o Řetězové polymerizace o Stupňovité polymerizace Základní typy polymerizací
|
|
- Marek Rohla
- před 6 lety
- Počet zobrazení:
Transkript
1 Vznik makromolekuly Základní typy polymerizací o Řetězové polymerizace radikálové iontové: aniontové, kationtové polymerizace za otevření kruhu koordinační polymerizace o Stupňovité polymerizace polykondenzace polyadice
2 Radikálová polymerizace
3 radikálová polymerizace Radikálová polymerizace Výhody: -není velmi citlivá na přítomnost nečitsoty -není tolik citlivá na přítomnost stop kyslíku -lze ji provádět většinou při teplotách 20 až 80 C a atmosférického tlaku -iniciátory jsou většinou netoxické -umožňuje přípravu velkého množství kopolymerů Nevýhody: -nejedná se o stereospecifickou polymerizaci
4 radikálová polymerizace Monomery s dvojnou vazbou C=C (homolytické štěpení) Vinyly C 2 =CR (R=Cl, F, OOCR,C 6 5 ) Vinylideny C 2 =CR 2 (R=Cl, F, CN) Akryláty C 2 =CR (R=CN, COO, COOR ) Methakryláty C 2 =C(C 3 )R (R=CN, COO, COOR ) Allyly C 2 =C-C 2 R (R=O, OR,OOCR ) 1-olefiny C 2 =CR (R=C 3, C 2 5.) pouze krátké oligomery (větvené)
5 radikálová polymerizace
6 radikálová polymerizace iniciace o iniciace radikálem o aktivním centrem jsou volné radikály sloučeniny s nepárovým elektronem + C C R.. S S R C C
7 radikálová polymerizace iniciace Iniciace molekula monomeru se aktivuje působením iniciátoru I R R + M R-M Při iniciaci vznikají primární radikály, které reakcí s molekulou monomeru vytvářejí aktivní centrum. Primární radikál : - vysoce reaktivní radikály (rezonančně nestabilizované) mají krátkou střední dobu života, podílejí se nejen na reakci s monomerem, ale také na vedlejších reakcích polymerizace neprobíhá vůbec nebo vznikají jen polymery s nízkým P n. - málo reaktivní radikály (rezonančně stabilizované) málo reaktivní, působí jako inhibitory reakce (reagují jen s jinými radikály). Vlastnosti používaných iniciátorů jsou někde mezi těmito extrémy. Střední doba života desetiny až jednotky vteřin.
8 radikálová polymerizace Rozdělení iniciátorů Podle způsobu, jakým vznikají: - termické štěpení kovalentních vazeb - fotolytický rozklad kovalentních vazeb - oxidačně redukční reakce - štěpení kovalentních vazeb účinkem záření s vysokou energií - elektrochemicky
9 radikálová polymerizace Zahřátím ( C) dochází k rozpadu iniciátoru a vzniku dvou primárních volných radikálů Termický rozklad iniciátorů dibenzoylperoxid 2 benzoyloxy radikály str.70 Prokop Do této skupiny patří: peroxidy diacylperoxidy(i), dialkylperoxidy(ii), peroxyestery(iii), peroxydikarbonáty(iv), hydroperoxidy(v), anorganické peroxidy azosloučeniny 2,2 -azo-bis(isobutyronitril) (AIBN)
10 radikálová polymerizace Primární volný radikál se může účastnit těchto reakcí: - s monomerem za vzniku aktivního centra - dalšího rozkladu primárního radikálu - indukovaného rozkladu peroxidů - vzájemné reakce (rekombinace) dvou radikálů za vzniku stabilního produktu způsobuje pokles koncentrace radikálů tím snižuje účinnost iniciátoru klecový efekt. Počet primárních radikálů podílejících se na iniciační reakci Celkový počet primárních radikálů vzniklých rozpadem iniciátoru
11 radikálová polymerizace PROPAGACE Propagace dochází k růstu řetězce makromolekuly R-M + M R-M-M + M P n + M R-M-M P n+1 R-M-M-M o Monomer reaguje s primárním radikálem tím ochotněji, čím je vznikající růstové centrum více rezonančně stabilizované. o Málo rezonančně stabilizovaná růstová centra vznikají při iniciaci obtížně. S S = -OR, -COC 3, -CN, -OOCR, -C=C 2, -C 2 R, -Cl, -C 6 5, -COOR
12 radikálová polymerizace PROPAGACE Rezonanční stabilizace radikálových vinylových monomerů klesá v řadě: Tab str.75 Prokop
13 radikálová polymerizace PROPAGACE Koncentrace iniciátoru v polymerizujícím systému je nízká. Důvod: mol l -1 1) Více rostoucích aktivních center = více exotermních reakcí (rychlost propagace) = problém s odvodem tepla 2) Více rostoucích aktivních center = větší pravděpodobnost rekombinace = snížení polymeračního stupně
14 radikálová polymerizace Terminace dochází k ukončení růstu řetězce makromolekuly TERMINACE P n + P m P n -P m rekombinace P n + P m disproporcionace Po době řádově několika sekund dochází k ukončení aktivního centra (makroradikálu). Rekombinace spojení dvou aktivních center, nízká aktivační energie Disproporcionace musí dojít k přesunu atomu vodíku, více energeticky náročná reakce, podíl disproporcionace na terminaci záleží na podmínkách reakce (teplota).
15 radikálová polymerizace TERMINACE Přenosové reakce Dochází k přenosu radikálu z aktivního centra rostoucího řetězce na jinou chemickou strukturu P n + X P n + X Přenosová rce je vždy spojena s výměnou atomu (, X) Přenašeč složky polymerizačního systému: - přenos monomerem - přenos polymerem - přenos rozpouštědlem - přenos iniciátorem - přenos regulátorem molárních hmotností
16 C C S C C S C C S C C S C C S C C S Přenos monomerem Uplatňuje se při vyšších polymerizačních teplotách Regulace průměrné molární hmotnosti pomocí teploty (polyvinylchlorid) radikálová polymerizace
17 radikálová polymerizace Přenos polymerem C C R C 2 C R C 2 C 2 S S S R C 2 C S R o Zaniká růstové aktivní centrum na konci lineární makromolekuly o Vzniká růstové aktivní centrum uvnitř makromolekuly o Dochází k větvení o Délka větve je srovnatelná se délkou primární makromolekuly o Může dojít až k sesítění o Je možný také intramolekulární přenos radikálu
18 radikálová polymerizace Přenos polymerem
19 radikálová polymerizace Přenos rozpouštědlem ocílené snižování (regulace) molární hmotnosti polymerů ovyužití látek s relativně vysokou přenosovou konstantou - regulátory očasto se s výhodou jako regulátory používají rozpouštědla (CCl 4, CBr 4, disulfidy, thioly)
20 Další možnosti zániku či snížení reaktivity aktivních center: - Reakce s primárním radikálem - Reakce s látkou za vzniku vysoce stabilizovaného radikálu neschopného adice další molekuly monomeru tyto látky zastaví polymerizaci inhibitory (chinony, alkylfenoly, thiokarbonáty). Zabránění samovolné polymerizace během skladování - Reakce s látkou za vzniku stabilizovaného radikálu, který aduje další molekulu monomeru s menší rychlostí ve srovnání s původním makroradikálem retardéry.
21 Iontové polymerizace
22 Iontové polymerizace Iontové polymerizace aniontové, kationtové v závislosti na typu rostoucího aktivního centra Porovnání s radikálovými polymerizacemi: - více selektivní (monomery: dvojná/trojná vazba CC stabilizace iontových RC, C=heteroatom) - citlivé na přítomnost nečistot a vody - dražší (komplikace s podmínkami) - nelze dojít ke končení růstu řetězce rekombinací - jsou rychlejší (možná vyšší koncentrace růstových center) - kationtová (polyisobutylen), aniontová (formaldehyd), cyklické
23 Iontové polymerizace Vznik vysokomolekulárního polymeru Dostatečná doba života rostoucího makroiontu (forma RC prostředí rce) o Potlačení terminačních a přenosových reakcí o Stabilizace rostoucího aktivního centra solvatací vhodně zvolené rozpouštědlo (mírně polární)
24 Iontové polymerizace Kationtové polymerizace Vinylové monomery s elektrondonorním substituentem - zvyšuje elektronovou hustotu na dvojné vazbě - Umožněn vznik kationtových RC - karbokationt O - O + kladný mezomerní efekt alkoxy-, fenyl- substituent R R R kladný indukční efekt alkyl- substituenty
25 Iontové polymerizace Kationtové polymerizace Elektrondonorní substituent - zvyšuje elektronovou hustotu na dvojné vazbě - S = alkyl-, alkenyl-, alkoxy-, fenyl- - mohou polymerizovat kationtově růstové centrum je kation AN - + S S + C C C 2 C+ 2 C 2 S C S S C 3 C C 2 C + polymerizace C 2 S C n Kationtově se polymerizují alkylvinylethery, 2-methylpropen, isopren, buta-1,3-dien, styren.
26 Iontové polymerizace Kationtové polymerizace Iniciace: (adicí elektrofilní částice na monomer) Silné kyseliny (Cl, 2 SO 4, 3 PO 4,ClO 4,CF 3 COO) o Nejsou využívány často pro vysokou nukleofilitu aniontu (X) reaguje s karbokationtem za vzniku kovalentní vazby (zánik RC) o M cca 10 3 g/mol AN - + S S + C C C 2 C+ 2 C 2 S C S S C 3 C C 2 C + polymerizace C 2 S C n ClO 4 + C 2 =C(C 3 ) 2 (C 3 ) 3 C + [ClO 4 ] -
27 Iontové polymerizace Iniciace: Kationtové polymerizace Lewisovy kyseliny (AlCl 3, BF 3, SnCl 4, TiCl 4 atd.) o Silné akceptory el. párů o Nejpoužívanější iniciátory kationtové polymerizace o Samy o sobě neposkytují kladně nabitou částici o Pro jejich funkci jako iniciátoru potřebují koiniciátor -donor protonu/karbokationtu BF O + [BF 3 O] - lavní výhodou je nízká nukleofilita komplexních aniontů ve srovnání s protonovými kyselinami. V roztoku jsou plně disociovány.
28 Iontové polymerizace Kationtové polymerizace Propagace: o Růstovým centrem jsou převážně iontové páry o Reakce probíhá v nepolárním nebo slabě polárním prostředí o Adice monomeru na růstové centrum ( vsouvání mezi karbokation a záporný protion) o Průběh polymerizace závisí na: (I efekt, M efekt) O - O + schopnosti substituentu posilovat nukleofilitu dvojné vazby R R R + O R O + stabilizaci karbokationtu růstového centra R R
29 Iontové polymerizace Kationtové polymerizace Terminace: Rostoucí centra není možné ukončit rekombinací stejně nabitá aktivní centra se odpuzují. Ze stejného důvodu není možná ani disproporcionace. Končení řetězce je většinou spojeno s přenosovou reakcí
30 Iontové polymerizace Kationtové polymerizace Přenos na monomer: Nejvýznamnější přenos v kationtové polymerizaci: Přenáší se proton z aktivního centra na monomer a vzniká makromolekula s nenasycenou koncovou skupinou.
31 Iontové polymerizace Kationtové polymerizace Přenos na monomer: Zánikem rostoucího centra makroradikálu současně vzniká nové růstové centrum (nezaniká kinetický řetězec). Přenos má vliv na výsledný průměrný polymerační stupeň Přenos na monomer má vyšší aktivační energii než propagace (nízká teplota snižuje počet přenosových rcí) S rostoucí teplotou roste i přenos na monomer (pokles M).
32 Iontové polymerizace Kationtové polymerizace Další způsoby ukončení růstu řetězce: Přenos na protion (spontánní terminace, zánik kinetického centra) Přenos na polymer (např. u polypropylenu) Přenos na rozpouštedlo (aromatická rozpouštědla, ethery) Ukončení růstu řetězce přídavkem nukleofilního činidla (nečistoty) Desaktivace iniciátoru silné nukleofily (2O, -O, -COO) rychlé zastavení polymerizace Živé polymerizace nedochází k zániku růstových center a ty jsou zachována až do úplného vyčerpání monomeru Možnost přenosové rce závisí na reaktivitě RC míře ionizace/disociace (rozpouštědlo, T, struktura protiontu)
33 Iontové polymerizace Kationtové polymerizace Velice málo se tato polymerizace používá v průmyslu Důvody - Velká reaktivita a zároveň nestabilita makroiontu - Náklady na rozpouštědla Polyisobutylen poly(1,1-dimethylethylen) Prakticky jediný polymer připravovaný průmyslově kationtovou polymerizací
34 Iontové polymerizace Aniontové polymerizace 1) Elektronakceptorní substituent - snižuje elektronovou hustotu na dvojné vazbě - S = -NO 2, -CO-R, -COOR, -CN, - mohou polymerizovat aniontově růstové centrum je anion Nu - + C 2 S C Nu S C 2 C - C 2 S C S S - polymerizace Nu C 2 C C 2 C C 2 C S n Růstové centrum je rezonančně stabilizováno. Aniontově polymerizují olefiny s elektonakceptorními S (schopné rezonančně stabilizovat aniontové RC) : akrylonitril, estery kyseliny akrylové, styren
35 Iontové polymerizace Aniontové polymerizace Nevýhody oproti radikálové polymerizaci: - Požití drahých a neekologických rozpouštědel - Drahé iniciátory Praktické využití zejména při výrobě kopolymerů
36 Iontové polymerizace Iniciace Volba iniciátoru závisí na typu monomeru (alkalické kovy, slč alkalických kovů) Schopnost monomeru polymerizovat aniontově je dána především povahou substituentu. Nu - + C 2 S C Nu Aniontové polymerizace S C 2 C - C 2 S C S S - polymerizace Nu C 2 C C 2 C C 2 C S n Substituent je silný akceptor elektronů (1-nitro-1-propen), (vinilidenkyanid, estery kys. kyanakrylové) Iniciace slabou bází (KCO 3 ), (vlhkost) Substituent je středně elektrofilní (akrylonitril, akryláty, methakryláty) Iniciace střední bází (alkoholáty, aminy, Grignarovy slč) Substituent je slabý akceptor elektronů (styren, butadien) Iniciace silnou bází (amid draselný, alkalický organokov např. butyllithium)!vliv rovněž: rezonanční stabilizace RC, solvatační schopnost rozpouštědla
37 Iontové polymerizace Aniontové polymerizace iniciace: Adice aniontu iniciátoru (nukleofil) na monomer R - + C C R C C- S S Např. polymerizace styrenu pomocí amidu draselného
38 Iontové polymerizace Aniontové polymerizace Propagace Dochází k adici monomeru na aktivní centrum, kterým je karbanion. Reaktivita aniontově polymerizujících monomerů klesá v řadě: (čím nižší je e hustota na C s dvojnou vazbou, tím výraznější je I a M efekt substituentu a tím snáze probíhá růstová rce) Přítomnost methylu v α poloze snižuje reaktivitu, methylakrylát je reaktivnější než methylmethakrylát.
39
40 Iontové polymerizace Aniontové polymerizace Terminace Aktivní centra jsou rezonančně stabilizovaná malý sklon k přenosovým reakcím. Končení může nastat v důsledku nečistot (voda -stopy, alkoholy) - reakcí s těmito látkami dochází k přenosu protonu a ukončení růstu. Bez přítomnosti nečistot jsou i po vyčerpání monomeru přítomna růstová centra živá polymerizace (polystyren) terminace záměrně dodaným přenašečem (alkohol)
41 Iontové polymerizace Aniontové polymerizace Průmyslově pouze aniontová polymerizace formaldehydu aniontové polymerizace cyklických monomerů Aniontová kopolymerizace kopolymerů {polystyren-blokpoly(methylmethakrylát)}
42 Iontové polymerizace Aniontové polymerizace Vteřinové lepidlo Methyl-α-kyanakrylát - estery kys. α-kyanakrylové silně elektrofilní, iniciace polymerizace vlivem vlhkosti
43 Polymerizace cyklických monomerů Příklady Tab mlez
44 Polymerizace cyklických monomerů Termodynamické hledisko: -snadněji polymerizují 3,4členné a pak 8 a vícečlenné kruhy pnutí v cyklu G odpuzování substituentů v cyklu T S Při otevření kruhu dochází ke zvýšení stupně volnosti (ΔS>0) Podmínky polymerizovatelnosti: - přítomnost dvojné vazby nebo heteroatomu v cyklu - použití vhodného katalyzátoru (iontový, koordinační) Stropní teplota je nízká (především při polymerizaci 5 a 6členných kruhů).
45 Energie pnutí [kcal/mol] Energie pnutí v cyklických alkánech v závislosti na velikosti jejich řetězce. Velikost řetězce 45
46 G T S Příklad pro cyklo-propan: -113-(273+25)*(-69.1*0.001)=
47 Polyamid 6 1) ydrolytický mechanizmus Polyamid 6 Malý přídavek vody vede k hydrolýze hexano-6-laktamu (6- kaprolaktamu) na kyselinu 6-aminohexanovou. Množství vody ovlivňuje průměrnou molární hmotnost. Má znaky polykondenzační reakce.
48 Polysiloxany Lineární nízkomolekulární / vysokomolekulární vznikají alkalickou (KO) polymerizací cyklických monomerů. Možnost síťování - činidlo (tetraethylsilikát) cyklosiloxany
49 n Okta methyl tetra siloxan Poly dimethyl siloxan Polydimethylsiloxan (PDMS), patří do skupiny polymerních organokřemičitých sloučenin, které se běžně označují jako silikon. PDMS je nejrozšířenější organický polymer obsahující křemík. PDMS je opticky čistý, inertní, netoxický a nehořlavý. Jeho aplikace sahají od kontaktních čoček po prostředky zdravotnické techniky v podobě elastomerů. Je přítomen také v šamponech (jako dimethicone dělá vlasy lesklé a kluzké), potravinách (odpěňovač), těsnění. Používá se v mazacích olejích a pro výrobu tepelně odolných dlaždic. 49
50 Polyethery Polyethylenoxid, polypropylenoxid Aniontová polymerizace (iniciátor KO, R-ONa) Kosmetický a farmaceutický průmysl, zahušťovadlo tuší a inkoustů C 2 C 2 O KO O C 2 C 2 O n
51 Koordinační polymerizace polyinzerce, stereospecifické polymerizace
52 koordinační polymerizace Polyinzerce, stereospecifické polymerizace Polyethylen (DPE, UMWPE) polypropylen poly(but-1-en) poly(4-methylpent-1-en) polystyren 1,4-polyisopren 1,4-polybutadien izotaktický syndiotaktický cis, trans
53 koordinační polymerizace Dvousložkový systém: Ziegler Nattovy katalyzátory 1. složka: halogenidy, oxyhalogenidy (a další) přechodných kovů IV.-VIII. skupiny (Ti, V, Cr, Mo, Zr) 2. složka: organometalické slč - alkyl-, aryl- deriváty, hydridy hliníku, lithia, zinku, cínu atd. Katalyzují v každém kroku (X iniciátory) Nejznámější systém: TiCl 3, TiCl 4 s trialkylaluminiem
54 koordinační polymerizace Navržené mechanismy růstových reakcí 1) Monometalický 2) Bimetalický
55 koordinační polymerizace Chloridy přechodných kovů jsou krystalické atomy kovů jsou oktaedricky koordinovány (každý atom kovu je obklopen 6 atomy chloru) Zrání katalyzátoru výměnné alkylační reakce Vznik prázdných (vakantních) míst (na povrchu krystalu je koordinace porušena volný d-orbital) Aktivní centrum pro koordinační polymerizaci
56 koordinační polymerizace monometalický Syndiotaktický polypropylen
57 koordinační polymerizace Bimetalický Isotaktický polypropylen U obou mechnaismů roste řetězec od povrchu katalyzátoru
58 koordinační polymerizace Metallocenové katalyzátory M je přechodný kov (Zr, Ti, f), X je Cl nebo alkyl, Z je C(C 3 ) 2, Si(C 3 ) 2, C 2 C 2 Jsou 10x až 100x účinnější než klasické Ziegler-Nattovy katalyzátory. Vhodnou volbou metallocenu lze řídit stereospecifitu polymerizace.
59 ometallocenové polymery oužší distribuce M ořízení stereospecifity polymerizace (ataktické, izotaktické, syndiotaktické) opolymerizace cykloalkenů
60
61 Řetězové polymerizace Charakterické znaky řetězových polymerizací o Molekuly rostou opakovanou adicí na aktivní centrum. o Koncentrace monomeru se snižuje postupně v průběhu polymerizace. o Pro vznik vysokomolekulárního polymeru nejsou nutné dlouhé reakční časy. o Průměrný polymerační stupeň se mění s časem jen málo. o Koncentrace rostoucích molekul je malá (10-8 až 10-3 M). o Čas potřebný k vytvoření dlouhé makromolekuly je řádově několik sekund.
62 Polymery připravované řetězovými polymerizacemi
63 Polyethylen Základní typy: - LDPE (low density PE) nízkohustotní PE, vysokotlaký - DPE (high density PE) vysokohustotní PE, nízkotlaký - UMWPE (ultra high molecular weight PE) ula hoop 1957
64 Polyethylen LDPE (low density PE) nízkohustotní PE, vysokotlaký: - nejstarší způsob výroby PE (1933) - probíhá radikálovým mechanizmem - iniciace kyslíkem (0,1%) - teplota 200 C, tlak 300 MPa - vznik vysoce větveného polymeru (přenos na polymer) - hustota ~0,92 g cm -3 - podíl krystalické fáze 50 až 70 %
65 Polyethylen LDPE (low density PE) nízkohustotní PE, vysokotlaký: Použití: - fólie, sáčky, tašky - vrstvení a vytlačování (kartony na mléko) - plastové lahve - trubky
66 Polyethylen DPE (high density PE) vysokohustotní PE, nízkotlaký: - výroba zahájena v roce probíhá koordinační reakcí - požití Ziegler Nattových katalyzátorů - teplota ~120 C, 3 MPa (v rozpouštědle) - vznik lineárních makromolekul (M w = tisíc) - hustota ~0,94 g cm -3 - podíl krystalické fáze ~70-80%
67 Polyethylen DPE (high density PE) vysokohustotní PE, nízkotlaký: Použití: - fólie, sáčky, tašky (menší tloušťka {lepší mechanické vlastnosti} ve srovnání s LDPE) - zásobníky, kontejnery, palety
68 Polyethylen UMWPE (ultra high molecular weight PE): - probíhá koordinační reakcí - použití metallocenových katalyzátorů - teplota ~60 C; 0,2 MPa (suspenzní způsob) - vznik lineárních makromolekul (M w = tisíc) - hustota 0,95-0,97 g cm -3 - podíl krystalické fáze ~85-95 %
69 Polyethylen UMWPE (ultra high molecular weight PE): Použití: Dyneema vlákno s vysokou pevností (10x pevnější než Kevlar) neprůstřelné vesty, rybářské vlasce, lana pro námořnictví, kompozitní materiály s uhlíkovými vlákny (snowboard apd.)
70 Polypropylen - polymerizace probíhá pouze koordinační reakcí - požití Ziegler Nattových katalyzátorů - vzniklé makromolekuly jsou stereoregulární (izotaktický polymer), vzniká však i malé množství ataktické fáze zhoršuje vlastnosti, vymývá se. - index izotakticity vyšší než 90 % - vlastnostmi podobný PE(LD-D) - podobné použití jako PE
71 Polystyren Standardní polystyren - polymerizace může probíhat všemi mechanizmy - komerčně se používá radikálová suspenzní nebo bloková polymerizace - vodná fáze, peroxidický iniciátor, stabilizátor suspenze - technický PS je ataktický - je průzračný s vysokým leskem
72 Polystyren Standardní polystyren Použití - spotřební a obalový průmysl (kelímky, misky, podnosy) Zpěňovatelný polystyren Použití: - transportní obaly - izolační vrstvy ve stavebnictví - plováky - dekorace
73 Polyvinylchlorid - polymerizace může probíhat radikálově a aniontově - komerčně se používá radikálová suspenzní polymerizace - vodná fáze, peroxidický iniciátor, stabilizátor suspenze - ataktický polymer, stupeň krystalizace ~3 % Změkčovadla nízkomolekulární látky ovlivňující vlastnosti polymeru (T m a T g ) - přidávají se do PVC, zlepšují zpracovatelnost i další vlastnosti - estery kyseliny ftalové, estery jiných dikarboxylových kyselin - lehčené, houževnaté PVC
74 Polyvinylchlorid Použití: Tvrdé PVC - potrubí - profily do stavebnictví (okenní rámy) - duté výrobky (láhve na čistící prostředky a kosmetiku) - fólie a desky k obkládání fasát Měkčené PVC - fólie (ubrusy) - izolace elektrických vodičů - podlahoviny - koženky na sedadla, tapety - hračky, těsnění, rukavice
Řetězová polymerizace
Řetězová polymerizace Řetězové polymerizace 3 odlišné kroky iiciace Propagace Terminace Initiating species Chain Step-Growth Iontové polymerizace aniontové, kationtové v závislosti na typu rostoucího aktivního
Řetězové polymerizace
Řetězové polymerizace Polyethylen Polypropylen Polystyren Polyvinylchlorid Kaučuky PMMA PTFE Polyakryláty.. 2 Řetězová polymerizace Řetězové polymerizace 3 odlišné kroky iiciace Propagace Terminace Initiating
Iontové polymerizace
Iontové polymerizace Vznik makromolekuly Podmínky vzniku makromolekuly 1) chemická podmínka Výchozí nízkomolekulární látka(y) musí být z pohledu polymerní reakce nejméně dvoufunkční 2) termodynamická podmínka
Podmínky vzniku makromolekuly
Podmínky vzniku makromolekuly Vznik makromolekuly Podmínky vzniku makromolekuly 1) chemická podmínka Výchozí nízkomolekulární látka(y) musí být z pohledu polymerní reakce nejméně dvoufunkční 2) termodynamická
o Řetězové polymerizace o Stupňovité polymerizace Základní typy polymerizací
vznik makromolekuly Vznik makromolekuly Základní typy polymerizací o Řetězové polymerizace radikálové iontové: aniontové, kationtové polymerizace za otevření kruhu koordinační polymerizace o Stupňovité
Polymerizace. Polytransformace
vznik makromolekuly Polymerizace Polytransformace Podmínky vzniku makromolekuly Podmínky vzniku makromolekuly 1) chemická podmínka Výchozí nízkomolekulární látka(y) musí být z pohledu polymerní reakce
Polymery lze rozdělit podle několika kritérií. Podle původu rozlišujeme polymery přírodní a syntetické. Přírodní polymery jsou:
MAKROMOLEKULÁRNÍ LÁTKY (POLYMERY) Makromolekuly jsou molekulové systémy složené z velkého počtu atomů vázaných chemickými vazbami do dlouhých řetězců. Tyto řetězce tvoří pravidelně se opakující části,
Kopolymerace polymerace dvou a více monomerů
Kopolymerace polymerace dvou a více monomerů ( 1 monomer homopolymer; 2 monomery kopolymer; 3 monomery ternární kopolymer [ př ABS]) mezní případy kopolymerace: n A n B A A n B B n A B n Struktury vznikajících
Alkeny. Alkeny. Největšíprůmyslový význam majíethen (ethylen) a propen (propylen) jako suroviny pro další přeměny nebo pro polymerace
Alkeny Dvojná vazba je tvořena jednou vazbou sigma a jednou vazbou pí. Dvojná vazba je kratší než vazba jednoduchá a všechny čtyři atomy vázané na dvojnou vazbu leží v jedné rovině. Fyzikální vlastnosti
MAKROMOLEKULÁRNÍ LÁTKY
MAKROMOLEKULÁRNÍ LÁTKY 1. Základní pojmy - makromolekulární látky = molekulové systémy složené z velkého počtu atomů, které jsou vázány chemickou vazbou do dlouhých řetězců - řetězce jsou tvořeny stavebními
Makromolekulární látky
Makromolekulární látky Učební texty k výuce chemie školní rok 2016/2017 Makromolekuly látky složené z velkého počtu atomů vázaných chemickými vazbami do dlouhých řetězců látky s velkou relativní molekulovou
Úvod do studia organické chemie
Úvod do studia organické chemie 1828... Wöhler... uměle připravil močovinu Organická chemie - chemie sloučenin uhlíku a vodíku, případně dalších prvků (O, N, X, P, S) Příčiny stability uhlíkových řetězců:
PLASTY A SYNTETICKÁ VLÁKNA
PLASTY A SYNTETICKÁ VLÁKNA Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 15. 1. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Chemie a společnost 1 Anotace: Žáci se seznámí
Vlastnosti. Pozor! H 3 C CH 3 H CH 3
Alkeny Vlastnosti C n 2n obsahují dvojné vazby uhlíky v sp 2 hybridizaci násobná vazba vzniká překryvem 2p orbitalů obou atomů uhlíku nad a pod prostorem obsazeným vazbou aby k překryvu mohlo dojít, musí
www.zlinskedumy.cz Inovace výuky prostřednictvím šablon pro SŠ
Název projektu Číslo projektu Název školy Autor Název šablony Název DUMu Inovace výuky prostřednictvím šablon pro SŠ CZ.1.07/1.5.00/34.0748 Gymnázium Jana Pivečky a Střední odborná škola Slavičín Mgr.
Karbonylové sloučeniny
Karbonylové sloučeniny více než 120 o 120 o C O C C d + d - C O C sp 2 C sp 2 R C O H R 1 C O R 2 1.aldehydy, ketony Nu E R C O R C O 2. karboxylové kyseliny a funkční deriváty O H 3. deriváty kys. uhličité
Reakce alkanů 75. mechanismem), iniciované světlem nebo radikálovými iniciátory: Oxidace kyslíkem, hoření, tvorba hydroperoxidů.
eakce alkanů 75 5. eakce alkanů Alkany poskytují především radikálové reakce (často probíhající řetězovým mechanismem), iniciované světlem nebo radikálovými iniciátory: alogenace pomocí X 2 ; bromaci lze
Organická chemie (KATA) rychlý souhrn a opakování
Organická chemie (KATA) rychlý souhrn a opakování Molekulové orbitaly hybridizace N a O Polarita vazby, induktivní efekt U kovalentní vazby mezi rozdílnými atomy, nebude elektronový pár oběma atomy sdílen
Opakování
Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 LRR/CHPB2 Chemie pro biology 2 Reakce a reakční mechanismy v organické chemii Lucie Szüčová Osnova: homolytické a heterolytické
VIII. 6.5 Polyadice. H. Schejbalová & I. Stibor, str. 179. I. Prokopová, str. 181. D. Lukáš 2013
VIII. 6.5 Polyadice H. Schejbalová & I. Stibor, str. 179. I. Prokopová, str. 181. D. Lukáš 2013 1 Vzdělávací záměr 1. Polyadice obecný průběh polyadice, odlišnosti od polykondenzace. 2. Syntéza polyuretanů
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Plasty Plasty, známé také pod názvem plastické hmoty nebo pod ne zcela přesným (obecnějším) názvem umělé hmoty,
Názvosloví Konformace Isomerie. Uhlíky: primární (1 o ) sekundární (2 o ) terciární (3 o ) kvartérní (4 o )
ALKANY 1 Názvosloví Konformace Isomerie Uhlíky: primární (1 o ) sekundární (2 o ) terciární (3 o ) kvartérní (4 o ) 2 Alkany (resp. cykloalkany) jsou nejzákladnější organické sloučeniny složené pouze z
Vítězslav Bártl. srpen 2012
VY_32_INOVACE_VB18_Plast Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, vzdělávací obor, tematický okruh, téma Anotace Vítězslav
Polymerační způsoby. Bloková polymerace: monomer + iniciátor (0,1%) + (event. regulátor)
Polymerační způsoby Technika provedení radikálové polymerace: Polymerace homogenní: a) bloková b) roztoková Polymerace heterogenní: a) srážecí b) suspenzní c) emulzní d) ostatní polymerace Bloková polymerace:
VIII.6.2.4 Polymerizace cyklických sloučenin (monomerů)
http://uloz.to/xkf9ybh/makromolekularni-chemie-prokopova-irena-pdf VIII.6.2.4 Polymerizace cyklických sloučenin (monomerů) H. Schejbalová & I. Stibor, str. 164-164 I. Prokopová, str. 146-152 D. Lukáš 2013
Karboxylové kyseliny a jejich funkční deriváty
Karboxylové kyseliny a jejich funkční deriváty Úvod Karboxylové kyseliny jsou nejdůležitější organické kyseliny. Jejich funkční skupina je karboxylová skupina a tento název je složen ze slov karbonyl a
Alkyny. C n H 2n-2 (obsahuje jednu trojnou vazbu) uhlíky v sp hybridizaci
Alkyny C n H 2n-2 (obsahuje jednu trojnou vazbu) uhlíky v sp hybridizaci 1 Klasifikace 2 Alkyny - dvě π vazby; lineární uspořádání Pozor! 3 Vlastnosti -π elektrony jsou méně mobilní než u alkenů H CH 3
H H C C C C C C H CH 3 H C C H H H H H H
Alkany a cykloalkany sexta Martin Dojiva uhlovodíky obsahující pouze jednoduché vazby obecný vzorec alkanů: C n 2n+2 cykloalkanů: C n 2n homologický přírůstek C 2 Dělení alkanů přímé větvené u větvených
ALKENY NENASYCENÉ UHLOVODÍKY
ALKENY NENASYCENÉ ULOVODÍKY 1 ALKENY - mají ve svých molekulách alespoň jednu dvojnou vazbu- C=C homologický vzorec : C n 2n názvy od alkanů zakončeny koncovkou en CYKLOALKENY - homologický vzorec : C
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
1. ročník Počet hodin
SOUSTAVY LÁTEK A JEJICH SLOŽENÍ rozdělení přírodních látek a vlastnosti chemických látek soustavy látek a jejich složení STAVBA ATOMU historie pohledu na atom složení a struktura atomu stavba atomu VELIČINY
MATERIÁLY A TECHNOLOGIE 1 PAVEL ČERNÝ
MATERIÁLY A TECHNOLOGIE 1 PAVEL ČERNÝ Co vás napadne, když se řekne plast? Proč právě plasty? skupina syntetických materiálů slovo plast ze slova plastický, tvárný, formovatelný název plyne z chemické
VII.6.4 Polykondenzace Lineární polymery. H. Schejbalová & I. Stibor, str I. Prokopová, str D. Lukáš 2013
VII.6.4 Polykondenzace Lineární polymery H. Schejbalová & I. Stibor, str. 172. I. Prokopová, str. 157. D. Lukáš 2013 1 Vzdělávací záměr 1. Polykondenzace uvést obecný průběh stupňovité reakce 2. Příklady
Obsah. 2. Mechanismus a syntetické využití nejdůležitějších organických reakcí 31 2.1. Adiční reakce 31 2.1.1. Elektrofilní adice (A E
Obsah 1. Typy reakcí, reakčních komponent a jejich roztřídění 6 1.1. Formální kritérium pro klasifikaci reakcí 6 1.2. Typy reakčních komponent a způsob jejich vzniku jako další kriterium pro klasifikaci
Ethery, thioly a sulfidy
Ethery, thioly a sulfidy Úvod becný vzorec alkoholů je R--R. Ethery Názvosloví etherů Názvy etherů obsahují jména alkylových a arylových sloučenin ze kterých tvořeny v abecedním pořadí následované slovem
kopolymerace kopolymery
kopolymerace kopolymery 1 kopolymery - homopolymer - kopolymer - vzniklé ze dvou či více druhů monomerů - Kopolymerizace (řetězová, stupňovitá) - pseudokopolymer (PVA) - PA, PES není kopolymer Syntetické
Radikály jsou zároveň velmi reaktivní - stabilních radikálů, které lze izolovat a skladovat, není příliš mnoho.
Radikálové reakce se odlišují od reakcí, se kterými jsme se dosud setkali. Při zápisu mechanismů nebudeme přesunovat elektronové páry, ale pouze jeden elektron. To se mimojiné projeví na způsobu, jak takové
Přírodní proteiny, nukleové kyseliny (NA)
kopolymery 1 kopolymery - homopolymer - kopolymer - vzniklé ze dvou či více druhů monomerů - Kopolymerizace (řetězová, stupňovitá) - pseudokopolymer (PVA) - PA, PES není kopolymer Syntetické akrylonitril-butadien-styrenový
Aminy a další dusíkaté deriváty
Aminy a další dusíkaté deriváty Aminy jsou sloučeniny příbuzné amoniaku, u kterých jsou nahrazeny jeden, dva nebo všechny tři atomy vodíku alkylovými nebo arylovými skupinami. Aminy mají stejně jako amoniak,
Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal.
Chemická vazba Volné atomy v přírodě jen zcela výjimečně (vzácné plyny). Atomy prvků mají snahu se navzájem slučovat a vytvářet molekuly prvků nebo sloučenin. Atomy jsou v molekulách k sobě poutány chemickou
Využití: LDPE HDPE HDPE Nízkohustotní polyethylen:
Termoplasty představují největší skupinu plastů termoplast je plastický, deformovatelný materiál z termoplastů se dají vyrábět díly velmi levně vstřikováním do forem a vtlačováním do forem výrobky z termoplastů
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 16, 566 01 Vysoké Mýto Alkeny Vlastnosti dvojné vazby Hybridizace uhlíku vázaného dvojnou vazbou je sp. Valenční úhel který svírají vazby na uhlíkovém atomu je přibližně
Jaromír Literák. Zelená chemie Problematika odpadů, recyklace
Zelená chemie Problematika odpadů, recyklace Problematika odpadů Vznik odpadů a odpadní energie ve všech fázích životního cyklu. dpadem se může stát samotný výrobek na konci životního cyklu. Vznik odpadů
18. Reakce v organické chemii
1) homolýza, heterolýza 2) substituce, adice, eliminace, přesmyk 3) popis mechanismů hlavních typů reakcí (S R, A E, A R ) 4) příklady 18. Reakce v organické chemii 1) Homolýza, heterolýza KLASIFIKACE
HALOGENDERIVÁTY UHLOVODÍKŮ
HALOGENDERIVÁTY UHLOVODÍKŮ R X, Ar - X Obsahují ve svých molekulách vazbu uhlík-halogen (C-X) -I > +M Například : chlormethan, methylchlorid trichlormethan, chloroform trijodmethan, jodoform chlorid uhličitý,
EU peníze středním školám digitální učební materiál
EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky
Autor: Tomáš Galbička Téma: Alkany a cykloalkany Ročník: 2.
Alkany uhlovodíky s otevřeným řetězcem a pouze jednoduchými vazbami vazby sigma, největší výskyt elektronů na spojnici jader v názvu mají koncovku an Cykloalkany uhlovodíky s uzavřeným řetězcem a pouze
Základní chemické pojmy
MZ CHEMIE 2015 MO 1 Základní chemické pojmy Atom, molekula, prvek, protonové číslo. Sloučenina, chemicky čistá látka, směs, dělení směsí. Relativní atomová hmotnost, molekulová hmotnost, atomová hmotnostní
PÍSEMNÁ ČÁST PŘIJÍMACÍ ZKOUŠKY Z CHEMIE bakalářský studijní obor Bioorganická chemie 2011
Kód uchazeče:... Datum:... PÍSEMNÁ ČÁST PŘIJÍMACÍ ZKUŠKY Z CHEMIE bakalářský studijní obor Bioorganická chemie 2011 30 otázek maximum: 60 bodů čas: 60 minut 1. Napište názvy anorganických sloučenin: (4
Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch
Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch Atom, složení a struktura Chemické prvky-názvosloví, slučivost Chemické sloučeniny, molekuly Chemická vazba
Plasty. Základy materiálového inženýrství. Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010
Plasty Základy materiálového inženýrství Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Základní vlastnosti plastů Výroba z levných surovin. Jsou to sloučeniny
Charakteristika Teorie kyselin a zásad. Příprava kyselin Vlastnosti + typické reakce. Významné kyseliny. Arrheniova teorie Teorie Brönsted-Lowryho
Petra Ustohalová 1 harakteristika Teorie kyselin a zásad Arrheniova teorie Teorie Brönsted-Lowryho Příprava kyselin Vlastnosti + typické reakce Fyzikální a chemické Významné kyseliny 2 Látky, které ve
ZŠ ÚnO, Bratří Čapků 1332
Animovaná chemie Top-Hit Analytická chemie Analýza anorganických látek Důkaz aniontů Důkaz kationtů Důkaz kyslíku Důkaz vody Gravimetrická analýza Hmotnostní spektroskopie Chemická analýza Nukleární magnetická
POLYMERY II MECHANISMY VZNIKU VÝROBNÍ POSTUPY
PLYMERY II MEANISMY VZNIKU VÝRBNÍ PSTUPY čem budeme mluvit Typy polymeračních reakcí mechanismy Základní způsoby výroby polymerů PLYMERAČNÍ REAKE ADIČNÍ KNDENZAČNÍ ŘETĚZVÉ PSTUPNÉ KRDINAČNÍ (ZIEGLER-NATTA)
Izomerie Reakce organických sloučenin Názvosloví organické chemie. Tomáš Hauer 2.LF UK
Izomerie Reakce organických sloučenin Názvosloví organické chemie Tomáš Hauer 2.LF UK Izomerie Izomerie izomerní sloučeniny stejný sumární vzorec, různá struktura prostorové uspořádání = izomery různé
HYDROXYDERIVÁTY. Alkoholy Fenoly Bc. Miroslava Wilczková
HYDROXYDERIVÁTY Alkoholy Fenoly Bc. Miroslava Wilczková HYDROXYDERIVÁTY Alkoholy -OH skupina vázána na uhlíkový atom alifatického řetězce Fenoly -OH skupina vázána na uhlíku, který je součástí aromatického
2.3.2012. Oxidace. Radikálová substituce alkanů. Elektrofilní adice. Dehydrogenace CH 3 CH 3 H 2 C=CH 2 + 2 H. Oxygenace (hoření)
xidace alkanů Dehydrogenace Reaktivita alkanů xidace Radikálová substituce 3 3 2 = 2 2 xygenace (hoření) 4 2 2 2 2 2 2 4 3 2 2 4 2 Radikálová substituce alkanů Iniciace (vznik radikálu, homolytické štěpení
Halogenderiváty. Halogenderiváty
Názvosloví Halogeny jsou v názvu vždy v předponě. Trichlormethan mátriviálnínázev CHLOROFORM Podle připojení halogenu je dělíme na primární sekundární a terciární Br Vazba mezi uhlíkem a halogenem je polarizovaná
UHLOVODÍKY ALKANY (...)
UHLOVODÍKY ALKANY (...) alifatické nasycené uhlovodíky nerozvětvené i rozvětvené mezi atomy uhlíku pouze jednoduché vazby (σ vazby), mezi nimi úhel 109 28 název: kmen + an obecný vzorec C n H 2n + 2 tvoří
POROVNÁNÍ ÚČINNOSTI SRÁŽENÍ REAKTIVNÍCH AZOBARVIV POUŽITÍM IONTOVÉ KAPALINY A NÁSLEDNÁ FLOKULACE AZOBARVIV S Al 2 (SO 4 ) 3.18H 2 O S ÚPRAVOU ph
POROVNÁNÍ ÚČINNOSTI SRÁŽENÍ REAKTIVNÍCH AZOBARVIV POUŽITÍM IONTOVÉ KAPALINY A NÁSLEDNÁ FLOKULACE AZOBARVIV S Al 2 (SO 4 ) 3.18H 2 O S ÚPRAVOU ph Ing. Jana Martinková Ing. Tomáš Weidlich, Ph.D. prof. Ing.
Substituce na aromatickém jádře S E Ar, S N Ar. Elektrofilní aromatická substituce S E Ar
Substituce na aromatickém jádře S E Ar, S N Ar Už jsme viděli příklady benzenových jader, které jsou substituované ruznými skupinami, např. halogeny, hydroxy skupinou apod. Ukážeme si tedy, jak se tyto
Do této skupiny patří dusík, fosfor, arsen, antimon a bismut. Společnou vlastností těchto prvků je pět valenčních elektronů v orbitalech ns a np:
PRVKY PÁTÉ SKUPINY Do této skupiny patří dusík, fosfor, arsen, antimon a bismut. Společnou vlastností těchto prvků je pět valenčních elektronů v orbitalech ns a np: Obecná konfigurace: ns np Nejvyšší kladné
Plasty A syntetická vlákna
Plasty A syntetická vlákna Plasty Nesprávně umělé hmoty Makromolekulární látky Makromolekuly vzniknou spojením velkého množství atomů (miliony) Syntetické či přírodní Známé od druhé pol. 19 století Počátky
MAKROMOLEKULÁRNÍ CHEMIE
MAKROMOLEKULÁRNÍ Doporučená literatura: CHEMIE OCH/MMC/MMCH doc.rndr. Jakub Stýskala, Ph.D. 1. Nálepa K.: Stručné základy chemie a fyziky polymerů, UPOL, 1990 2. Vollmert B: Základy makromolekulární chemie,
(-NH-CO-) Typy polyamidů
POLYAMIDY (NYLONY) Typy polyamidů (-NH-CO-) AB typ Ty jsou vyráběny polymerací laktamů nebo ω- aminokyselin, kde A označuje aminovou skupinu a B karboxylovou skupinu a obě jsou částí stejné monomerní molekuly.
Pericycklické reakce
Reakce, v nichž se tvoří nebo zanikají vazby na konci π-systému. Nejedná se o iontový ani radikálový mechanismus, intermediáty nejsou ani kationty ani anionty! Průběh reakce součinným procesem přes cyklický
Reakce aldehydů a ketonů s N-nukleofily
Reakce aldehydů a ketonů s N-nukleofily bdobně jako aminy se adují na karbonyl i jiné dusíkaté nukleofily: 2,4-dinitrofenylhydrazin aceton 2,4dinitrofenylhydrazon 2,4-dinitrofenylhydrazon acetaldehydu
autor testu, obrázky: Mgr. Radovan Sloup 1. Vyřeš osmisměrku: (škrtat můžeš vodorovně, svisle nebo úhlopříčně v libovolném směru)
PLASTY II autor testu, obrázky: Mgr. Radovan Sloup 1. Vyřeš osmisměrku: (škrtat můžeš vodorovně, svisle nebo úhlopříčně v libovolném směru) Slova k vyškrtání: T E F L O N P M A O N O R A M O C L Y S M
ORGANICKÁ CHEMIE I pro bakalářský stud. program (Varianta A) Jméno a příjmení... Datum... Kroužek/Fakulta.../... Vyučující na semináři...
ORGANICKÁ CEMIE I pro bakalářský stud. program (Varianta A) Jméno a příjmení... Datum... Kroužek/Fakulta.../... Vyučující na semináři... Počet bodů v části A:... Počet bodů v části B:... Počet bodů celkem:...
Kyselost, bazicita, pka
Kyselost, bazicita, pka Kyselost, bazicita, pk a Organické reakce často kysele nebo bazicky katalyzovány pk a nám říká, jak je (není) daný atom vodíku kyselý důležité pro předpovězení, kde bude daná látka
POLYMERY PRINCIPY, STRUKTURA, VLASTNOSTI. Doc. ing. Jaromír LEDERER, CSc.
POLYMERY PRINCIPY, STRUKTURA, VLASTNOSTI Doc. ing. Jaromír LEDERER, CSc. O čem budeme mluvit Úvod do chemie a technologie polymerů Makromolekulární řetězce Struktura, fázový stav a základní vlastnosti
Vytvrzování reaktoplastů pomocí UV záření. Bc. Petr Minář
Vytvrzování reaktoplastů pomocí UV záření Bc. Petr Minář Diplomová práce 2013 Příjmení a jméno: Minář Petr Obor: Inženýrství polymerů P R O H L Á Š E N Í Prohlašuji, že beru na vědomí, že odevzdáním
2. Polarita vazeb, rezonance, indukční a mezomerní
32 Polarita vazeb a reaktivita 2. Polarita vazeb, rezonance, indukční a mezomerní efekty ktetové pravidlo je užitečné pro prvky druhé periody (,, ) a halogeny. Formální náboj atomu určíme jako rozdíl počtu
Polymery struktura. Vlastnosti polymerů určeny jejich fyzikální a chemickou strukturou
Polymery struktura Vlastnosti polymerů určeny jejich fyzikální a chemickou strukturou 1 vazba Atom (jádro, obal) elektronové orbitaly (s,p,d,f) - vrstvy (výstavbová pravidla, elektronová konfigurace) 2
CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT. Základy chemie makromolekulárních látek VY_32_INOVACE_18_11
Průvodka Číslo projektu Název projektu Číslo a název šablony klíčové aktivity CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce
Přírodní proteiny, nukleové kyseliny (NA)
kopolymery 1 kopolymery - homopolymer - kopolymer - vzniklé ze dvou či více druhů monomerů - Kopolymerizace (řetězová, stupňovitá) - pseudokopolymer (PVA) - PA, PES není kopolymer Syntetické akrylonitril-butadien-styrenový
Obsah. Ú v o d Kinetické f a k to r y Stacionární Živé Nestacionární... 27
Obsah 7 Ú v o d... 15 1 Polymerace... ^ 11 Podle druhu aktivních c e n t e r... 19 111 R adikálové... 19 112 Iontové... 19 1121 Kationtové... 20 1122 A niontové... 2^ 113 K o o rd in a č n í... 2(* 12
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
Historie: 1. Materiály vyrobené chemickou úpravou přírodních polymerů: EBONIT (Ch. Goodyear, 1851) = tvrdá pryž vyrobena... (působením síry) přírodního kaučuku, původně elektrický izolant Dnešní použití:
Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4.
Vyučovací předmět - Chemie Vzdělávací obor - Člověk a příroda Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4. ročník - seminář
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
KARBONYLOVÉ SLOUČENINY = látky, které obsahují karbonylovou skupinu Aldehydy mají skupinu C=O na konci řetězce, aldehydická skupina má potom tvar... Názvosloví aldehydů: V systematickém názvu je zakončení
Vytvrzování reaktoplastických hybridních systémů. Bc. Vilém Galbavý
Vytvrzování reaktoplastických hybridních systémů Bc. Vilém Galbavý Diplomová práce 2011 UTB ve Zlíně, Fakulta technologická 2 UTB ve Zlíně, Fakulta technologická 3 UTB ve Zlíně, Fakulta technologická 4
Chemická reaktivita NK.
Chemické vlastnosti, struktura a interakce nukleových kyselin Bi7015 Chemická reaktivita NK. Hydrolýza NK, redukce, oxidace, nukleofily, elektrofily, alkylační činidla. Mutageny, karcinogeny, protinádorově
HOŘENÍ A VÝBUCH. Ing. Hana Věžníková, Ph. D.
HOŘENÍ A VÝBUCH Ing. Hana Věžníková, Ph. D. 1 HOŘENÍ A VÝBUCH Definice hoření Vysvětlení procesu hoření Základní podmínky pro hoření Co jsou hořlavé látky (hořlaviny) a jak je lze klasifikovat Chemické
Organická chemie 3.ročník studijního oboru - kosmetické služby.
Organická chemie 3.ročník studijního oboru - kosmetické služby. T-7 Funkční a substituční deriváty karboxylových kyselin Zpracováno v rámci projektu Zlepšení podmínek ke vzdělávání Registrační číslo projektu:
Chemická vazba Něco málo opakování Něco málo opakování Co je to atom? Něco málo opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího
OPVK CZ.1.07/2.2.00/
OPVK CZ.1.07/2.2.00/28.0184 Základní principy vývoje nových léčiv OCH/ZPVNL Mgr. Radim Nencka, Ph.D. ZS 2012/2013 Molekulární interakce SAR Možné interakce jednotlivých funkčních skupin 1. Interakce alkoholů
Typy molekul, látek a jejich vazeb v organismech
Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Organismy se skládají z molekul rozličných látek Jednotlivé látky si organismus vytváří sám z jiných látek,
".~'M'iEíUVA, ". ŠŇUPÁREK
--. výroba, struktura, vlastnosti a použití ".~'M'iEíUVA, ". ŠŇUPÁREK,., ~ 1"4-2: prepracované vydánr PRAHA 2000 SOBOTALES., OBSAH 1 Úvod........................... 13 1.1 Seznam zkratek a symbolu................
Příklady k semináři z organické chemie OCH/SOCHA. Doc. RNDr. Jakub Stýskala, Ph.D.
Příklady k semináři z organické chemie /SA Doc. RNDr. Jakub Stýskala, Ph.D. Příklady k procvičení 1. Které monochlorované deriváty vzniknou při radikálové chloraci následující sloučeniny. Který z nich
o Řetězové polymerizace radikálové iontové: aniontové, kationtové polymerizace za otevření kruhu koordinační polymerizace
Základní typy polymerizací o Řetězové polymerizace radikálové iontové: aniontové, kationtové polymerizace za otevření kruhu koordinační polymerizace o Stupňovité polymerizace polykondenzace polyadice Stupňovitá
Plasty - druhy a možnosti využití
Plasty - druhy a možnosti využití První plasty (dříve označované jako umělé hmoty) byly vyrobeny v polovině minulého století. Jedním z nejstarších je celuloid. Vyrábí se z celulózy (celulóza tvoří stěny
2.3 CHEMICKÁ VAZBA. Molekula bílého fosforu P 4 a kyseliny sírové H 2 SO 4. Předpona piko p je dílčí jednotkou a udává velikost m.
2.3 CHEMICKÁ VAZBA Spojováním dvou a více atomů vznikají molekuly. Jestliže dochází ke spojování výhradně atomů téhož chemického prvku, pak se jedná o molekuly daného prvku (vodíku H 2, dusíku N 2, ozonu
Karboxylové kyseliny
Karboxylové kyseliny Názvosloví pokud je karboxylováskupina součástířetězce, sloučenina mákoncovku -ovákyselina. Pokud je mimo řetězec má sloučenina koncovku karboxylová kyselina. butanová kyselina cyklohexankarboxylová
Polymery struktura. Vlastnosti polymerů určeny jejich fyzikální a chemickou strukturou
Polymery struktura Vlastnosti polymerů určeny jejich fyzikální a chemickou strukturou 1 2 Chemická vazba 3 Teorie kovalentní vazby - překryv elektronových orbitalů - sdílený elektronový pár - energie vazby