ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ
|
|
- Vladislav Kučera
- před 6 lety
- Počet zobrazení:
Transkript
1 ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2/2, Lekce Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce /
2 Orientované grafy a binární relace V této části se seznámíme s pojmy: acyklický graf, testování acykličnosti topologické uspořádání uzlů/hran orientovaného grafu graf binární relace na množině, graf složení relací, složení grafů, tranzitivní uzávěr grafu Skripta odstavec 2.2, str. - 6 Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce 2 /
3 Acyklické grafy Co víme: silně souvislý graf má každou hranu v nějakém cyklu Jak vypadá opačný extrém? acyklický graf = orientovaný graf bez cyklů Jak nejlépe testovat, zda je graf acyklický???? Hledáním cyklů??? Zjištění: Pokud pro uzly orientovaného grafu G platí u U: δ + (u) nebo u U: δ (u), potom graf G obsahuje alespoň jeden cyklus. nesplňuje podmínku δ (u) cyklus! nesplňuje podmínku δ + (u) Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce /
4 Acyklické grafy Naše zjištění představuje podmínku postačující, nikoliv nutnou! Pro testování acykličnosti se nehodí. nemá ani kořen ani list! Nové zjištění: Orientovaný graf G je acyklický pro jeho libovolný kořen nebo list u je graf G - {u} acyklický. Teď už můžeme formulovat ALGORITMUS TESTOVÁNÍ ACYKLIČNOSTI postupným odebíráním kořenů/listů Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce 4 /
5 Acyklické grafy - aplikace Plánujeme pořadí provádění nějakých akcí, např.: a < b, a < c, b < d, c < d, d < e, d < f, e < g, e < c, f < h, g < h b d f a c e g h Tyto akce NELZE reálně naplánovat. Proč? Odpovídající graf není acyklický Topologické uspořádání uzlů (obyčejného) orientovaného grafu je posloupnost u, u 2,..., u n taková, že každá hrana (u i, u j ) má i<j. Topologické uspořádání hran (obyčejného) orientovaného grafu je posloupnost h, h 2,..., h m taková, že každá dvojice navazujících hran h i, h j má i<j (co jsou to "navazující" hrany?) Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce 5 /
6 Acyklické grafy - aplikace Jak bychom našli topologické uspořádání uzlů? Postupně odebíráme kořeny grafu (δ - (u)=) jako při testu acykličnosti. Jak to efektivně zařídit? pro každý uzel spočítáme - δ - (u)... vstupní stupeň (je-li =, je to kořen) - Γ(u)... množinu následníků při každém vypuštění kořene upravíme δ - (u) pro jeho následníky, při poklesu na zařadíme mezi kořeny. Pořadí odebrání uzlů je jejich topologickým uspořádáním.! Později uvedeme ještě jednodušší algoritmus! Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce 6 /
7 Orientované grafy a binární relace Binární relace na množině X : Prostý OG s množinou uzlů U : R X X H U U (orientovaný) graf binární relace R... G R : h = (u, v) vyjadřuje platnost u R v X = {,2,,4,5} R = {<,2>, <,>, G R <2,>, <2,5>, <,4>, <,5>, <4,>, <4,2>, 5 2 <5,>, <5,4>} 4 Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce 7 /
8 Orientované grafy a binární relace Složení grafů G R G S = G R S G R G S G R S G S R 4 4 Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce 8 /
9 Orientované grafy a binární relace (RE), (SY), (TR), (ANS), (AS), (IR) - jak se projeví v grafu?? Tranzitivní uzávěr grafu G G R G R Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce 9 /
10 Kontrolní otázky. Navrhněte algoritmus topologického očíslování hran acyklického orientovaného grafu..2 Zdůvodněte, proč pro testování acykličnosti (resp. hledání topologického uspořádání uzlů) orientovaného grafu stačí vypouštět jenom kořeny (nebo jenom listy).. Je topologické uspořádání uzlů (hran) orientovaného grafu určeno jednoznačně?.4 Kolika různými způsoby lze orientovat úplný neorientovaný graf o n uzlech K n tak, aby byl výsledný graf acyklický?.5 Popište strukturu nějakého obyčejného orientovaného grafu s n uzly, který má pro danou hodnotu k ( k n-) přesně k!. (n-k)! různých topologických uspořádání uzlů..6 Popište strukturu grafu binární relace, která je reflexivní (resp. symetrická, antisymetrická, asymetrická, tranzitivní, ireflexivní). Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce /
11 REPREZENTACE GRAFU maticové spojové další... V této části se seznámíme s pojmy: matice incidence NG/OG, matice sousednosti NG/OG (základní) spojová reprezentace NG/OG Skripta odstavec 4., str Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce /
12 Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce 2 / Matice incidence NG A = [ a ik ] obdélníková matice typu U x H nad tělesem mod 2 (pozor na základní operace!)... hrana h k inciduje s uzlem u i a ik =... jinak a d e b c a b c d e? Co nám říká matice incidence o grafu?? Smyčky, rovnoběžné hrany?
13 Matice incidence NG Poznáme podle matic incidence, zda jsou dva grafy izomorfní? Např.: G G 2?? právě když?? A = A 2 Zjištění: součet (mod 2) ve sloupci je (vždy dvě jedničky!) řádky jsou lineárně závislé, takže hodnost matice A... h(a) U - (rovnost platí pro souvislé grafy) h(a) = U - p obecný vztah pro graf s p komponentami Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce /
14 Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce 4 / Matice sousednosti NG V = [ v ij ] čtvercová matice typu U x U nad okruhem celých čísel: v ij = počet hran mezi uzly u i a u j a d e b c a b c d e a b c d e? Co nám říká matice sousednosti o grafu?? Smyčky, rovnoběžné hrany?
15 Matice sousednosti NG Poznáme podle matic sousednosti, zda jsou dva grafy izomorfní? Např.: G G 2?? právě když?? V = V 2 Zjištění: V = V T V r = [v ik (r) ]... počet sledů délky r mezi u i a u k A. A T = V + D, D = [ d ii ], kde d ii = δ(u i ) Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce 5 /
16 Matice incidence OG A = [ a ik ] obdélníková matice typu U x H nad okruhem celých čísel: a ik =... hrana h k vychází z uzlu u i -... hrana h k končí v uzlu u i... jinak a b 2 a c b c d d 7 e e - - Vlastnosti jsou podobné jako pro NG Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce 6 /
17 Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce 7 / Matice sousednosti OG V = [ v ij ] čtvercová matice typu U x U nad okruhem celých čísel: v ij = počet hran z uzlu u i do uzlu u j a d e b c a b c d e a b c d e? Poznáme izomorfní orientované grafy?? V = V T? a b c d e a b c d e
18 Matice sousednosti OG Zjištění: V r = [v (r) ik ]... počet spojení délky r z u i do u k V* = V i, i=,... d, kde d = min( H, U -)?? Co asi říká o grafu tato matice V*?? A. A T = D - V - V T, D = [ d ii ], kde d ii = δ + (u i )+ δ - (u i ) Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce 8 /
19 Spojová reprezentace grafu NG - seznamy sousedů OG - seznamy následníků Adj[u]: 2 U Srovnání paměťové složitosti: NG A: U * H (bitů!) V: U * U (integer? Boolean) Adj: U + 2* H OG Adj: U + H Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce 9 /
20 Spojová reprezentace grafu Základní spojovou reprezentaci mohou ještě doplňovat: seznamy předchůdců uzlů (pro OG) u každého prvku v seznamu následníků/předchůdců lze uvést i odpovídající označení (číslo) hrany přiřazení dvojic (uspořádaných dvojic) uzlů hranám (ρ a σ) ohodnocení/označení uzlů a/nebo hran Místo spojové reprezentace seznamů následníků/předchůdců je možné použít např. uložení v poli: Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce 2 /
21 Vnější reprezentace grafu Až dosud jsme měli na mysli vnitřní reprezentaci grafů, ale jsou také různé vnější reprezentace, jimiž lze zadat graf na vstupu nějakého programu, např.: // počet uzlů a hran 5 7 // hrany jako dvojice uzlů Jaké jsou další možnosti? Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce 2 /
22 Vnější reprezentace grafu Vlastní reprezentaci mohou mít některé speciální typy grafů, jako např.: kořenové stromy pravidelné stromy atd. Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce 22 /
23 Kontrolní otázky.7 Jak se z matice incidence neorientovaného grafu určí množina sousedů zadaného uzlu? Jaká bude časová složitost této operace?.8 Jak se z matice incidence orientovaného grafu určí množina předchůdců zadaného uzlu? Jaká bude časová složitost této operace?.9 Přesně popište, jaký bude vztah matice sousednosti (obecného) neorientovaného grafu G a matice sousednosti grafu G', který vznikl nějakou orientací hran grafu G.. V jakém orientovaném grafu bude r-tá mocnina V r matice sousednosti V obsahovat počty různých orientovaných cest mezi jednotlivými uzly?. Jak se z matice sousednosti neorientovaného grafu určí množina sousedů zadaného uzlu? Jaká bude časová složitost této operace?.2 Jak se z matice sousednosti orientovaného grafu určí množina předchůdců zadaného uzlu? Jaká bude časová složitost této operace?. Navrhněte algoritmus převodu matice incidence A neorientovaného grafu na jeho matici sousednosti V..4 Navrhněte algoritmus převodu matice sousednosti V orientovaného grafu na jeho matici incidence A. Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce 2 /
24 Prohledávání grafů V této části probereme témata strom prohledání do šířky (BF-strom) časová složitost prohledání do šířky rozklad neorientovaného grafu na komponenty Skripta odstavec 4.2, str Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce 24 /
25 Prohledávání grafu do šířky BFS - Breadth-First Search Je zadán graf G = H,U,σ (není podstatné, zda NG nebo OG) a jeho uzel s U. Prohledáním do šířky dostaneme strom (nejkratších) s u cest pro všechny uzly u dostupné z uzlu s (BF-strom) Stavy uzlů: FRESH - nový (dosud neobjevený) uzel OPEN - právě objevený ("nadějný") uzel CLOSED - vyčerpaný uzel Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce 25 /
26 Prohledávání grafu do šířky Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce 26 /
27 Prohledávání grafu do šířky d[v]=k+ s u p[v]=u v d[u]=k Použité datové struktury: stav[u] - FRESH / OPEN / CLOSED d[u] - zjištěná vzdálenost s u p[u] - předchůdce uzlu u (viz ) Queue - fronta OPEN uzlů Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce 27 /
28 Prohledávání grafu do šířky void BFS (Graph G, Node s) { // pseudokod for (Node u in U(G)-s) 2 { stav[u] = FRESH; d[u] = ; p[u] = null; } stav[s] = OPEN; d[s] = ; p[s] = null; 4 Queue.Init(); Queue.Push(s); 5 while (!Queue.Empty()) { 6 u = Queue.Pop(); 7 for (v in Adj[u]) { 8 if (stav[v] == FRESH) { 9 stav[v] = OPEN; d[v] = d[u]+; p[v] = u; Queue.Push(v); } } 2 stav[u]=closed; } Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce 28 /
29 Prohledávání grafu do šířky d[u] Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce 29 /
30 Složitost prohledávání do šířky cykl na řádku a 2... U operace s frontou O() na uzel celkem O( U ) cykly 5- a 7- pro každého souseda O( H ) O( U + H ) Zjištění: pokud fronta obsahuje uzly v, v 2,..., v r, potom platí d[v r ] d[v ] + d[v i ] d[v i+ ] pro i=,2,...,r- BFS nalezne nejkratší s v cestu pro každý uzel v dosažitelný z uzlu s a (p[v],v) určuje její poslední hranu všechny tyto hrany tvoří tzv. BF-strom Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce /
31 Kontrolní otázky.5 Změní se nějak chování či výsledek algoritmu BFS, pokud příkaz na řádku 2 umístíme bezprostředně za řádek 6?.6 Jak budou výsledky algoritmu BFS (tzn. vytvořený BFS-strom a hodnoty d[u]) ovlivněny změnou pořadí uzlů v seznamech sousedů?.7 Změní se nějak složitost algoritmu BFS, pokud namísto spojové reprezentace použijeme k vyjádření struktury grafu jeho matici incidence A (resp. matici sousednosti V)?.8 Zdůvodněte, proč nelze následující strom T získat jako BFS-strom při prohledání grafu G do šířky pro žádné uspořádání uzlů v seznamech sousedů uzlů, přestože strom T představuje jeden z možných stromů nejkratších cest z uzlu s do všech ostatních uzlů. s G s T.9 Jak vypadá neorientovaný graf, jehož BFS strom má při libovolném uspořádání uzlů v seznamu sousedů tvar hvězdice?.2 Upravte algoritmus BFS tak, aby určoval počet a strukturu (tj. skupiny uzlů) jednotlivých komponent neorientovaného grafu. Doc. Josef Kolář (ČVUT) Reprezentace grafů GRA, LS 2/, Lekce /
PROHLEDÁVÁNÍ GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
PROHLEDÁVÁNÍ GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 4 Evropský sociální fond Praha & EU: Investujeme do
Matice sousednosti NG
Matice sousednosti NG V = [ v ij ] celočíselná čtvercová matice řádu U v ij = ρ -1 ( [u i, u j ] )... tedy počet hran mezi u i a u j?jaké vlastnosti má matice sousednosti?? Smyčky, rovnoběžné hrany? V
NEJKRATŠÍ CESTY I. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
NEJKRATŠÍ CESTY I Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 7 Evropský sociální fond Praha & EU: Investujeme do vaší
Vzdálenost uzlů v neorientovaném grafu
Vzdálenosti a grafy Vzdálenost uzlů v neorientovaném grafu Je dán neorientovaný neohodnocený graf G = (V,E,I) vzdálenost uzlů u a v v neorientovaném souvislém grafu G je délka nejkratší cesty spojující
TOKY V SÍTÍCH II. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
TOKY V SÍTÍCH II Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 010/011, Lekce 10 Evropský sociální fond Praha & EU: Investujeme do vaší
PLANARITA A TOKY V SÍTÍCH
PLANARITA A TOKY V SÍTÍCH Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 9 Evropský sociální fond Praha & EU: Investujeme
VLASTNOSTI GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze. BI-GRA, LS 2010/2011, Lekce 5
VLASTNOSTI GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 5 Evropský sociální fond Praha & EU: Investujeme do vaší
Úvod do teorie grafů
Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí
NP-ÚPLNÉ PROBLÉMY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
NP-ÚPLNÉ PROBLÉMY Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 13 Evropský sociální fond Praha & EU: Investujeme do
TGH05 - aplikace DFS, průchod do šířky
TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 31. března 2015 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující
Hledáme efektivní řešení úloh na grafu
Hledáme efektivní řešení úloh na grafu Mějme dán graf následující úlohy: G = ( V, E), chceme algoritmicky vyřešit Je daný vrchol t dosažitelný z vrcholu s? Pokud ano, jaká nejkratší cesta tyto vrcholy
TGH05 - aplikace DFS, průchod do šířky
TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 28. března 2017 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující
Použití dalších heuristik
Použití dalších heuristik zkracování cesty při FIND-SET UNION podle hodností Datové struktury... p[x] - předchůdce uzlu x MAKE-SET(x) p[x] := x hod[x] := 0 hod[x] - hodnost (aprox. výšky) UNION(x,y) LINK(FIND-SET(x),
Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.
1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste
STROMY A KOSTRY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze. BI-GRA, LS 2010/2011, Lekce 6
STROMY A KOSTRY Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 010/011, Lekce 6 Evropský sociální fond Praha & EU: Investujeme do vaší
GRAFOVÉ MODELY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky FIT České vysoké učení technické v Praze. BI-GRA, LS 2010/2011, Lekce 1
GRAFOVÉ MODELY Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 1 Evropský sociální fond. Praha & EU: Investujeme do vaší
5 Orientované grafy, Toky v sítích
Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost
Základy informatiky. 07 Teorie grafů. Kačmařík/Szturcová/Děrgel/Rapant
Základy informatiky 07 Teorie grafů Kačmařík/Szturcová/Děrgel/Rapant Obsah přednášky barvení mapy teorie grafů definice uzly a hrany typy grafů cesty, cykly, souvislost grafů Barvení mapy Kolik barev je
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
Přijímací zkouška - matematika
Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,
Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.
Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?
Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová
Základy informatiky Teorie grafů Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Obsah přednášky Barvení mapy Teorie grafů Definice Uzly a hrany Typy grafů Cesty, cykly, souvislost grafů Barvení mapy
Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.
Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
Základní datové struktury III: Stromy, haldy
Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní
ALGORITMY A DATOVÉ STRUKTURY
Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 20. září 2016 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
Jan Březina. 7. března 2017
TGH03 - stromy, ukládání grafů Jan Březina Technical University of Liberec 7. března 2017 Kružnice - C n V = {1, 2,..., n} E = {{1, 2}, {2, 3},..., {i, i + 1},..., {n 1, n}, {n, 1}} Cesta - P n V = {1,
Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest
Obsah prezentace Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest 1 Základní pojmy Vrchol grafu: {množina V} Je to styčná vazba v grafu, nazývá se též uzlem, prvkem
Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů
Kapitola 11 Vzdálenost v grafech V každém grafu lze přirozeným způsobem definovat vzdálenost libovolné dvojice vrcholů. Hlavním výsledkem této kapitoly je překvapivé tvrzení, podle kterého lze vzdálenosti
3. Prohledávání grafů
3. Prohledávání grafů Prohledání do šířky Breadth-First Search BFS Jde o grafový algoritmus, který postupně prochází všechny vrcholy v dané komponentě souvislosti. Algoritmus nejprve projde všechny sousedy
Stromy, haldy, prioritní fronty
Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 19. září 2017 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
Stromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy
Stromy úvod Stromy Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Neorientovaný strom Orientovaný strom Kořenový orientovaný
Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?
Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti
STROMY A KOSTRY. Stromy a kostry TI 6.1
STROMY A KOSTRY Stromy a kostry TI 6.1 Stromy a kostry Seznámíme se s následujícími pojmy: kostra rafu, cyklomatické číslo rafu, hodnost rafu (kořenový strom, hloubka stromu, kořenová kostra orientovaného
07 Základní pojmy teorie grafů
07 Základní pojmy teorie grafů (definice grafu, vlastnosti grafu, charakteristiky uzlů, ohodnocené grafy) Definice grafu množina objektů, mezi kterými existují určité vazby spojující tyto objekty. Uspořádaná
Základní pojmy teorie grafů [Graph theory]
Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta.
6 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info množina vrcholů a množina hran hrana vždy spojuje
Operační výzkum. Síťová analýza. Metoda CPM.
Operační výzkum Síťová analýza. Metoda CPM. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
bfs, dfs, fronta, zásobník
bfs, dfs, fronta, zásobník Petr Ryšavý 25. září 2018 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší cesty, plánování cest. Prohledávání
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 206 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Relace. R, S vyjmenovaním prvků. Sestrojte grafy relací R, S. Určete relace
Relace 1. Nechť A = {n N; n < 10}, B = {m N; m 12}, R = {[m, n] A B; m + 1 = n}, S = {[m, n] A B; m 2 = n}. Zapište relace R, S vyjmenovaním prvků. Sestrojte grafy relací R, S. Určete relace R R, S S,
Algoritmus pro hledání nejkratší cesty orientovaným grafem
1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval
ALG 04. Zásobník Fronta Operace Enqueue, Dequeue, Front, Empty... Cyklická implementace fronty. Průchod stromem do šířky
LG 04 Zásobník Fronta Operace nqueue, equeue, Front, mpty... yklická implementace fronty Průchod stromem do šířky Grafy průchod grafem do šířky průchod grafem do hloubky Ořezávání a heuristiky 1 Zásobník
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 204 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2017
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 207 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Datové typy a struktury
atové typy a struktury Jednoduché datové typy oolean = logická hodnota (true / false) K uložení stačí 1 bit často celé slovo (1 byte) haracter = znak Pro 8-bitový SII kód stačí 1 byte (256 možností) Pro
Datové struktury 2: Rozptylovací tabulky
Datové struktury 2: Rozptylovací tabulky prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy
Ekvivalence. Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 5
doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky FIT České vysoké učení technické v Praze c Josef Kolar, 2011 Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 5 Evropský sociální fond.
Graf. Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd.
Graf 2 0 3 1 4 5 Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd. Běžné reprezentace grafu Uzly = indexy Stupně uzlů
Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT
PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová
Algoritmy na ohodnoceném grafu
Algoritmy na ohodnoceném grafu Dvě základní optimalizační úlohy: Jak najít nejkratší cestu mezi dvěma vrcholy? Dijkstrův algoritmus s t Jak najít minimální kostru grafu? Jarníkův a Kruskalův algoritmus
Informatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A
Informatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A Každá úloha je hodnocena maximálně 25 body. Všechny své odpovědi zdůvodněte! 1. Postavte na stůl do řady vedle
řádově různě rostoucí rostou řádově stejně rychle dvě funkce faktor izomorfismus neorientovaných grafů souvislý graf souvislost komponenta
1) Uveďte alespoň dvě řádově různě rostoucí funkce f(n) takové, že n 2 = O(f(n)) a f(n) = O(n 3 ). 2) Platí-li f(n)=o(g 1 (n)) a f(n)=o(g 2 (n)), znamená to, že g 1 (n) a g 2 (n) rostou řádově stejně rychle
6. Tahy / Kostry / Nejkratší cesty
6. Tahy / Kostry / Nejkratší cesty BI-EP2 Efektivní programování 2 LS 2017/2018 Ing. Martin Kačer, Ph.D. 2011-18 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké
1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10
Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10
Lineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
Aplikovaná numerická matematika - ANM
Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových
Teorie grafů BR Solutions - Orličky Píta (Orličky 2010) Teorie grafů / 66
Teorie grafů Petr Hanuš (Píta) BR Solutions - Orličky 2010 23.2. 27.2.2010 Píta (Orličky 2010) Teorie grafů 23.2. 27.2.2010 1 / 66 Pojem grafu Graf je abstraktní pojem matematiky a informatiky užitečný
4EK311 Operační výzkum. 5. Teorie grafů
4EK311 Operační výzkum 5. Teorie grafů 5. Teorie grafů definice grafu Graf G = uspořádaná dvojice (V, E), kde V označuje množinu n uzlů u 1, u 2,, u n (u i, i = 1, 2,, n) a E označuje množinu hran h ij,
Úloha ve stavovém prostoru SP je <s 0, C>, kde s 0 je počáteční stav C je množina požadovaných cílových stavů
Stavový prostor a jeho prohledávání SP = formalismus k obecnějšímu uchopení a vymezení problému, který spočívá v nalezení posloupnosti akcí vedoucích od počátečního stavu úlohy (zadání) k požadovanému
Algoritmy a datové struktury
Algoritmy a datové struktury Stromy 1 / 32 Obsah přednášky Pole a seznamy Stromy Procházení stromů Binární stromy Procházení BS Binární vyhledávací stromy 2 / 32 Pole Hledání v poli metodou půlení intervalu
GRAFY A GRAFOVÉ ALGORITMY
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO GRAFY A GRAFOVÉ ALGORITMY ARNOŠT VEČERKA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ
Teorie grafů. Teoretická informatika Tomáš Foltýnek
Teorie grafů Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Opakování z minulé přednášky Co je to složitostní třída? Jaké složitostní třídy známe? Kde leží hranice mezi problémy řešitelnými
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus pro vyhledání položky v binárním stromu.
Informatika 10. 9. 2013 Jméno a příjmení Rodné číslo 1) Napište algoritmus pro rychlé třídění (quicksort). 2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus
TGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 31. března 2015 Motivační problémy Silniční sít reprezentovaná grafem. Ohodnocené hrany - délky silnic. Najdi nejkratší/nejrychlejší
TGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 26. března 2013 Motivační problémy Silniční sít reprezentovaná grafem. Najdi nejkratší/nejrychlejší cestu z místa A do místa
1 Nejkratší cesta grafem
Bakalářské zkoušky (příklady otázek) podzim 2014 1 Nejkratší cesta grafem 1. Uvažujte graf s kladným ohodnocením hran (délka). Definujte formálně problém hledání nejkratší cesty mezi dvěma uzly tohoto
PROGRAMOVÁNÍ. Cílem předmětu Programování je seznámit posluchače se způsoby, jak algoritmizovat základní programátorské techniky.
Cílem předmětu Programování je seznámit posluchače se způsoby, jak algoritmizovat základní programátorské techniky. V průběhu budou vysvětlena následující témata: 1. Dynamicky alokovaná paměť 2. Jednoduché
Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů
BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 2/29 Hodnocení předmětu BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 4/29 Automaty a gramatiky(bi-aag) 1. Základní pojmy Jan Holub Katedra teoretické
zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry.
Kapitola Ohodnocené grafy V praktických aplikacích teorie grafů zpravidla graf slouží jako nástroj k popisu nějaké struktury. Jednotlivé prvky této struktury mají často přiřazeny nějaké hodnoty (může jít
Dynamické programování
Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)
Dijkstrův algoritmus (připomenutí)
Dijkstrův algoritmus (připomenutí) Základní předpoklad w : H R + (nezáporné délky hran) Upravený algoritmus prohledávání do šířky Dijkstra(G,s,w) 1 InitPaths(G,s) 2 S:= ; InitQueue(Q) 3 for každý uzel
Grafy (G) ρ(h) = [u,v]
Grafy (G) Neorientované: (NG) H hrany, U-uzly, ρ-incidence (jestli k němu něco vede) ρ: H UΞU Ξ neuspořádaná dvojice ρ(h) = [u,v] Teoretická informatika Str.1 Izolovaný uzel neinciduje s ním žádná hrana
Rekurzivní algoritmy
Rekurzivní algoritmy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA) ZS
4 Stromy a les. Definice a základní vlastnosti stromů. Kostry grafů a jejich počet.
4 Stromy a les Jedním ze základních, a patrně nejjednodušším, typem grafů jsou takzvané stromy. Jedná se o souvislé grafy bez kružnic. Přes svou (zdánlivou) jednoduchost mají stromy bohatou strukturu a
Návrh Designu: Radek Mařík
1. 7. Najděte nejdelší rostoucí podposloupnost dané posloupnosti. Použijte metodu dynamického programování, napište tabulku průběžných délek částečných výsledků a tabulku předchůdců. a) 5 8 11 13 9 4 1
Metody síťové analýzy
Metody síťové analýzy Řeší problematiku složitých systémů, zejména pak vazby mezi jejich jednotlivými prvky. Vychází z teorie grafů. Základní metody síťové analýzy: CPM (Critical Path Method) deterministický
prohled av an ı graf u Karel Hor ak, Petr Ryˇsav y 16. bˇrezna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT
prohledávání grafů Karel Horák, Petr Ryšavý 16. března 2016 Katedra počítačů, FEL, ČVUT Příklad 1 Nad frontou (queue) byly provedeny následující operace: push(1) push(2) print(poll()) print(peek()) print(peek())
VLASTNOSTI GRAFŮ. Vlastnosti grafů - kap. 3 TI 5 / 1
VLASTNOSTI GRAFŮ Vlastnosti grafů - kap. 3 TI 5 / 1 Pokrytí a vzdálenost Každý graf je sjednocením svých hran (jak je to přesně?).?lze nalézt složitější struktury stejného typu, ze kterých lze nějaký graf
TGH04 - procházky po grafech
TGH04 - procházky po grafech Jan Březina Technical University of Liberec 24. března 2015 Theseus v labyrintu Theseus chce v labyrintu najít Mínotaura. K dispozici má Ariadninu nit a křídu. Jak má postupovat?
Úvod do informatiky. Miroslav Kolařík. Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008.
Úvod do informatiky přednáška čtvrtá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Pojem relace 2 Vztahy a operace s (binárními) relacemi
Dynamické programování
ALG 0 Dynamické programování zkratka: DP Zdroje, přehledy, ukázky viz https://cw.fel.cvut.cz/wiki/courses/a4balg/literatura_odkazy 0 Dynamické programování Charakteristika Neřeší jeden konkrétní typ úlohy,
Ohodnocené orientované grafy
Ohodnocené orientované grafy Definice Buď G graf Funkce w : H( G) (, ) se nazývá (hranové) ohodnocení grafu G; graf se zadaným ohodnocením se nazývá ohodnocený graf Definice Nechť G je orientovaný graf
TGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 28. února 2017 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms)
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Relace, zobrazení, algebraické struktury Michal Botur Přednáška
Zdrojem většiny příkladů je sbírka úloh 1. cvičení ( ) 2. cvičení ( )
Příklady řešené na cvičení LA II - LS 1/13 Zdrojem většiny příkladů je sbírka úloh http://kam.mff.cuni.cz/~sbirka/ 1. cvičení (..13) 1. Rozhodněte, které z následujících operací jsou skalárním součinem
TGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 31. března 2015 Počátek teorie grafů Leonard Euler (1707 1783) 1735 pobyt v Královci (Prusko), dnes Kaliningrad (Rusko)
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
VzorTest-1. Prohlídka náhledu
1 z 11 14.11.2017 11:30 Přijímací zkouška magisterského studia Moodle Test MSP Testy VzorTest-1 Prohlídka náhledu Jste přihlášeni jako Josef Kolář (Odhlásit se) Info Výsledky Náhled Upravit VzorTest-1
2. Mřížky / Záplavové vyplňování
2. Mřížky / Záplavové vyplňování BI-EP2 Efektivní programování 2 LS 2017/2018 Ing. Martin Kačer, Ph.D. 2011-18 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké
Dynamické datové struktury I.
Dynamické datové struktury I. Seznam. Fronta. Zásobník. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz
Binární vyhledávací stromy pokročilé partie
Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald
TGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 5. března 2013 Počátek teorie grafů Leonard Euler (1707 1783) 1735 pobyt v Královci (Prusko), dnes Kaliningrad (Rusko) Úloha: