVÉ OMÍTKOVÉ SYSTÉMY Cemix WALL system JEDNOVRSTVÉ A DVOUVRSTVÉ OMÍTKOVÉ SYSTÉMY Řešení pro omítání všech typů podkladů Jak zvolit vhodnou omítku pro interiér a exteriér JEDNOVRSTVÉ A DVOUVRSTVÉ OMÍTKOVÉ SYSTÉMY Omítky jsou

Více

YQ U PROFILY, U PROFILY

YQ U PROFILY, U PROFILY YQ U PROFILY, U PROFILY YQ U Profil s integrovanou tepelnou izolací Minimalizace tepelných mostů Jednoduché ztracené bednění monolitických konstrukcí Snadná a rychlá montáž Specifikace Výrobek slepený

Více

C. PROVÁDĚNÍ ZDIVA Z CIHEL POROTHERM

C. PROVÁDĚNÍ ZDIVA Z CIHEL POROTHERM C. PROVÁDĚNÍ ZDIVA Z CIHEL POROTHERM Cihly POROTHERM jsou určeny pouze pro omítané zdivo. Definice zdiva podle ČSN EN 1996-1-1 Navrhování zděných konstrukcí (Eurokód 6) zní: Zdivo je sestava zdicích prvků

Více

HELUZ Supertherm AKU TICHO

HELUZ Supertherm AKU TICHO cihly se zvýšeným akustickým útlumem HELUZ Supertherm KU TICHO ZVUKOVĚIZOLČNÍ SYSTÉMY HELUZ KU TĚŽKÁ Ploché kotvy Zdivo SUPERTHERM SUPERTHERM KU 30 těžká Malta o objemové hmotnosti minimálně 1 750 kg/m

Více

POPIS HODNOTA JEDNOTKA PRÁVNÍ PŘEDPIS 3x Ekopanel E60 rozměry: tloušťka šířka délka. 58 (tolerance +2 mm) 1200,

POPIS HODNOTA JEDNOTKA PRÁVNÍ PŘEDPIS 3x Ekopanel E60 rozměry: tloušťka šířka délka. 58 (tolerance +2 mm) 1200, Popis OBVODOVÁ STĚNA EKO3 - obklad obvodové nosné dřevěné rámové konstrukce Skladba tl. 380 - dřevovláknitá deska tl. 20 - KVH hranoly + tepelná izolace tl. 140 - dřevěný rošt tl. 40 Doporučené použití

Více

G. POROTHERM STROP. 1. Skladování a doprava. 2. Montáž

G. POROTHERM STROP. 1. Skladování a doprava. 2. Montáž G. POROTHERM STROP 1. Skladování a doprava Při manipulaci a skladování je třeba zavěšovat, resp. podkládat stropní nosníky ve vzdálenosti max. 500 mm od konců nosníků dřevěnými proklady o rozměru nejméně

Více

TECHNOLOGICKÉ ZÁSADY VÝSTAVBY ZE SYSTÉMU SUCHÉMU ZDĚNÍ LIDOVKA

TECHNOLOGICKÉ ZÁSADY VÝSTAVBY ZE SYSTÉMU SUCHÉMU ZDĚNÍ LIDOVKA TECHNOLOGICKÉ ZÁSADY VÝSTAVBY ZE SYSTÉMU SUCHÉMU ZDĚNÍ LIDOVKA 1) Tvarovky jsou díky své rozměrové přesnosti určeny ke zdění na sucho, bez nutnosti použití malty, lepidla či jiného tmelu. Spáry jsou tvořeny

Více

TECHNOLOGICKÉ ZÁSADY VÝSTAVBY ZE SYSTÉMU K SUCHÉMU ZDĚNÍ PLAYBLOK

TECHNOLOGICKÉ ZÁSADY VÝSTAVBY ZE SYSTÉMU K SUCHÉMU ZDĚNÍ PLAYBLOK TECHNOLOGICKÉ ZÁSADY VÝSTAVBY ZE SYSTÉMU K SUCHÉMU ZDĚNÍ PLAYBLOK 1) Tvarovky jsou díky své rozměrové přesnosti určeny ke zdění na sucho, bez nutnosti použití malty, lepidla či jiného tmelu. Spáry jsou

Více

Pozemní stavitelství. Nenosné stěny PŘÍČKY. Ing. Jana Pexová 01/2009

Pozemní stavitelství. Nenosné stěny PŘÍČKY. Ing. Jana Pexová 01/2009 Pozemní stavitelství Nenosné stěny PŘÍČKY Ing. Jana Pexová 01/2009 Doporučená a použitá literatura Normy ČSN: ČSN EN 1991-1 (73 00 35) Zatížení stavebních konstrukcí ČSN 73 05 40-2 Tepelná ochrana budov

Více

SVISLÉ NOSNÉ KONSTRUKCE

SVISLÉ NOSNÉ KONSTRUKCE SVISLÉ NOSNÉ KONSTRUKCE FUNKCE A POŽADAVKY Konstrukční rozdělení stěny (tlak (tah), ohyb v xz, smyk) sloupy a pilíře (tlak (tah), ohyb) SVISLÉ KONSTRUKCE Technologické a materiálové rozdělení zděné konstrukce

Více

Třída objem. hmotnosti tvárnic. Tepelný odpor R neomít. stěny. MPa kg.m -3 m 2.K.W -1 db 2 500 *3,79 52 2 600 *2,83 52 4 800 *2,31 55 2 600 *3,28 54

Třída objem. hmotnosti tvárnic. Tepelný odpor R neomít. stěny. MPa kg.m -3 m 2.K.W -1 db 2 500 *3,79 52 2 600 *2,83 52 4 800 *2,31 55 2 600 *3,28 54 Termoakustický zdicí systém klasické zdivo Označení Výrobní rozměry L / B / H Tloušťka stěny bez e ní třída Třída objem. hmotnosti Tepelný odpor R neomít. stěny Index vzduchové neprůzvuč. R W Ložení kamionu

Více

TEPELNĚIZOLAČNÍ DESKY MULTIPOR

TEPELNĚIZOLAČNÍ DESKY MULTIPOR TEPELNĚIZOLAČNÍ DESKY MULTIPOR Kalcium silikátová minerální deska Tvarová stálost Vynikající paropropustnost Nehořlavost Jednoduchá aplikace Venkovní i vnitřní izolace Specifikace Minerální, bezvláknitá

Více

NG nová generace stavebního systému

NG nová generace stavebního systému NG nová generace stavebního systému pasivní dům heluz hit MATERIÁL HELUZ ZA 210 000,- Kč Víte, že můžete získat dotaci na projekt 40 000,- Kč a na stavbu cihelného pasivního domu až 490 000,- Kč v dotačním

Více

PŘEKLADY OTVORY V NOSNÝCH STĚNÁCH

PŘEKLADY OTVORY V NOSNÝCH STĚNÁCH PS01 POZEMNÍ STAVBY 1 PŘEKLADY OTVORY V NOSNÝCH STĚNÁCH Ctislav Fiala A418a_ctislav.fiala@fsv.cvut.cz OTVORY V NOSNÝCH STĚNÁCH kamenné překlady - kamenné (monolitické) nosníky - zděné klenuté překlady

Více

Podklad pro provádění systému POROTHERM

Podklad pro provádění systému POROTHERM Podklad pro provádění systému POROTHERM 3. vydání Cihly. Stvořené pro člověka. Moderní systém broušených cihel na DVD Videosekvence technologie zdění broušených cihel POROTHERM CB na DVD 2008 nabízí společnost

Více

PŘÍKLAD: Výpočet únosnosti vnitřní nosné cihelné zdi zatížené svislým zatížením podle Eurokódu 6

PŘÍKLAD: Výpočet únosnosti vnitřní nosné cihelné zdi zatížené svislým zatížením podle Eurokódu 6 PŘÍKLAD: Výpočet únosnosti vnitřní nosné cihelné zdi zatížené svislým zatížením podle Eurokódu 6 A) ČS E 1996-1-1 (Část 1-1: Obecná pravidla pro vyztužené a nevyztužené zděné konstrukce) B) ČS E 1996-3

Více

YQ U PROFILY, U PROFILY

YQ U PROFILY, U PROFILY YQ U Profil s integrovanou tepelnou izolací Minimalizace tepelných mostů Jednoduché ztracené bednění monolitických konstrukcí Snadná a rychlá montáž Norma/předpis ČSN EN 771-4 Specifikace zdicích prvků

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice 13. ZATEPLENÍ OBVODOVÝCH STĚN Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

Nosné překlady HELUZ 23,8 132. Keramické překlady HELUZ ploché 135. Žaluziové a roletové překlady HELUZ 139

Nosné překlady HELUZ 23,8 132. Keramické překlady HELUZ ploché 135. Žaluziové a roletové překlady HELUZ 139 PŘEKLADY HELUZ PŘEKLADY HELUZ Nosné překlady HELUZ 23,8 132 Keramické překlady HELUZ ploché 135 Žaluziové a roletové překlady HELUZ 139 2015-03-01 / Strana 131 Nosné překlady HELUZ 23,8 Použití Nosné překlady

Více

RBZS Úloha 4 Postup Zjednodušená metoda posouzení suterénních zděných stěn

RBZS Úloha 4 Postup Zjednodušená metoda posouzení suterénních zděných stěn RBZS Úloha 4 Postup Zjednodušená metoda posouzení suterénních zděných stěn Zdivo zadní stěny suterénu je namáháno bočním zatížením od zeminy (lichoběžníkovým). Obecně platí, že je výhodné, aby bočně namáhaná

Více

Ceník POROTHERM s platností od PRO OBCHODNÍ PARTNERY

Ceník POROTHERM s platností od PRO OBCHODNÍ PARTNERY Ceník POROTHERM s platností od 1. 6. 2011 PRO OBCHODNÍ PARTNERY Broušené cihly EKO+ Profi Broušené cihly na zdicí pěnu POROTHERM DRYFIX Rozměry cihly d/š/v (cm) Pevnost v tlaku MPa cca kg/ks ks/m 3 v m

Více

HELUZ komplexní cihelný systém

HELUZ komplexní cihelný systém Obsah přednášky HELUZ komplexní cihelný systém cihly stropy překlady - komíny Přednášející: Ing. Miroslav MAŘÍK marketing manažer marik@heluz.cz 1. Česká společnost HELUZ 2. Vývoj cihelných bloků 3. Další

Více

Co to jsou stavební materiály (staviva)? materiály anorganického nebo organického původu používané k výstavbě budov

Co to jsou stavební materiály (staviva)? materiály anorganického nebo organického původu používané k výstavbě budov Co to jsou stavební materiály (staviva)? materiály anorganického nebo organického původu používané k výstavbě budov Co patří mezi stavební materiály? pojiva, malty betonové a železobetonové výrobky cihlářské

Více

Stropy HELUZ miako. stropní vložky stropní nosníky věncovky

Stropy HELUZ miako. stropní vložky stropní nosníky věncovky NG nová generace stavebního systému Stropy HELUZ miako stropní vložky stropní nosníky věncovky Stropní konstrukce HELUZ miako B C D A 3. Strop HELUZ MIAKO je tvořen z keramobetonových stropních nosníků

Více

DODATEČNÁ HYDROIZOLACE ZDIVA VÁCLAV PŘEHNAL 2.S

DODATEČNÁ HYDROIZOLACE ZDIVA VÁCLAV PŘEHNAL 2.S DODATEČNÁ HYDROIZOLACE ZDIVA VÁCLAV PŘEHNAL 2.S HYDROIZOLACE ZDIVA Nerozumnější je si vybrat firmu, která dodatečnou hydroizolace provede. Ta zajistí průzkum zdiva i okolí budovy. Vyhodnotí situaci a určí

Více

Stropy HELUZ miako. stropní vložky stropní nosníky věncovky

Stropy HELUZ miako. stropní vložky stropní nosníky věncovky NG nová generace stavebního systému Stropy HELUZ miako stropní vložky stropní nosníky věncovky Stropní konstrukce HELUZ miako B C D A 3. Strop HELUZ MIAKO je tvořen z keramobetonových stropních nosníků

Více

Nosný roletový a žaluziový. rolety žaluzie

Nosný roletový a žaluziový. rolety žaluzie Nosný roletový a žaluziový překlad HELUZ rolety žaluzie Výhody roletového překladu Heluz až 150 mm 3) 1) 2) 6) 4) 3) 5) 1) 2) 3) 4) 5) 6) Překlad je nosný více než 20 KN/m do délky překladu 2 500 mm U

Více

Pracovní postup Cemix: Omítání dřevocementových stavebních systémů

Pracovní postup Cemix: Omítání dřevocementových stavebních systémů Pracovní postup Cemix: Omítání dřevocementových stavebních systémů Pracovní postup Cemix: Omítání dřevocementových stavebních systémů Obsah 1 Obecné definice... 3 Stavební připravenost... 3 3 Omítání vnitřních

Více

Přednášející: Ing. Zuzana HEJLOVÁ

Přednášející: Ing. Zuzana HEJLOVÁ NAVRHOVÁNÍ ZDĚNÝCH KONSTRUKCÍ ČSN EN 1996 Přednášející: Ing. Zuzana HEJLOVÁ 28.3.2012 1 ing. Zuzana Hejlová NORMY V ČR Soustava národních norem (ČR - ČSNI) Původní soustava ČSN - ČSN 73 1201 (pro Slovensko

Více

Stavte s těmi nejlepšími! PŘÍRUČKA PRO PROVÁDĚNÍ. komplexní cihelný systém HELUZ

Stavte s těmi nejlepšími! PŘÍRUČKA PRO PROVÁDĚNÍ. komplexní cihelný systém HELUZ Stavte s těmi nejlepšími! PŘÍRUČKA PRO PROVÁDĚNÍ komplexní cihelný systém HELUZ ÚVOD VŠEOBECNÉ INFORMACE OBSAH ÚVOD VŠEOBECNÉ INFORMACE 2 ZDĚNÍ Z BROUŠENÝCH CIHEL HELUZ 11 ZDĚNÍ Z NEBROUŠENÝCH CIHEL HELUZ

Více

OBVODOVÉ KONSTRUKCE Petr Hájek 2015

OBVODOVÉ KONSTRUKCE Petr Hájek 2015 OBVODOVÉ KONSTRUKCE OBVODOVÉ STĚNY jednovrstvé obvodové zdivo zdivo z vrstvených tvárnic vrstvené obvodové konstrukce - kontaktní plášť - skládaný plášť bez vzduchové mezery - skládaný plášť s provětrávanou

Více

Zdivo Nejstarší dosud zachovanou konstrukcí u nás z 2. a 1. století př.n.l jsou hradby keltského opida na vrcholu Závist u Zbraslavi

Zdivo Nejstarší dosud zachovanou konstrukcí u nás z 2. a 1. století př.n.l jsou hradby keltského opida na vrcholu Závist u Zbraslavi Stejskal Jakub, 3.S Zdivo je stavební konstrukce vzniklá skládáním zdicích prvků z přírodních nebo umělých staviv (kamenů, cihel, tvárnic atd.) spojovaných maltou nebo kladených na sucho Zděné konstrukce

Více

NOSNÉ STĚNY, SLOUPY A PILÍŘE

NOSNÉ STĚNY, SLOUPY A PILÍŘE NOSNÉ STĚNY, SLOUPY A PILÍŘE KAMENNÉ STĚNY, SLOUPY A PILÍŘE Kamenné zdivo lomové zdivo haklíkové zdivo KAMENNÉ STĚNY Kamenné zdivo řádkové zdivo kyklopské zdivo kvádrové zdivo KAMENNÉ STĚNY vazba rohu

Více

POROTHERM překlad VARIO

POROTHERM překlad VARIO Překlady 1/10 Po uži tí Keramobetonové překlady se používají ve spojení s tepelněizolačními díly VARIO R nebo VARIO Z, s PO RO- THERM překlady 7 a případně se ztužujícím věncem jako nosné prvky nad okenní

Více

ZATEPLUJTE - EFEKTIVNĚ - CHYTŘE - MODERNĚ!

ZATEPLUJTE - EFEKTIVNĚ - CHYTŘE - MODERNĚ! ZATEPLUJTE - EFEKTIVNĚ - CHYTŘE - MODERNĚ! Přednosti! Z jedné dózy lze přilepit až 14 ks polystyrenových desek Broušení a kotvení desek již po 2 hodinách od nalepení Vysoká úspora času viz. Časový harmonogram

Více

YTONG JUMBO Systém velkoformátových pórobetonových tvárnic vhodný pro strojové zdění

YTONG JUMBO Systém velkoformátových pórobetonových tvárnic vhodný pro strojové zdění Systém velkoformátových pórobetonových tvárnic vhodný pro strojové zdění Zkracuje dobu zdění, 0,5 m² zdiva v jenom kroku Snižuje počet zedníků, četa 2 pracovníci Snižuje fyzickou námahu zedníků Zvyšuje

Více

TVÁRNICE ZTRACENÉHO BEDNĚNÍ

TVÁRNICE ZTRACENÉHO BEDNĚNÍ TECHNICKÝ LIST TVÁRNICE ZTRACENÉHO BEDNĚNÍ TVÁRNICE ZTRACENÉHO BEDNĚNÍ tvárnice z prostého vibrolisovaného betonu na bázi cementu a plniva (kameniva) modifikované zušlechťujícími přísadami tvárnice mají

Více

POROTHERM AKU akustické cihly

POROTHERM AKU akustické cihly POROTHERM AKU akustické cihly Cihly. Stvořené pro člověka. PROTIHLUKOVÁ OCHRANA STAVEB Pod pojmem protihluková ochrana staveb se rozumějí opatření, která snižují přenos hluku v prostoru od zdroje hluku

Více

Podklad musí být hladký, čistý a bez nerovností. Izolaci nelze aplikovat, pokud jsou na ploše výstupky, otřepy, hřebíky, šrouby, kamínky atd.

Podklad musí být hladký, čistý a bez nerovností. Izolaci nelze aplikovat, pokud jsou na ploše výstupky, otřepy, hřebíky, šrouby, kamínky atd. λ Izolace vakuová má využití v místech, kde není dostatek prostoru pro vložení klasické tepelné izolace. Je vhodná i do skladeb podlah s podlahovým vytápěním. Používá se ve stavebnictví (v nezatížených

Více

hrubá stavba Hrubá stavba www.staviva.cz

hrubá stavba Hrubá stavba www.staviva.cz 58 www.staviva.cz Hrubá stavba Pálené zdicí materiály...60 Pórobetonové zdicí materiály...85 Liaporbetonové zdicí materiály...94 Betonové zdicí materiály...98 Vápenopískové zdicí materiály...104 Šamotové

Více

PREFABRIKOVANÉ STROPNÍ A STŘEŠNÍ SYSTÉMY Inteligentní řešení

PREFABRIKOVANÉ STROPNÍ A STŘEŠNÍ SYSTÉMY Inteligentní řešení PREFABRIKOVANÉ STROPNÍ A STŘEŠNÍ SYSTÉMY Inteligentní řešení STROPNÍ KERAMICKÉ PANELY POD - Stropní panely určené pro stropní a střešní ploché konstrukce, uložené na zdivo, průvlaky nebo do přírub ocelových

Více

ŽALUZIOVÝ KASTLÍK. Norma/předpis. Popis výrobku a použití. Důležitá upozornění

ŽALUZIOVÝ KASTLÍK. Norma/předpis. Popis výrobku a použití. Důležitá upozornění Systémové řešení Ytong pro bezproblémovou dodatečnou montáž venkovních žaluzií Vhodný pro většinu venkovních žaluzií na trhu, vyvíjeno s výrobci žaluzií Voděodolný, trvanlivý, neobsahuje žádné škodlivé

Více

9 STANOVENÍ POŽÁRNÍ ODOLNOSTI ZDIVA PODLE TABULEK

9 STANOVENÍ POŽÁRNÍ ODOLNOSTI ZDIVA PODLE TABULEK 9 STANOVENÍ POŽÁRNÍ ODOLNOSTI ZDIVA PODLE TABULEK 9.1 Norma ČSN EN 1996-1-2 Evropská norma pro navrhování zděných konstrukcí na účinky požáru EN 1996-1-2 nahrazující předběžnou normu ENV 1996-1-2:1995

Více