Úloha ve stavovém prostoru SP je <s 0, C>, kde s 0 je počáteční stav C je množina požadovaných cílových stavů
|
|
- Hana Říhová
- před 9 lety
- Počet zobrazení:
Transkript
1 Stavový prostor a jeho prohledávání SP = formalismus k obecnějšímu uchopení a vymezení problému, který spočívá v nalezení posloupnosti akcí vedoucích od počátečního stavu úlohy (zadání) k požadovanému řešení SP = nástroj, jak použít na konkrétní problémy (urč. typu) již existující (popř. i nové) řešící algoritmy Stavový prostor je určen: SP = <S, O> Konečnou neprázdnou množinou stavů S (ve zcela obecném případě i nekonečnou) Neprázdnou konečnou množinou operátorů O, kde každý operátor je parciální funkcí na stavovém prostoru (nemusí být definován všude) α: S S Úloha ve stavovém prostoru SP je <s 0, C>, kde s 0 je počáteční stav C je množina požadovaných cílových stavů Plán (řešení) P pro danou úlohu U je taková posloupnost operátorů <α 1, α 2,., α n>, která splňuje následující podmínky s 1 = α 1 (s 0 ) s 2 = α 2 (s 1 ). s n = α n (s n-1 ) = α n-1(α n-2(... (α 2(α 1(s 0 )))), přičemž s n je definováno a je prvkem množiny cílových stavů C. Příklad 1 Jsou dány dvě nádoby, větší A o obsahu a litrů, a menší B obsahu b litrů: na začátku jsou obě prázdné ( = počáteční stav) cílem je stav, kdy nádoba A je prázdná a v B je přesně 2 (a b) litrů vody K dispozici je neomezený zdroj vody a nádoby nemají označené míry. Naplňte nádobu B ( = najděte posloupnost akcí takovou, že bude splněn daný cíl). Reprezentace stavů: - Zvolení vhodné reprezentace je jednou z důležitých podmínek efektivního vyřešení konkrétního problému. Stavy jsou v naprosté většině případůgenerovány v průběhu algoritmu (ne předpočítány) Stav: dvojice <c A, c B > množství vody v nádobách A,B počáteční stav <0, 0> jediný cílový stav <0, 2 (a b)> přechody (= operátory): vylití A: <c A, c B > <0, c B > vylití B: <c A, c B > <0, c BA, 0> napnění A, B přelití A do B <c A, c B > <max(c A (b - c B ), 0), min(c A + c B, b)> možné jsou samozřejmě i další operátory
2 Prohledávání stavového prostoru Stavový prostor lze reprezentovat orientovaným grafem G (stavovým grafem, stromem) G = (V; E), V: vrchloly (uzly), E: hrany - uzel reprezentuje stav, - hrana reprezentuje přechod mezi stavy. Řešení úloh pak lze formulovat jako hledání přijatelné cesty v orientovaném grafu z počátečního uzlu do některého z cílových uzlů (viz obr.1). Pozn.: k jednotlivým hranám je často přiřazena i cena vykonání daného přechodu.... 4,2 0,2 Způsoby prohledávání stav. prostoru Obr. 1 Stavový prostor úlohy přelévání vody 1) Neinformované prohledávání (dnes): Do šířky uzly k expanzi řadíme do fronty, náročné na paměť Varianta: vždy prodloužit cestu minimální ceny Do hloubky uzly řadíme do zásobníku, sejde z cesty a je mimo; nutno ošetřit cykly IDFS do hloubky s omezením max. hloubky, iterativně prohlubovat Dvousměrné prohledávání od poč. stavu i od cíle 2) Informované prohledávání (příště) - pořadí prohledávání na základě další informace, odhadu vzdálenosti stavu od cíle, vyjádřeného tzv. heuristikou h(uzel). paprskové (beam search) gradientní (hill-climbing) uspořádané (best-first) A*
3 Dle čeho hodnotit jednotlivé algoritmy: Pokud má být algoritmus výběru cesty úspěšný musí splňovat dvě základní vlastnosti: 1) Musí vést k prohledávání, což znamená, že se musí procházet stavovým prostorem a přitom se vyhnout cyklům. 2) Musí být systematický. Při rozlišování mezi jednotlivými algoritmy se uplatňují zejména tyto kritéria: Úplnost: garantuje algoritmus nalezení řešení (pokud toto existuje)? Časová složitost: jak dlouho to potrvá? asymptotická reprezentace složitosti Paměťová náročnost: kolik paměti je zapotřebí? Optimalita: nalezne algoritmus to nejlepší řešení v případě existence více řešení? Neinformované (slepé) metody prohledávání 1. Prohledávání do šířky 1. CLOSED = { }, OPEN = {s 0 }, kde s 0 je počáteční stav. Je-li s 0 současně i cílový stav, pak ukonči prohledávání. 2. Je-li OPEN prázdný, pak řešení neexistuje ukonči prohledávání! 3. Vyber a současně vymaž první stav ze seznamu OPEN, označ jej s i a zapiš jej do seznamu CLOSED. 4. Expanduj stav s i. Pokud stav i nemá následovníky nebo všichni následovníci byli již expandováni (t.j. jsou v seznamu CLOSED), jdi na krok Zapiš všechny následovníky stavu i, kteří nejsou v seznamu CLOSED na konec seznamu OPEN. 6. Pokud některý z následovníků stavu je cílovým stavem, tj. řešení bylo právě nalezeno, ukonči prohledávání, jinak pokračuj krokem č. 2. Obr. 2 Prohledávání do šířky 2. Prohledávání do hloubky (s omezením max na délku větve) 1. CLOSED = { }, OPEN = {s 0 }, kde s 0 je počáteční stav. Je-li s 0 současně i cílový stav, pak ukonči prohledávání. 2. Je-li OPEN prázdný, řešení neexistuje ukonči prohledávání!
4 3. Vyber a současně vymaž první stav ze seznamu OPEN, označ jej s i a zapiš jej do seznamu CLOSED 4. Pokud se hloubka uzlu i rovná maximální přípustné hloubce max, pokračuj krokem Expanduj stav s i. Pokud stav s i nemá následovníky nebo všichni následovníci byli již expandováni (t.j. jsou v seznamu CLOSED), jdi na krok Zapiš všechny následovníky stavu s i, kteří nejsou v seznamu CLOSED na začátek seznamu OPEN. 7. Pokud některý z následovníků stavu je cílovým stavem, tj. řešení bylo právě nalezeno, ukonči prohledávání, jinak pokračuj krokem č. 2. Obr. 3 Prohledávání do hloubky Příklad 2. Řeka. Na jednom břehu je farmář, vlk, koza, zelí a lodička. Vlk by rád sežral kozu, koza si dělá zálusk na zelí. Do lodičky může farmář vzít jen jedno zvíře nebo zelí. Dvě zvířata nebo zvíře a zelí se na lodičku najednou nevejdou. Koza ani vlk pádlovat překvapivě neumí. Jak dostane farmář vlka, kozu i zelí na druhou stranu tak, aby na jednom břehu nikdy nebyla koza s vlkem nebo se zelím bez dohledu farmáře? Příklad 3. Obměna úlohy s vlkem, kozou a zelím. Je o malinko složitější. Řeka. Na jednom břehu tři misionáři a tři kanibalové. Lodička, do které se vejdou maximálně dvě osoby. Jak se všichni přepraví na druhou stranu tak, aby nikdy na žádném břehu nebyla přesila kanibalů nad misionáři? Příklad 4. Opice má v kleci ve středu klece u stropu pověšený banán, na který dosáhne pouze, když vyleze na bednu. Opice je v jednom rohu, bedna ve druhém. Má k dispozici 4 akce: O = { chyť, vylez, presun(odkud,kam), jdi(odkud,kam) } Může opice za daných okolností získat banán?
5 Další metody slepého prohledávání 1) Prohledávání do hloubky s omezením max. hloubky Úplné, nicméně ne optimální (nenalezne nutně nejkratší cestu). Pokud je omezení příliš přísné, ztrácí se i úplnost a nemusí najít řešení vůbec. Časová i paměťová složitost obdobné jako u klas. prohledávání do hloubky ovšem vztažené ke zvolenému limitu. 2) Iterativní prohlubování Prohledávání do hloubky s iterativně se zvyšující hloubkou prohledávání. Preferováno zejména v situacích, kdy SP je velmi rozsáhlý a hloubka řešení není známa. 1. maxhloubka = 1 2. DFS(maxHloubka) //do hloubky s omezením max_hloubka 3. if cílnalezen then end else maxhloubka = maxhloubka + 1 and go to 2. 3) Dvousměrové (Bidirectional) Současný postup hledání od poč. stavu k cíli i od cílového stavu k počátku (inverzní cesta). Závěrem Srovnání klíčových parametrů jednotlivých algoritmů lze nalézt v tabulce níže (tab.1). Tab.1 Srovnání jednotlivých algoritmů slepého prohledávání Criterion Breadth Depth- Depth- Iterative Bidirectional First First Limited Deepening Čas b d b m b l b d b d/2 Paměť b d b.m b.l b.d b d/2 Optimalita Ano Ne Ne Ano Ano Úplnost Ano Ne Ano, if l >= d Ano Ano b.. faktor větvení d.. hloubka řešení nejbližšího počátku m.. max. hloubka stromu l.. omezení hloubky
State Space Search Step Run Editace úloh Task1 Task2 Init Clear Node Goal Add Shift Remove Add Node Goal Node Shift Remove, Add Node
State Space Search Po spuštění appletu se na pracovní ploše zobrazí stavový prostor první předpřipravené úlohy: - Zeleným kroužkem je označen počáteční stav úlohy, který nemůže být změněn. - Červeným kroužkem
Základy umělé inteligence
Základy umělé inteligence Automatické řešení úloh Základy umělé inteligence - prohledávání. Vlasta Radová, ZČU, katedra kybernetiky 1 Formalizace úlohy UI chápe řešení úloh jako proces hledání řešení v
Neinformované metody prohledávání stavového prostoru. Gerstner Laboratory Agent Technology Group, Czech Technical University in Prague
Neinformované metody prohledávání stavového prostoru Michal Pěchouček Gerstner Laboratory Agent Technology Group, Czech Technical University in Prague http://labe.felk.cvut.cz/~ tkrajnik/kui2/data/k333/1.pdf
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento
"Agent Hledač" (3. přednáška)
"Agent Hledač" (3. přednáška) Přehled 3. přednášky v této přednášce se budeme zabývat "goal-based" agenty Přehled 3. přednášky v této přednášce se budeme zabývat "goal-based" agenty připomeňme, že "goal-based"
Úvod do plánování: Zadání úloh PDDL
Ing. Jan Strnad TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247 řízení a měření, který je spolufinancován
Hanojská věž. T2: prohledávání stavového prostoru. zadání [1 1 1] řešení [3 3 3] dva možné první tahy: [1 1 2] [1 1 3]
Hanojská věž zadání [1 1 1] řešení [3 3 3] dva možné první tahy: [1 1 2] [1 1 3] který tah je lepší? (co je lepší tah?) P. Berka, 2012 1/21 Stavový prostor 1. množina stavů S = {s} 2. množina přechodů
Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest
Obsah prezentace Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest 1 Základní pojmy Vrchol grafu: {množina V} Je to styčná vazba v grafu, nazývá se též uzlem, prvkem
Hledáme efektivní řešení úloh na grafu
Hledáme efektivní řešení úloh na grafu Mějme dán graf následující úlohy: G = ( V, E), chceme algoritmicky vyřešit Je daný vrchol t dosažitelný z vrcholu s? Pokud ano, jaká nejkratší cesta tyto vrcholy
Úvod do teorie grafů
Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí
Neinformované metody prohledávání stavového prostoru Michal Pěchouček, Milan Rollo. Department of Cybernetics Czech Technical University in Prague
Neinformované metody prohledávání stavového prostoru Michal Pěchouček, Milan Rollo Department of Cybernetics Czech Technical University in Prague http://cw.felk.cvut.cz/doku.php/courses/a3b33kui/start
Vzdálenost uzlů v neorientovaném grafu
Vzdálenosti a grafy Vzdálenost uzlů v neorientovaném grafu Je dán neorientovaný neohodnocený graf G = (V,E,I) vzdálenost uzlů u a v v neorientovaném souvislém grafu G je délka nejkratší cesty spojující
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
Metody návrhu algoritmů, příklady. IB111 Programování a algoritmizace
Metody návrhu algoritmů, příklady IB111 Programování a algoritmizace 2011 Návrhu algoritmů vybrané metody: hladové algoritmy dynamické programování rekurze hrubá síla tato přednáška: především ilustrativní
Umělá inteligence I. Roman Barták, KTIML. roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak
Umělá inteligence I Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Na úvod Agent s reflexy pouze převádí současný vjem na jednu akci. Agent s cílem umí plánovat několik akcí
Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová
Základy informatiky Teorie grafů Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Obsah přednášky Barvení mapy Teorie grafů Definice Uzly a hrany Typy grafů Cesty, cykly, souvislost grafů Barvení mapy
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
Prohledávání stavového prostoru
Prohledávání stavového prostoru State space search Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2017 1 / 45 Stavový prostor Prohledávání do hloubky Prohledávání do šířky Informované
PROBLÉM OSMI DAM II. Problém osmi dam. Obsah:
Úvod do umělé inteligence RÉ S úkol: Rozestavte po šachovnici 8 dam tak, aby se žádné dvě vzájemně neohrožovaly. -mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ bsah: rohledávání do hloubky rohledávání
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 20. září 2016 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
Heuristiky, best-first search, A* search
Informované prohledávání stavového prostoru Heuristiky, best-first search, A* search Obsah: Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Informované prohledávání stavového prostoru Neinformované
PROHLEDÁVÁNÍ GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
PROHLEDÁVÁNÍ GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 4 Evropský sociální fond Praha & EU: Investujeme do
Matice sousednosti NG
Matice sousednosti NG V = [ v ij ] celočíselná čtvercová matice řádu U v ij = ρ -1 ( [u i, u j ] )... tedy počet hran mezi u i a u j?jaké vlastnosti má matice sousednosti?? Smyčky, rovnoběžné hrany? V
TGH05 - aplikace DFS, průchod do šířky
TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 31. března 2015 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující
Umělá inteligence I. Roman Barták, KTIML.
Umělá inteligence I Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Na úvod Neinformované (slepé) prohledávání umí najít (optimální) řešení problému, ale ve většině případů
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE
Základy informatiky. 07 Teorie grafů. Kačmařík/Szturcová/Děrgel/Rapant
Základy informatiky 07 Teorie grafů Kačmařík/Szturcová/Děrgel/Rapant Obsah přednášky barvení mapy teorie grafů definice uzly a hrany typy grafů cesty, cykly, souvislost grafů Barvení mapy Kolik barev je
TGH05 - aplikace DFS, průchod do šířky
TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 28. března 2017 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující
Obsah: Problém osmi dam
Prohledávání stavového prostoru leš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Problém osmi dam Prohledávání stavového prostoru Neinformované prohledávání Úvod do umělé inteligence
Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.
1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 19. září 2017 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
Slepé prohledávání do šířky Algoritmus prohledávání do šířky Při tomto způsobu prohledávání máme jistotu, že vždy nalezneme koncový stav, musíme ale p
Hanojská věž Stavový prostor 1. množina stavů S = {s} 2. množina přechodů mezi stavy (operátorů) Φ = {φ} s k = φ ki (s i ) zadání [1 1 1] řešení [3 3 3] dva možné první tahy: [1 1 2] [1 1 3] který tah
NEJKRATŠÍ CESTY I. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
NEJKRATŠÍ CESTY I Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 7 Evropský sociální fond Praha & EU: Investujeme do vaší
Řešení: PŘENESVĚŽ (N, A, B, C) = přenes N disků z A na B pomocí C
Hanojské věže - 3 kolíky A, B, C - na A je N disků různé velikosti, seřazené od největšího (dole) k nejmenšímu (nahoře) - kolíky B a C jsou prázdné - úkol: přenést všechny disky z A na B, mohou se odkládat
1. Prohledávání stavového prostoru
Obsah 1. Prohledávání stavového prostoru... 2 1.1. Základní informace... 2 1.2. Výstupy z učení... 2 1.3. Úvod... 2 1.4. Definice stavového prostoru... 3 1.1.1. Reprezentace stavového prostoru... 3 1.1.2.
Dijkstrův algoritmus
Dijkstrův algoritmus Hledání nejkratší cesty v nezáporně hranově ohodnoceném grafu Necht je dán orientovaný graf G = (V, H) a funkce, která každé hraně h = (u, v) H přiřadí nezáporné reálné číslo označované
ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ
ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2/2, Lekce Evropský sociální fond Praha & EU: Investujeme
bfs, dfs, fronta, zásobník
bfs, dfs, fronta, zásobník Petr Ryšavý 25. září 2018 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší cesty, plánování cest. Prohledávání
Použití dalších heuristik
Použití dalších heuristik zkracování cesty při FIND-SET UNION podle hodností Datové struktury... p[x] - předchůdce uzlu x MAKE-SET(x) p[x] := x hod[x] := 0 hod[x] - hodnost (aprox. výšky) UNION(x,y) LINK(FIND-SET(x),
Umělá inteligence. UI (AI) - součást informatiky s průniky mimo obor Stručná historie UI. Letošní cena nadace Vize 2000 - Joseph Weizenbaum
Umělá inteligence UI (AI) - součást informatiky s průniky mimo obor Stručná historie UI 1943-56 začátky (modelování neuronů a sítí na počítači) 1952-69 velká očekávání (GPS, Lisp, microworlds) 1966-74
Algoritmus pro hledání nejkratší cesty orientovaným grafem
1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval
Principy indukce a rekursivní algoritmy
Principy indukce a rekursivní algoritmy Jiří Velebil: A7B01MCS 19. září 2011: Indukce 1/20 Příklad Místností rozměru n budeme rozumět šachovnici rozměru 2 n 2 n, ze které je jedno (libovolné) pole vyjmuto.
ALGORITMY A DATOVÉ STRUKTURY
Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu
STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta
STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach vlož do fronty kořen opakuj, dokud není fronta prázdná 1. vyber uzel z fronty a zpracuj jej 2. vlož do fronty levého následníka
Cvičení 5 - Průchod stromem a grafem
Cvičení 5 - Průchod stromem a grafem Radek Mařík Marko Genyk-Berezovskyj ČVUT FEL, K13133 14. března 2013 Cvičení 5 - Průchod stromem a grafem 14. března 2013 1 / 18 Outline 1 Průchod stromem 2 Cvičení
Prohledávání do šířky a do hloubky. Jan Hnilica Počítačové modelování 15
Prohledávání do šířky a do hloubky Jan Hnilica Počítačové modelování 15 1 Prohledávací algoritmy Úkol postupně systematicky prohledat vymezený stavový prostor Stavový prostor (SP) možné stavy a varianty
TGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 26. března 2013 Motivační problémy Silniční sít reprezentovaná grafem. Najdi nejkratší/nejrychlejší cestu z místa A do místa
07 Základní pojmy teorie grafů
07 Základní pojmy teorie grafů (definice grafu, vlastnosti grafu, charakteristiky uzlů, ohodnocené grafy) Definice grafu množina objektů, mezi kterými existují určité vazby spojující tyto objekty. Uspořádaná
Stromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy
Stromy úvod Stromy Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Neorientovaný strom Orientovaný strom Kořenový orientovaný
Algoritmy a datové struktury
Algoritmy a datové struktury Stromy 1 / 32 Obsah přednášky Pole a seznamy Stromy Procházení stromů Binární stromy Procházení BS Binární vyhledávací stromy 2 / 32 Pole Hledání v poli metodou půlení intervalu
Stromy, haldy, prioritní fronty
Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík
Plánování úloh na jednom stroji
Plánování úloh na jednom stroji 15. dubna 2015 1 Úvod 2 Řídící pravidla 3 Metoda větví a mezí 4 Paprskové prohledávání Jeden stroj a paralelní stroj Dekompoziční problémy pro složité (flexible) job shop
Algoritmy výpočetní geometrie
Algoritmy výpočetní geometrie prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2017
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 207 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10
Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10
Seminář z umělé inteligence. Otakar Trunda
Seminář z umělé inteligence Otakar Trunda Plánování Vstup: Satisficing task: počáteční stav, cílové stavy, přípustné akce Optimization task: počáteční stav, cílové stavy, přípustné akce, ceny akcí Výstup:
Základní datové struktury III: Stromy, haldy
Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní
Algoritmizace. 1. Úvod. Algoritmus
1. Úvod Algoritmizace V dnešní době již počítače pronikly snad do všech oblastí lidské činnosti, využívají se k řešení nejrůznějších úkolů. Postup, který je v počítači prováděn nějakým programem se nazývá
B3B33ALP - Algoritmy a programování - Zkouška z předmětu B3B33ALP. Marek Boháč bohacm11
333LP - lgoritmy a programování - Zkouška z předmětu 333LP Jméno Příjmení Už. jméno Marek oháč bohacm11 Zkouškový test Otázka 1 Jaká je hodnota proměnné count po vykonání následujícího kódu: data=[4,4,5,5,6,6,6,7,7,7,7,8,8]
ALG 04. Zásobník Fronta Operace Enqueue, Dequeue, Front, Empty... Cyklická implementace fronty. Průchod stromem do šířky
LG 04 Zásobník Fronta Operace nqueue, equeue, Front, mpty... yklická implementace fronty Průchod stromem do šířky Grafy průchod grafem do šířky průchod grafem do hloubky Ořezávání a heuristiky 1 Zásobník
Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.
Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?
B3B33ALP - Algoritmy a programování - Zkouška z předmětu B3B33ALP. Marek Boháč bohacm11
Jméno Příjmení Už. jméno Marek oháč bohacm11 Zkouškový test Otázka 1 Jaká je hodnota proměnné count po vykonání následujícího kódu: data=[4,4,5,5,6,6,6,7,7,7,7,8,8] count=0 for i in range(1,len(data)):
ALGORITMY UMĚLÉ INTELIGENCE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY ALGORITMY UMĚLÉ INTELIGENCE ŘEŠENÍ ÚLOH VE STAVOVÉM PROSTORU Doc. RNDr. Ing. Tomáš Březina, CSc, Obsah 1 Stavová
UNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky Programová realizace jednoduché strategické hry Květoslav Čáp Bakalářská práce 2010 Prohlášení autora Prohlašuji, že jsem tuto práci vypracoval
prohled av an ı graf u Karel Hor ak, Petr Ryˇsav y 16. bˇrezna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT
prohledávání grafů Karel Horák, Petr Ryšavý 16. března 2016 Katedra počítačů, FEL, ČVUT Příklad 1 Nad frontou (queue) byly provedeny následující operace: push(1) push(2) print(poll()) print(peek()) print(peek())
u odpovědí typu A, B, C, D, E: Obsah: jako 0) CLP Constraint Logic Programming
Průběžná písemná práce Průběžná písemná práce Obsah: Průběžná písemná práce Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ délka pro vypracování: 25 minut nejsou povoleny žádné materiály
Prohledávání do šířky = algoritmus vlny
Prohledávání do šířky = algoritmus vlny - souběžně zkoušet všechny možné varianty pokračování výpočtu, dokud nenajdeme řešení úlohy průchod stromem všech možných cest výpočtu do šířky, po vrstvách (v každé
Modulární systém dalšího vzdělávání pedagogických pracovníků JmK. v přírodních vědách a informatice CZ.1.07/1.3.10/
Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 Teorie grafů Sbírka cvičení Domečkologie Zkuste nakreslit domečky na obrázku. Které
Optimalizace & soft omezení: algoritmy
Optimalizace & soft omezení: algoritmy Soft propagace Klasická propagace: eliminace nekonzistentních hodnot z domén proměnných Soft propagace: propagace preferencí (cen) nad k-ticemi hodnot proměnných
= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez
Síť Síť je čtveřice N = ( G, s, t, c) kde G ( V, A) = je prostý orientovaný graf a každé orientované hraně ( u, v) je přiřazeno nezáporné číslo, které se nazývá kapacita hrany ( u, v), formálně c ( u,
3. Prohledávání grafů
3. Prohledávání grafů Prohledání do šířky Breadth-First Search BFS Jde o grafový algoritmus, který postupně prochází všechny vrcholy v dané komponentě souvislosti. Algoritmus nejprve projde všechny sousedy
1. Prohledávání stavového prostoru
Obsah 1. Prohledávání stavového prostoru... 2 1.1. Základní informace... 2 1.2. Výstupy z učení... 2 1.3. Úvod... 2 1.4. Definice stavového prostoru... 2 1.1.1. Reprezentace stavového prostoru... 3 1.1.2.
Hranová konzistence. Arc consistency AC. Nejprve se zabýváme binárními CSP. podmínka odpovídá hraně v grafu podmínek
Hranová konzistence Arc consistency AC Nejprve se zabýváme binárními CSP podmínka odpovídá hraně v grafu podmínek Hrana (V i, V j ) je hranově konzistentní, právě když pro každou hodnotu x z aktuální domény
10. Složitost a výkon
Jiří Vokřínek, 2016 B6B36ZAL - Přednáška 10 1 Základy algoritmizace 10. Složitost a výkon doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Jiří
Metody síťové analýzy
Metody síťové analýzy Řeší problematiku složitých systémů, zejména pak vazby mezi jejich jednotlivými prvky. Vychází z teorie grafů. Základní metody síťové analýzy: CPM (Critical Path Method) deterministický
Přijímací zkouška - matematika
Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,
popel, glum & nepil 16/28
Lineární rezoluce další způsob zjemnění rezoluce; místo stromu směřujeme k lineární struktuře důkazu Lineární rezoluční odvození (důkaz) z Ë je posloupnost dvojic ¼ ¼ Ò Ò taková, že Ò ½ a 1. ¼ a všechna
TOKY V SÍTÍCH II. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
TOKY V SÍTÍCH II Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 010/011, Lekce 10 Evropský sociální fond Praha & EU: Investujeme do vaší
UMĚLÁ INTELIGENCE URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH EVA VOLNÁ
UMĚLÁ INTELIGENCE URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH EVA VOLNÁ ČÍSLO OPERAČNÍHO PROGRAMU: CZ.1.07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST OPATŘENÍ: 7.2 ČÍSLO
Dynamické datové struktury I.
Dynamické datové struktury I. Seznam. Fronta. Zásobník. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz
4EK311 Operační výzkum. 5. Teorie grafů
4EK311 Operační výzkum 5. Teorie grafů 5. Teorie grafů definice grafu Graf G = uspořádaná dvojice (V, E), kde V označuje množinu n uzlů u 1, u 2,, u n (u i, i = 1, 2,, n) a E označuje množinu hran h ij,
Asociační pravidla. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p
Asociační pravidla Informační a komunikační technologie ve zdravotnictví Definice pojmů Stavový prostor S je množina uzlů(stavů), kde cílem je najít stav splňující danou podmínku g. Formálně je problém
Jan Březina. Technical University of Liberec. 21. dubna 2015
TGH11 - Maximální párování a související problémy Jan Březina Technical University of Liberec 21. dubna 2015 Bipartitní grafy Bipartitní graf - je obarvitelný dvěma barvami. Tj. V lze rozělit na disjunktní
Heuristiky, best-first search, A* search.
Úvod do umělé inteligence Heuristiky, best-first search, A* search E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Informované prohledávání stavového prostoru Heuristické hledání nejlepší cesty
přirozený algoritmus seřadí prvky 1,3,2,8,9,7 a prvky 4,5,6 nechává Metody řazení se dělí:
Metody řazení ve vnitřní a vnější paměti. Algoritmy řazení výběrem, vkládáním a zaměňováním. Heapsort, Shell-sort, Radix-sort, Quicksort. Řazení sekvenčních souborů. Řazení souborů s přímým přístupem.
2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus pro vyhledání položky v binárním stromu.
Informatika 10. 9. 2013 Jméno a příjmení Rodné číslo 1) Napište algoritmus pro rychlé třídění (quicksort). 2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus
Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů
Kapitola 11 Vzdálenost v grafech V každém grafu lze přirozeným způsobem definovat vzdálenost libovolné dvojice vrcholů. Hlavním výsledkem této kapitoly je překvapivé tvrzení, podle kterého lze vzdálenosti
Definice 7.2. Nejmenší přirozené číslo k, pro které je graf G k-obarvitelný, se nazývá chromatické číslo (barevnost) grafu G a značí se χ(g).
7 Barevnost grafu Definice 71 Graf G se nazývá k-obarvitelný, jestliže každému jeho uzlu lze přiřadit jednu z barev 1 k tak, že žádné dva sousední uzly nemají stejnou barvu Definice 72 Nejmenší přirozené
Obecná informatika. Matematicko-fyzikální fakulta Univerzity Karlovy v Praze. Podzim 2012
Obecná informatika Přednášející Putovních přednášek Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Podzim 2012 Přednášející Putovních přednášek (MFF UK) Obecná informatika Podzim 2012 1 / 18
ŘEŠITEL HRY GRIDDLERS
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INFORMAČNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INFORMATION SYSTEMS ŘEŠITEL HRY GRIDDLERS
Jan Březina. Technical University of Liberec. 30. dubna 2013
TGH11 - Maximální párování a související problémy Jan Březina Technical University of Liberec 30. dubna 2013 Bipartitní grafy Bipartitní graf - je obarvitelný dvěma barvami. Tj. V lze rozělit na disjunktní
Algoritmy na ohodnoceném grafu
Algoritmy na ohodnoceném grafu Dvě základní optimalizační úlohy: Jak najít nejkratší cestu mezi dvěma vrcholy? Dijkstrův algoritmus s t Jak najít minimální kostru grafu? Jarníkův a Kruskalův algoritmus
Algoritmus Minimax. Tomáš Kühr. Projektový seminář 1
Projektový seminář 1 Základní pojmy Tah = přemístění figury hráče na tahu odpovídající pravidlům dané hry. Při tahu může být manipulováno i s figurami soupeře, pokud to odpovídá pravidlům hry (např. odstranění
KMA/PDB. Karel Janečka. Tvorba materiálů byla podpořena z prostředků projektu FRVŠ č. F0584/2011/F1d
KMA/PDB Prostorové spojení Karel Janečka Tvorba materiálů byla podpořena z prostředků projektu FRVŠ č. F0584/2011/F1d Obsah Prostorové spojení pomocí hnízděných cyklů. Prostorové spojení pomocí R-stromů.
Dynamické programování
Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)
5 Orientované grafy, Toky v sítích
Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost
Plánování se stavovým prostorem
Plánování se stavovým prostorem 22. března 2018 1 Opakování: plánovací problém a reprezentace 2 Dopředné plánování 3 Zpětné plánování 4 Doménově závislé plánování Zdroj: Roman Barták, přednáška Plánování
Operační výzkum. Síťová analýza. Metoda CPM.
Operační výzkum Síťová analýza. Metoda CPM. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
Algoritmy I, složitost
A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??
Drsná matematika III 10. demonstrovaná cvičení Kostry grafů
Drsná matematika III 10. demonstrovaná cvičení Kostry grafů Martin Panák Masarykova univerzita Fakulta informatiky 21.11. 2006 1 Domácí úlohy z minulého týdne Příklad 1 Příklad 2 Příklad 3 2 Borůvkův algoritmus