Použití dalších heuristik
|
|
- Arnošt Čech
- před 5 lety
- Počet zobrazení:
Transkript
1 Použití dalších heuristik zkracování cesty při FIND-SET UNION podle hodností Datové struktury... p[x] - předchůdce uzlu x MAKE-SET(x) p[x] := x hod[x] := 0 hod[x] - hodnost (aprox. výšky) UNION(x,y) LINK(FIND-SET(x), FIND-SET(y)) Množinové rozklady - odst. 5.2 TI 7 / 1
2 LINK(x,y) if hod[x] > hod[y] then p[y] := x else p[x] := y if hod[x] = hod[y] then hod[y] := hod[y] + 1 FIND-SET(x) if x p[x] then p[x] := FIND-SET(p[x]) return p[x] Složitost m operací MAKE-SET, FIND-SET, UNION, když MAKE-SET je přesně n: O(m. lg* n) Množinové rozklady - odst. 5.2 TI 7 / 2
3 Minimální kostry?jaká kostra je minimální? Každá má U -1 hran? G = H,U souvislý NG s nezáporným ohodnocením hran w: H R +, kostra T = H v,u taková, že w(h) (součet přes h H v ) je minimální?jak poznáme minimální kostru? prohledáme všechny kostry grafu??? uhádneme kostru a ověříme její minimálnost (JAK?) V: Kostra T grafu G je minimální, pro každou tětivu t je w(t) max w(h) pro h K (K je jediná kružnice v T {t}) Minimální kostry - odst. 5.3 TI 7 / 3
4 ?Praktické možnosti? Hledání minimální kostry odebírat hrany z původního grafu??? najít lib. kostru a postupně ji upravovat??? vytvářet minimální kostru přidáváním hran!!! Generický algoritmus GENERIC-MST(G,w) T := while T netvoří kostru do najdi vhodnou hranu [u,v] pro T T := T {[u,v]} return T TOHLE je problém Minimální kostry - odst. 5.3 TI 7 / 4
5 ?Jak hledat tu správnou hranu pro přidání do kostry? V: Nechť P je podstrom vytvořené části minimální kostry grafu G, [p,q] je hrana taková, že - p P, q P - w([p,q]) = min w(u,v) pro všechny hrany [u,v], u P, v P Pak lze hranu [p,q] přidat k minimální kostře. P G-P Minimální kostry - odst. 5.3 TI 7 / 5
6 Borůvkův - Kruskalův algoritmus KB-MST(G, w) 1 T:= 2 for každý uzel u U do MAKE-SET(u) 3 uspořádej H do neklesající posloupnosti podle váhy w 4 for každou hranu [u,v] H v pořadí neklesajících vah 5 do if FIND-SET(u) FIND-SET(v) 6 then T := T {[u,v]} 7 UNION(u,v) 8 return T O( H.lg H )řazení, O( H. lg* U ) množiny Borůvka a Jarník - odst. 5.4 TI 7 / 6
7 Jarníkův - Primův algoritmus JP-MST(G, w, r) 1 Q := U 2 for každý uzel u Q do d[u] := 3 d[r] := 0; p[r] := nil 4 while Q do 5 u := EXTRACT_MIN(Q) 6 for každý uzel v Adj[u] do 7 if (v Q) and (w(u,v) < d[v]) 8 then p[v] := u; d[v] := w(u,v) POZOR! SLOŽITÉ O( U ) + O( U. lg U ) + O( H. lg U ) Borůvka a Jarník - odst. 5.4 TI 7 / 7
8 Požadavky na úlohu Hladové algoritmy vlastnost hladového výběru - výběr podproblému a pak jeho řešení optimální podstruktura - optimální řešení problému obsahuje optimální řešení podproblému Stromy s minimální w-délkou Známe tvar stromů s optimální vnější/vnitřní délkou.? Jak to bude při rozdílných vahách jednotlivých uzlů? Pravidelný kořenový strom T u s ohodnocením uzlů w i = w(u i ) vnější w-délka E w (T u ) = w i. hl(u i ) Huffmanovo kódování - odst. 5.5 TI 7 / 8
9 Huffmanův algoritmus E w = Huffman(w,n) 1 for i:=1 to n do u:=makenode(wi); Insert(u,Q) 2 for i:=1 to n-1 3 do x:=extractmin(q); y:=extractmin(q) 4 z:=makenode(w[x]+w[y]); left[z]:=x; right[z]:=y; 5 Insert(z,Q) 6 return ExtractMin(Q) Huffmanovo kódování - odst. 5.5 TI 7 / 9
10 Aplikace - generování optimálního prefixového kódu prefixový kód - žádné slovo není prefixem jiného slova Jsou dány znaky a jejich četnosti (absolutní/relativní) v textu znak A B C D E F G H I J četnost E:37 A:52 42 C:18 D:13 21 E: B:5 F:4 5 J:7 Huffmanovo kódování - odst. 5.5 G:2 H:3 TI 7 / 10
11 Nejkratší cesty z jednoho uzlu Několik obecných úvah Uvažujeme nejobecnější případ - ohodnocené OG nedostupné uzly - vzdálenost + spojení se záporným cyklem - vzdálenost - počítání s nekonečny: a + (- ) = (- ) + a = - pro a a + = + a = pro a -? Které vlastnosti 0 až 4 má taková vzdálenost? V: Pro libovolnou hranu (u,v) H a uzel s U platí d w (s,v) d w (s,u) + w(u,v) Nejkratší cesty - odst. 6.1 TI 7 / 11
12 Varianty úlohy hledání nejkratších cest n n 1 n n Datové struktury d[u] délka cesty Inicializace InitPaths(G,s,w) 1 for každý uzel u U 2 do d[u]:= ; p[u]:=nil 3 d[s]:=0 p[u] předchůdce na min. cestě Q fronta otevřených uzlů (halda?) Nejkratší cesty - odst. 6.1 TI 7 / 12
13 Relaxace - (případná) úprava délky nalezené nejkratší cesty Relax(u,v,w) 1 if d[v] > d[u]+w(u,v) 2 then d[v]:= d[u]+w(u,v); p[v]:=u V: Provedeme InitPaths a pak libovolný počet Relax. Potom platí d[u] d w (s,u) jakmile d[u] dosáhne hodnoty d w (s,u), už se nemění jakmile se žádné d[u] nemění, máme strom nejkratších cest do všech dosažitelných uzlů z uzlu s? V jakém pořadí hran a jak dlouho máme provádět relaxaci? Nejkratší cesty - odst. 6.1 TI 7 / 13
14 Dijkstrův algoritmus Základní předpoklad w : H R + Upravený algoritmus prohledávání do šířky Dijkstra(G,s,w) 1 InitPaths(G,s) 2 S:= ; InitQueue(Q) 3 for každý uzel u U do Enqueue(Q,u) O( U ) 4 while not EmptyQueue(Q) 5 do u:=extractmin(q); S:=S {u} O( U. lg U ) 6 for uzel v Adj[u] 7 do Relax(u,v,w) O( H. lg U ) Možné ještě O( U. lg U + H ) nebo O( U **2) Dijkstrův algoritmus - odst. 6.2 TI 7 / 14
15 Bellmanův-Fordův algoritmus? Co dělat v případě záporně orientovaných hran? Bellman-Ford(G,s,w) 1 InitPaths(G,s) 2 for i:=1 to U -1 do 3 for každou hranu (u,v) H do Relax(u,v,w) 4 for každou hranu (u,v) H 5 do if d[v] > d[u] + w(u,v) then return false 6 return true Složitost O( U. H )? Proč má nyní Relax konstantní časovou složitost? Bellman-Ford algoritmus - odst. 6.3 TI 7 / 15
16 ? Nelze B-F algoritmus nějak upravit / zrychlit? Co když zavedeme frontu uzlů s úspěšným Relax a bereme jen hrany vycházející z těchto uzlů? ukončení - při vyprázdnění fronty problém - co když se fronta nevyprázdní? v nejhorším případě zase O( U. H ) Nejkratší cesty pro acyklické grafy 1 Topologicky uspořádáme uzly grafu G 2 InitPaths(G,s) 3 for každý uzel u v pořadí podle topologického uspořádání 4 do for každé v Adj[u] 5 do Relax(u,v,w)?? Složitost?? Bellman-Ford algoritmus - odst. 6.3 TI 7 / 16
STROMY A KOSTRY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze. BI-GRA, LS 2010/2011, Lekce 6
STROMY A KOSTRY Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 010/011, Lekce 6 Evropský sociální fond Praha & EU: Investujeme do vaší
VíceNEJKRATŠÍ CESTY I. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
NEJKRATŠÍ CESTY I Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 7 Evropský sociální fond Praha & EU: Investujeme do vaší
VíceSTROMY A KOSTRY. Stromy a kostry TI 6.1
STROMY A KOSTRY Stromy a kostry TI 6.1 Stromy a kostry Seznámíme se s následujícími pojmy: kostra rafu, cyklomatické číslo rafu, hodnost rafu (kořenový strom, hloubka stromu, kořenová kostra orientovaného
VíceVzdálenost uzlů v neorientovaném grafu
Vzdálenosti a grafy Vzdálenost uzlů v neorientovaném grafu Je dán neorientovaný neohodnocený graf G = (V,E,I) vzdálenost uzlů u a v v neorientovaném souvislém grafu G je délka nejkratší cesty spojující
VíceDijkstrův algoritmus (připomenutí)
Dijkstrův algoritmus (připomenutí) Základní předpoklad w : H R + (nezáporné délky hran) Upravený algoritmus prohledávání do šířky Dijkstra(G,s,w) 1 InitPaths(G,s) 2 S:= ; InitQueue(Q) 3 for každý uzel
VíceAlgoritmy na ohodnoceném grafu
Algoritmy na ohodnoceném grafu Dvě základní optimalizační úlohy: Jak najít nejkratší cestu mezi dvěma vrcholy? Dijkstrův algoritmus s t Jak najít minimální kostru grafu? Jarníkův a Kruskalův algoritmus
VíceGrafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
VíceGrafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
VíceMatice sousednosti NG
Matice sousednosti NG V = [ v ij ] celočíselná čtvercová matice řádu U v ij = ρ -1 ( [u i, u j ] )... tedy počet hran mezi u i a u j?jaké vlastnosti má matice sousednosti?? Smyčky, rovnoběžné hrany? V
Více07 Základní pojmy teorie grafů
07 Základní pojmy teorie grafů (definice grafu, vlastnosti grafu, charakteristiky uzlů, ohodnocené grafy) Definice grafu množina objektů, mezi kterými existují určité vazby spojující tyto objekty. Uspořádaná
VíceTGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 26. března 2013 Motivační problémy Silniční sít reprezentovaná grafem. Najdi nejkratší/nejrychlejší cestu z místa A do místa
VíceORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ
ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2/2, Lekce Evropský sociální fond Praha & EU: Investujeme
VíceTOKY V SÍTÍCH II. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
TOKY V SÍTÍCH II Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 010/011, Lekce 10 Evropský sociální fond Praha & EU: Investujeme do vaší
VíceHledáme efektivní řešení úloh na grafu
Hledáme efektivní řešení úloh na grafu Mějme dán graf následující úlohy: G = ( V, E), chceme algoritmicky vyřešit Je daný vrchol t dosažitelný z vrcholu s? Pokud ano, jaká nejkratší cesta tyto vrcholy
VíceGrafové algoritmy. Aktualizováno: 29. listopadu / 228
Grafové algoritmy Zbyněk Křivka, Tomáš Masopust Aktualizováno: 29. listopadu 2017 1 / 228 Obsah Úvod Grafy Reprezentace grafů Prohledávání do šířky Prohledávání do hloubky Topologické uspořádání Silně
VíceTGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 31. března 2015 Motivační problémy Silniční sít reprezentovaná grafem. Ohodnocené hrany - délky silnic. Najdi nejkratší/nejrychlejší
VíceZákladní datové struktury III: Stromy, haldy
Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní
VícePLANARITA A TOKY V SÍTÍCH
PLANARITA A TOKY V SÍTÍCH Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 9 Evropský sociální fond Praha & EU: Investujeme
VíceTGH05 - aplikace DFS, průchod do šířky
TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 31. března 2015 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující
VíceStromy, haldy, prioritní fronty
Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík
VíceParalelní grafové algoritmy
Paralelní grafové algoritmy Značení Minimální kostra grafu Nejkratší cesta z jednoho uzlu Nejkratší cesta mezi všemi dvojicemi uzlů Použité značení Definition Bud G = (V, E) graf. Pro libovolný uzel u
VíceTGH05 - aplikace DFS, průchod do šířky
TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 28. března 2017 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující
VíceVLASTNOSTI GRAFŮ. Vlastnosti grafů - kap. 3 TI 5 / 1
VLASTNOSTI GRAFŮ Vlastnosti grafů - kap. 3 TI 5 / 1 Pokrytí a vzdálenost Každý graf je sjednocením svých hran (jak je to přesně?).?lze nalézt složitější struktury stejného typu, ze kterých lze nějaký graf
VíceTGH08 - Optimální kostry
TGH08 - Optimální kostry Jan Březina Technical University of Liberec 14. dubna 2015 Problém profesora Borůvky řešil elektrifikaci Moravy Jak propojit N obcí vedením s minimální celkovou délkou. Vedení
VíceDrsná matematika III 10. demonstrovaná cvičení Kostry grafů
Drsná matematika III 10. demonstrovaná cvičení Kostry grafů Martin Panák Masarykova univerzita Fakulta informatiky 21.11. 2006 1 Domácí úlohy z minulého týdne Příklad 1 Příklad 2 Příklad 3 2 Borůvkův algoritmus
Více6. Tahy / Kostry / Nejkratší cesty
6. Tahy / Kostry / Nejkratší cesty BI-EP2 Efektivní programování 2 LS 2017/2018 Ing. Martin Kačer, Ph.D. 2011-18 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké
VíceDijkstrův algoritmus
Dijkstrův algoritmus Hledání nejkratší cesty v nezáporně hranově ohodnoceném grafu Necht je dán orientovaný graf G = (V, H) a funkce, která každé hraně h = (u, v) H přiřadí nezáporné reálné číslo označované
VíceTGH07 - Chytré stromové datové struktury
TGH07 - Chytré stromové datové struktury Jan Březina Technical University of Liberec 1. dubna 2014 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AccessMin, DeleteMin) - vrat prvek s minimálním
VíceStromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy
Stromy úvod Stromy Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Neorientovaný strom Orientovaný strom Kořenový orientovaný
VíceGrafové algoritmy III.
Grafové algoritmy III. Minimální kostra. Borůvkův/Kruskalův algoritmus. Jarníkův/Primův algoritmus. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta
VíceÚvod do teorie grafů
Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí
VícePROHLEDÁVÁNÍ GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
PROHLEDÁVÁNÍ GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 4 Evropský sociální fond Praha & EU: Investujeme do
VíceUmělá inteligence. UI (AI) - součást informatiky s průniky mimo obor Stručná historie UI. Letošní cena nadace Vize 2000 - Joseph Weizenbaum
Umělá inteligence UI (AI) - součást informatiky s průniky mimo obor Stručná historie UI 1943-56 začátky (modelování neuronů a sítí na počítači) 1952-69 velká očekávání (GPS, Lisp, microworlds) 1966-74
VíceTeorie grafů. Kostra grafu. Obsah. Radim Farana Podklady pro výuku pro akademický rok 2013/2014
Teorie grafů Radim Farana Podklady pro výuku pro akademický rok 013/014 Obsah Kostra grafu. Tahy,. Úloha čínského pošťáka. Zdroj: Vítečková, M., Přidal, P. & Koudela, T. Výukový modul k předmětu Systémová
VíceGraf. Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd.
Graf 2 0 3 1 4 5 Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd. Běžné reprezentace grafu Uzly = indexy Stupně uzlů
VíceTGH07 - Chytré stromové datové struktury
TGH07 - Chytré stromové datové struktury Jan Březina Technical University of Liberec 5. dubna 2017 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AccessMin, DeleteMin) - vrat prvek s minimálním
VíceSTROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta
STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach vlož do fronty kořen opakuj, dokud není fronta prázdná 1. vyber uzel z fronty a zpracuj jej 2. vlož do fronty levého následníka
Více1. Minimální kostry. 1.1. Od mìsteèka ke kostøe
. Minimální kostry Napadl sníh a přikryl peřinou celé městečko. Po ulicích lze sotva projít pěšky, natož projet autem. Které ulice prohrneme, aby šlo dojet odkudkoliv kamkoliv, a přitom nám házení sněhu
VíceGrafy (G) ρ(h) = [u,v]
Grafy (G) Neorientované: (NG) H hrany, U-uzly, ρ-incidence (jestli k němu něco vede) ρ: H UΞU Ξ neuspořádaná dvojice ρ(h) = [u,v] Teoretická informatika Str.1 Izolovaný uzel neinciduje s ním žádná hrana
Vícebfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 20. září 2016 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
VíceAlgoritmus pro hledání nejkratší cesty orientovaným grafem
1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval
VíceKostry. 9. týden. Grafy. Marie Demlová (úpravy Matěj Dostál) 16. dubna 2019
Grafy 16. dubna 2019 Tvrzení. Je dán graf G, pak následující je ekvivalentní. 1 G je strom. 2 Graf G nemá kružnice a přidáme-li ke grafu libovolnou hranu, uzavřeme přesně jednu kružnici. 3 Graf G je souvislý
VíceDynamické datové struktury III.
Dynamické datové struktury III. Halda. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra aplikované
VíceDynamické programování
ALG 0 Dynamické programování zkratka: DP Zdroje, přehledy, ukázky viz https://cw.fel.cvut.cz/wiki/courses/a4balg/literatura_odkazy 0 Dynamické programování Charakteristika Neřeší jeden konkrétní typ úlohy,
Více4EK311 Operační výzkum. 5. Teorie grafů
4EK311 Operační výzkum 5. Teorie grafů 5. Teorie grafů definice grafu Graf G = uspořádaná dvojice (V, E), kde V označuje množinu n uzlů u 1, u 2,, u n (u i, i = 1, 2,, n) a E označuje množinu hran h ij,
VíceOperační výzkum. Síťová analýza. Metoda CPM.
Operační výzkum Síťová analýza. Metoda CPM. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
VíceModely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT
PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová
VíceZdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.
1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste
VíceTeorie grafů BR Solutions - Orličky Píta (Orličky 2010) Teorie grafů / 66
Teorie grafů Petr Hanuš (Píta) BR Solutions - Orličky 2010 23.2. 27.2.2010 Píta (Orličky 2010) Teorie grafů 23.2. 27.2.2010 1 / 66 Pojem grafu Graf je abstraktní pojem matematiky a informatiky užitečný
Více1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10
Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10
VíceAlgoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento
VíceTEORIE GRAFŮ TEORIE GRAFŮ 1
TEORIE GRAFŮ 1 TEORIE GRAFŮ Přednášející: RNDr. Jiří Taufer, CSc. Fakulta dopravní ČVUT v Praze, letní semestr 1998/99 Zpracoval: Radim Perkner, tamtéž, v květnu 1999 ZÁKLADNÍ POJMY Říkáme, že je dán prostý
VícePrioritní fronta, halda
Prioritní fronta, halda Priority queue, heap Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2018 1 / 26 Prioritní fronta Halda Heap sort 2 / 26 Prioritní fronta (priority queue) Podporuje
Vícebfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 19. září 2017 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
VíceJan Březina. Technical University of Liberec. 21. dubna 2015
TGH11 - Maximální párování a související problémy Jan Březina Technical University of Liberec 21. dubna 2015 Bipartitní grafy Bipartitní graf - je obarvitelný dvěma barvami. Tj. V lze rozělit na disjunktní
Více8 Přednáška z
8 Přednáška z 3 12 2003 Problém minimální kostry: Dostaneme souvislý graf G = (V, E), w : E R + Našim úkolem je nalézt strom (V, E ) tak, aby výraz e E w(e) nabýval minimální hodnoty Řešení - Hladový (greedy)
VíceJan Březina. Technical University of Liberec. 30. dubna 2013
TGH11 - Maximální párování a související problémy Jan Březina Technical University of Liberec 30. dubna 2013 Bipartitní grafy Bipartitní graf - je obarvitelný dvěma barvami. Tj. V lze rozělit na disjunktní
VíceČasová a prostorová složitost algoritmů
.. Časová a prostorová složitost algoritmů Programovací techniky doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Hodnocení algoritmů Programovací techniky Časová a prostorová
VíceBinární vyhledávací stromy pokročilé partie
Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald
VíceAproximativní algoritmy UIN009 Efektivní algoritmy 1
Aproximativní algoritmy. 14.4.2005 UIN009 Efektivní algoritmy 1 Jak nakládat s NP-těžkými úlohami? Speciální případy Aproximativní algoritmy Pravděpodobnostní algoritmy Exponenciální algoritmy pro data
VíceSeminář z IVT Algoritmizace. Slovanské gymnázium Olomouc Tomáš Kühr
Seminář z IVT Algoritmizace Slovanské gymnázium Olomouc Tomáš Kühr Algoritmizace - o čem to je? Zatím jsme se zabývali především tím, jak určitý postup zapsat v konkrétním programovacím jazyce (např. C#)
Vícezejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry.
Kapitola Ohodnocené grafy V praktických aplikacích teorie grafů zpravidla graf slouží jako nástroj k popisu nějaké struktury. Jednotlivé prvky této struktury mají často přiřazeny nějaké hodnoty (může jít
VíceADT prioritní fronta. Haldy. Další operace nad haldou. Binární halda. Binomické stromy. Časová složitost jednotlivých operací.
ADT prioritní fronta Haldy množina M operace Přidej(M,x) přidá prvek x do množiny M Odeber(M) odeber z množiny M prvek, který je na řadě Zásobník (LIFO), Fronta (FIFO) Prioritní fronta: Přidej(M,x) přidá
VíceÚloha ve stavovém prostoru SP je <s 0, C>, kde s 0 je počáteční stav C je množina požadovaných cílových stavů
Stavový prostor a jeho prohledávání SP = formalismus k obecnějšímu uchopení a vymezení problému, který spočívá v nalezení posloupnosti akcí vedoucích od počátečního stavu úlohy (zadání) k požadovanému
VíceObsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest
Obsah prezentace Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest 1 Základní pojmy Vrchol grafu: {množina V} Je to styčná vazba v grafu, nazývá se též uzlem, prvkem
VíceNP-ÚPLNÉ PROBLÉMY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
NP-ÚPLNÉ PROBLÉMY Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 13 Evropský sociální fond Praha & EU: Investujeme do
VíceALG 04. Zásobník Fronta Operace Enqueue, Dequeue, Front, Empty... Cyklická implementace fronty. Průchod stromem do šířky
LG 04 Zásobník Fronta Operace nqueue, equeue, Front, mpty... yklická implementace fronty Průchod stromem do šířky Grafy průchod grafem do šířky průchod grafem do hloubky Ořezávání a heuristiky 1 Zásobník
VíceÚvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška desátá Miroslav Kolařík Zpracováno dle R. Bělohlávek, V. Vychodil: Diskrétní matematika 2, http://phoenix.inf.upol.cz/esf/ucebni/dm2.pdf P. Martinek: Základy teoretické informatiky,
Víceopakování reprezentace grafů, dijkstra, bellman-ford, johnson
opakování reprezentace grafů, dijkstra, bellman-ford, johnson Petr Ryšavý 19. září 2016 Katedra počítačů, FEL, ČVUT opakování reprezentace grafů Graf Definice (Graf) Graf G je uspořádaná dvojice G = (V,
VíceDynamické datové struktury IV.
Dynamické datové struktury IV. Prioritní fronta. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra
VíceJan Březina. 7. března 2017
TGH03 - stromy, ukládání grafů Jan Březina Technical University of Liberec 7. března 2017 Kružnice - C n V = {1, 2,..., n} E = {{1, 2}, {2, 3},..., {i, i + 1},..., {n 1, n}, {n, 1}} Cesta - P n V = {1,
VíceVLASTNOSTI GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze. BI-GRA, LS 2010/2011, Lekce 5
VLASTNOSTI GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 5 Evropský sociální fond Praha & EU: Investujeme do vaší
VíceZáklady umělé inteligence
Základy umělé inteligence Automatické řešení úloh Základy umělé inteligence - prohledávání. Vlasta Radová, ZČU, katedra kybernetiky 1 Formalizace úlohy UI chápe řešení úloh jako proces hledání řešení v
VíceAlgoritmy a datové struktury
Algoritmy a datové struktury Stromy 1 / 32 Obsah přednášky Pole a seznamy Stromy Procházení stromů Binární stromy Procházení BS Binární vyhledávací stromy 2 / 32 Pole Hledání v poli metodou půlení intervalu
VíceGrafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
VíceZáklady informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová
Základy informatiky Teorie grafů Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Obsah přednášky Barvení mapy Teorie grafů Definice Uzly a hrany Typy grafů Cesty, cykly, souvislost grafů Barvení mapy
VíceMatematika III 10. přednáška Stromy a kostry
Matematika III 10. přednáška Stromy a kostry Michal Bulant Masarykova univerzita Fakulta informatiky 20. 11. 2007 Obsah přednášky 1 Izomorfismy stromů 2 Kostra grafu 3 Minimální kostra Doporučené zdroje
VíceIII přednáška Toky v sítích
S Dalsi aplikace OOOOOOOO Matematika III - 11. přednáška Toky v sítích Michal Bulant Masarykova univerzita Fakulta informatiky 27. 11. 2007 O Toky v sítích Q Problém maximálního toku v síti Q Další aplikace
VíceUnion-Find problém. Kapitola 1
Kapitola 1 Union-Find problém Motivace: Po světě se toulá spousta agentů. Často se stává, že jeden agent má spoustu jmen/přezdívek, které používá například při rezervaci hotelu, restaurace, na návštěvě
VíceDynamicky vázané metody. Pozdní vazba, virtuální metody
Dynamicky vázané metody Pozdní vazba, virtuální metody Motivace... class TBod protected: float x,y; public: int vrat_pocet_bodu() return 1; ; od třídy TBod odvodíme: class TUsecka: public TBod protected:
VíceJarníkův algoritmus. Obsah. Popis
1 z 6 28/05/2015 11:44 Jarníkův algoritmus Z Wikipedie, otevřené encyklopedie Jarníkův algoritmus (v zahraničí známý jako Primův algoritmus) je v teorii grafů algoritmus hledající minimální kostru ohodnoceného
Více5 Orientované grafy, Toky v sítích
Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost
VíceOptimalizace & soft omezení: algoritmy
Optimalizace & soft omezení: algoritmy Soft propagace Klasická propagace: eliminace nekonzistentních hodnot z domén proměnných Soft propagace: propagace preferencí (cen) nad k-ticemi hodnot proměnných
VícePřijímací zkouška - matematika
Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,
VíceTGH04 - procházky po grafech
TGH04 - procházky po grafech Jan Březina Technical University of Liberec 24. března 2015 Theseus v labyrintu Theseus chce v labyrintu najít Mínotaura. K dispozici má Ariadninu nit a křídu. Jak má postupovat?
VíceMetody síťové analýzy
Metody síťové analýzy Řeší problematiku složitých systémů, zejména pak vazby mezi jejich jednotlivými prvky. Vychází z teorie grafů. Základní metody síťové analýzy: CPM (Critical Path Method) deterministický
VíceProblém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy.
Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Poznámka:Slovem okružní myslíme,žecestakončívestejném městě,
VíceObsah přednášky. Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41
Obsah přednášky Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41 Analýza algoritmu Proč vůbec dělat analýzu? pro většinu problémů existuje několik různých přístupů aby
Vícedag a dp v něm, bellman-ford, floyd-warshall
dag a dp v něm, bellman-ford, floyd-warshall Petr Ryšavý 24. září 2018 Katedra počítačů, FEL, ČVUT topologické očíslování Topologické očíslování Definice (Topologické očíslování) Topologické očíslování
VíceTGH10 - Maximální toky
TGH10 - Maximální toky Jan Březina Technical University of Liberec 23. dubna 2013 - motivace Elektrická sít : Elektrická sít, jednotlivé vodiče mají různou kapacitu (max. proud). Jaký maximální proud může
VíceAlgoritmy a datové struktury I, přednáška prof. RNDr. Lud ka Kučery, DrSc. Poznámky sepsal Robert Husák. Letní semestr 2009/2010
Algoritmy a datové struktury I, přednáška prof. RNDr. Lud ka Kučery, DrSc. Poznámky sepsal Robert Husák Letní semestr 2009/2010 Většina úloh je dostupná v Algovizi[2], proto v poznámkách uvádím přímo odkazy
VíceAlgoritmy I, složitost
A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav automatizace a informatiky TEORIE GRAFŮ. Doc. RNDr. Ing. Miloš Šeda, Ph.D.
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav automatizace a informatiky TEORIE GRAFŮ Doc. RNDr. Ing. Miloš Šeda, Ph.D. BRNO 2003 Tento text je doplňujícím materiálem pro předmět Teorie
VíceRovinné grafy Kostra grafu Minimální kostra Toky v sítích Problém maximálního toku v síti. Stromy a kostry. Michal Bulant
Matematika III 10. přednáška Stromy a kostry Michal Bulant Masarykova univerzita Fakulta informatiky 1. 12. 20 Obsah přednášky 1 Rovinné grafy Platónská tělesa Barvení map 2 Kostra grafu 3 Minimální kostra
Více= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez
Síť Síť je čtveřice N = ( G, s, t, c) kde G ( V, A) = je prostý orientovaný graf a každé orientované hraně ( u, v) je přiřazeno nezáporné číslo, které se nazývá kapacita hrany ( u, v), formálně c ( u,
VíceTeória grafov. Stromy a kostry 1. časť
Teória grafov Stromy a kostry 1. časť Definícia: Graf G=(V, E) nazývame strom, ak neobsahuje kružnicu ako podgraf Definícia Strom T=(V, E T ) nazývame koreňový strom ak máme v ňom pevne vybraný vybraný
VíceH {{u, v} : u,v U u v }
Obyčejný graf Obyčejný graf je dvojice G= U, H, kde U je konečná množina uzlů (vrcholů) a H {{u, v} : u,v U u v } je (konečná) množina hran. O hraně h={u, v} říkáme, že je incidentní s uzly u a v nebo
VíceNávrh Designu: Radek Mařík
1. 7. Najděte nejdelší rostoucí podposloupnost dané posloupnosti. Použijte metodu dynamického programování, napište tabulku průběžných délek částečných výsledků a tabulku předchůdců. a) 5 8 11 13 9 4 1
VíceMinimální kostry. Teorie. Štěpán Šimsa
Minimální kostry Štěpán Šimsa Abstrakt. Cílem příspěvku je seznámit s tématem minimálních koster, konkrétně s teoretickými základy, algoritmy a jejich analýzou. Problém.(Minimální kostra) Je zadaný graf
VíceFaculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 23 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 2 / 23 biologové často potřebují najít často se opakující sekvence DNA tyto sekvence bývají relativně krátké,
Více